洛阳理工学院 课程设计 基于PLC的加热反应炉自动控制的设计
- 格式:doc
- 大小:292.50 KB
- 文档页数:19
基于PLC的加热反应炉电气控制系统的设计加热反应炉是一种广泛应用于化工、石油、医药等行业的设备,用于进行各种化学反应。
为了确保反应炉的稳定运行和安全性,需要设计一个合理可靠的电气控制系统。
1.电气元件选择:选择适合加热反应炉的电气元件,如断路器、接触器、继电器、传感器等。
其中,断路器用于控制和保护电路的安全运行,接触器用于控制电路的开关动作,继电器用于实现不同电路之间的控制信号传递,传感器用于实时监测反应炉的温度、压力等参数。
2.控制逻辑设计:根据加热反应炉的工艺要求,设计合理的控制逻辑,包括温度控制、压力控制、流量控制等。
通过传感器监测反应炉内的温度、压力等参数,将这些参数传递给PLC,由PLC根据设定值来控制相应的执行机构,如加热装置、冷却装置、喷嘴等。
3.安全保护设计:加热反应炉的操作涉及到高温、高压等危险因素,为保证操作人员的安全,需要设计安全保护系统。
例如,设置温度过高报警功能,当反应炉内温度超过设定值时,PLC将发出警报并停止加热装置的工作;设置过压保护功能,当反应炉内的压力超过设定值时,PLC将自动关闭供气装置。
4.人机界面设计:设计一个人机界面,方便操作人员对加热反应炉进行监控和控制。
人机界面通常采用触摸屏或工控机,通过人机界面,操作人员可以实时监测反应炉的运行状态,调整设定值,查看历史数据等。
总之,基于PLC的加热反应炉电气控制系统的设计需要充分考虑反应炉的工艺要求和安全性,选择适合的电气元件,设计合理的控制逻辑和安全保护功能,并提供简单易用的人机界面。
只有设计合理的电气控制系统,才能保证加热反应炉的稳定运行和安全性。
《基于PLC的环形炉温度控制系统设计与应用》篇一一、引言在工业生产过程中,温度控制是一个关键环节,特别是在环形炉的加热工艺中。
为确保产品质量、生产效率和能源利用效率,开发一种基于PLC(可编程逻辑控制器)的环形炉温度控制系统显得尤为重要。
本文将详细介绍基于PLC的环形炉温度控制系统的设计与应用,并分析其在实际生产中的效果。
二、系统设计1. 硬件设计本系统主要由PLC控制器、温度传感器、执行器(如加热器、冷却器等)以及人机界面(HMI)等部分组成。
其中,PLC控制器负责接收温度传感器的信号,并根据设定的控制算法输出控制信号给执行器,实现对环形炉温度的控制。
(1)PLC控制器:选用高性能的PLC控制器,具备高速运算、高精度控制等特点,可满足环形炉温度控制的复杂要求。
(2)温度传感器:选用具有高精度、快速响应特性的温度传感器,以实现对环形炉温度的实时监测。
(3)执行器:包括加热器和冷却器等,根据PLC控制器的指令进行工作,实现对环形炉温度的调节。
(4)人机界面:提供友好的操作界面,方便操作人员对系统进行监控和操作。
2. 软件设计软件设计主要包括PLC控制程序的编写和HMI界面的设计。
(1)PLC控制程序:根据环形炉的温度控制要求,编写相应的控制程序。
通常采用PID(比例-积分-微分)控制算法,实现对环形炉温度的精确控制。
同时,程序还应具备自诊断、报警等功能,以便及时发现并处理系统故障。
(2)HMI界面:设计友好的操作界面,包括温度显示、控制参数设置、报警信息提示等功能。
操作人员可通过HMI界面实时监控环形炉的温度,并根据需要设置控制参数。
三、系统应用本系统已广泛应用于各类环形炉的温度控制,如冶金、化工、建材等行业的生产线中。
在实际应用中,系统表现出较高的稳定性和可靠性,有效提高了环形炉的温度控制精度和能源利用效率。
同时,系统还具备自诊断和报警功能,方便操作人员及时发现并处理系统故障,保障了生产的顺利进行。
plc反应炉课程设计一、课程目标知识目标:1. 学生能理解PLC(可编程逻辑控制器)反应炉的基本原理与结构;2. 学生能掌握PLC编程中涉及的逻辑运算、定时器、计数器等基本指令;3. 学生了解反应炉的温度、压力等参数与PLC控制逻辑的关系。
技能目标:1. 学生能够运用所学知识,设计简单的PLC反应炉控制程序;2. 学生能够通过实验操作,对PLC反应炉进行调试和故障排除;3. 学生能够利用数据分析方法,评价PLC控制系统的性能。
情感态度价值观目标:1. 学生通过课程学习,培养对自动化控制技术的兴趣和热情;2. 学生在团队合作中,学会相互尊重、沟通协作,培养集体荣誉感;3. 学生认识到PLC技术在工业生产中的重要性,增强社会责任感。
课程性质:本课程为高中自动化控制技术课程,结合实际工业应用,培养学生理论联系实际的能力。
学生特点:高中学生具备一定的物理、数学基础,对新鲜事物充满好奇,具备一定的动手能力和探究精神。
教学要求:通过本课程学习,教师应注重理论与实践相结合,鼓励学生动手实践,提高学生的自动化控制技能。
同时,关注学生的情感态度价值观培养,提升学生的综合素质。
将课程目标分解为具体学习成果,便于教学设计和评估。
1. 理论知识:- PLC基本原理与结构:介绍PLC的工作原理、硬件结构、编程软件等;- PLC编程指令:讲解逻辑运算、定时器、计数器等基本指令的使用方法;- 反应炉参数与PLC控制逻辑:分析温度、压力等参数与PLC控制逻辑的关系。
2. 实践操作:- PLC编程软件操作:学习编程软件的使用,完成简单的程序编写;- PLC反应炉控制程序设计:根据实际需求,设计反应炉控制程序;- PLC反应炉调试与故障排除:通过实验操作,学会调试和排除故障。
3. 教学大纲:- 第一周:PLC基本原理与结构学习;- 第二周:PLC编程指令学习;- 第三周:反应炉参数与PLC控制逻辑分析;- 第四周:PLC编程软件操作与简单程序编写;- 第五周:PLC反应炉控制程序设计;- 第六周:PLC反应炉调试与故障排除。
plc反应炉课程设计一、教学目标本课程的学习目标包括知识目标、技能目标和情感态度价值观目标。
知识目标要求学生掌握PLC反应炉的基本原理、结构和工作原理。
技能目标要求学生能够熟练使用PLC进行反应炉的控制编程,并能够进行故障排除和维护。
情感态度价值观目标要求学生培养对PLC反应炉技术的兴趣和热情,认识到其在工业生产中的重要性和应用前景。
二、教学内容教学内容将根据课程目标进行选择和,确保内容的科学性和系统性。
教学大纲将明确教学内容的安排和进度。
教材的章节将包括PLC反应炉的基本原理、结构和工作原理,PLC编程技术和应用案例,以及故障排除和维护方法。
三、教学方法教学方法将多样化,以激发学生的学习兴趣和主动性。
将采用讲授法来传授基本原理和理论知识,讨论法来促进学生之间的交流和思考,案例分析法来结合实际应用案例进行教学,实验法来进行实际操作和故障排除练习。
四、教学资源教学资源将包括教材、参考书、多媒体资料和实验设备。
教材将提供系统的理论知识和编程技术,参考书将提供更多的案例和实践经验,多媒体资料将通过图像和视频形式来直观展示PLC反应炉的工作原理和应用案例,实验设备将用于实际操作和故障排除练习,以增强学生的实践能力。
五、教学评估教学评估将采用多种方式,以全面反映学生的学习成果。
平时表现将占评估总分的30%,包括课堂参与度、提问回答和团队协作等方面。
作业将占评估总分的20%,包括编程练习和故障排除任务。
考试将占评估总分的50%,包括理论知识测试和实际操作考试。
评估方式将客观、公正,确保全面评估学生的知识掌握和技能运用能力。
六、教学安排教学进度将根据课程目标和教学内容进行合理安排。
教学时间将分配在每周的固定课堂上,确保在有限的时间内完成教学任务。
教学地点将选择适合进行PLC 反应炉教学的实验室和教室。
教学安排还将考虑学生的实际情况和需要,如学生的作息时间和兴趣爱好,以确保学生能够积极参与学习。
七、差异化教学差异化教学将根据学生的不同学习风格、兴趣和能力水平进行设计。
基于PLC的加热反应炉自动控制系统设计摘要:本文针对PLC控制的加热反应炉自动控制系统进行了设计研究。
本文主要从系统硬件的设计和软件的编写两个方面进行了详细的分析,重点介绍了系统的总体设计思路、系统设备的选型及布局、系统各个模块的控制方法和软件编写等内容,最后对实验结果进行了分析和展望。
关键词:PLC、加热反应炉、自动控制、系统设计、编程一、引言随着现代工业的发展,加热反应炉在化学、制药、冶金、建材等领域广泛应用。
而加热反应炉的工作过程需要严格的温度控制才能保证产品的质量和稳定性。
传统的加热反应炉控制采用手动控制,效率低、易出错。
因此,设计一种基于PLC的加热反应炉自动控制系统,实现自动化控制,具有重要意义。
本文主要针对PLC控制的加热反应炉自动控制系统进行设计研究。
首先,介绍了本系统的总体设计思路和方案。
其次,详细介绍了系统各个模块的硬件及软件设计内容和步骤。
最后,进行了实验结果的分析和展望。
二、系统总体设计思路和方案加热反应炉自动控制系统主要包括控制器、执行机构、传感器和人机界面四个部分。
其中,PLC控制器是系统的核心。
通过PLC控制器对控制系统进行逻辑运算和控制命令输出,驱动执行机构完成设定的动作。
传感器将反应炉内部的温度、压力等信息采集,并通过传感器信号处理器将处理后的信息传递给PLC控制器。
人机界面是系统与用户交互的窗口,用户通过人机界面进行操作和对系统进行监控。
三、系统各模块硬件设计和软件编写1、控制器硬件设计控制器是系统的核心,直接影响系统的性能和稳定性。
本系统采用西门子S7-200系列PLC控制器,其具有处理速度快、编程简单、安全可靠的特点,能够满足本系统的要求。
控制器的外部设备如下:①电源模块电源模块是PLC控制器的供电模块,外部电源的输入电压在220VAC±10%之间,输出5VDC电压供给控制器。
②CPU模块CPU模块是PLC控制器的核心,负责控制各个模块的运作。
本系统采用S7-200 CPU226型号。
课程设计(论文)-基于PLC的电加热炉温度控制系统设计引言电加热炉在很多工业生产过程中都扮演着重要角色,而温度控制是电加热炉设计中一个至关重要的问题。
在传统控制方式中,人工干预方案过程复杂,效率较低,不利于生产效率和产品质量的提高。
本文将介绍基于PLC的电加热炉温度控制系统的设计思路、实现原理和结果。
一、设计思路本设计将采用PID控制算法,该算法具有高效、稳定、精度高等优点。
通过对电加热炉加热、冷却及温度等变量进行采样处理,并将PID控制器中的比例、积分、微分三个参数进行调节,使电加热炉的温度控制在预定温度范围内。
二、实现原理本设计所用的硬件设备主要包括PLC、温度传感器、电源、电加热炉及调节阀等。
其中,PLC负责对相关参数的采集与计算,并通过输出信号控制电加热炉内加热、冷却和温度调节。
具体实现步骤如下:1.系统启动后,PLC获取温度传感器采集到的温度值,并将该值与预定温度进行比较,如果温度低于预定温度,PLC将对电源输出信号,让电加热炉进行加热;否则,PLC关闭电加热炉,让炉内温度保持稳定。
2.为了防止温度超过预定值,PLC同时监控温度,当温度高于预定值时,PLC会输出信号关闭电加热炉并打开冷却阀,降低炉内温度。
3.PLC采用PID算法计算比例、积分、微分三个参数,通过对这三个参数的调节,控制电加热炉的加热和冷却过程。
当温度波动较大时,PID控制器会对加热、冷却速度进行调整,使系统实现温度稳定控制。
三、实验结果在实验中,我们将预定温度设置为400℃,测试结果表明:通过使用本文设计的基于PLC的电加热炉温度控制系统,可以让电加热炉的温度控制在预定温度范围内,而且精度高、控制稳定且效率高。
整个系统具有操作简单,实现成本低等优点,可以满足很多工业生产过程中对温度精确控制的需求。
结论本文通过对基于PLC的电加热炉温度控制系统的设计、实现、测试与分析,证明了该系统具有高效、精度高、稳定性强等多方面的优点。
一、课程设计目标本课程设计旨在使学生通过理论学习和实际操作,掌握加热反应炉的PLC控制原理和实施方法,培养学生分析和解决实际工程问题的能力,为学生将来从事自动化控制工程领域奠定基础。
二、课程设计内容1. PLC基础知识1.1 PLC概念及应用1.2 PLC硬件组成1.3 PLC软件编程1.4 PLC常用指令及程序设计2. 加热反应炉的工作原理2.1 反应炉结构及加热原理2.2 温度传感器和控制阀的原理2.3 加热反应炉的自动化控制需求分析3. PLC在加热反应炉中的应用3.1 PLC控制系统的组成3.2 PLC控制系统的工作原理3.3 PLC控制系统的编程设计4. 实验操作4.1 PLC编程软件操作4.2 加热反应炉的控制系统调试4.3 故障分析与排除三、实验设计为了让学生更好地理解和掌握课程内容,本课程设计设置了相关的实验环节。
学生将分为若干小组,每个小组根据指导教师的要求完成以下实验项目:1. 使用PLC编程软件设计加热反应炉的自动化控制系统程序;2. 联机调试实验装置,进行加热反应炉的温度控制和反馈;3. 模拟实际工程场景,进行故障排除实验,培养学生解决实际问题的能力。
四、教学方法本课程注重理论与实践相结合,将采用多种教学方法,如理论授课、案例分析、实验操作等,以帮助学生全面理解和掌握PLC控制在加热反应炉中的应用。
五、评估方式为了检验学生对课程内容的掌握情况,本课程设计将采用多种评估方式,包括课堂测验、课程实验报告、实验成绩等,综合评估学生的学习情况。
六、课程设计效果通过本课程的学习,学生将达到以下预期效果:1. 掌握PLC控制系统的基本原理和应用方法;2. 理解加热反应炉的工作原理和控制需求;3. 能够使用PLC编程软件设计和调试加热反应炉的控制系统;4. 熟练掌握故障排除方法,具备一定的工程实践能力。
七、结语加热反应炉的PLC控制课程设计旨在培养学生的工程实践能力和解决实际工程问题的能力,为学生将来从事自动化控制工程领域打下坚实的基础。
基于PLC的锅炉加热温度控制系统设计锅炉加热温度控制系统设计是一个非常重要的工程项目,特别是在工业生产中。
PLC(可编程逻辑控制器)是一种高级自动化控制设备,可以实现对锅炉加热温度的精确控制。
本文将介绍一个基于PLC的锅炉加热温度控制系统的设计。
【系统概述】该系统的基本目标是稳定地控制锅炉的加热温度,保证锅炉在正常工作范围内运行,并尽可能地提高热效率。
具体来说,系统需要实现以下功能:1.实时监测锅炉温度。
2.控制锅炉加热功率。
3.响应温度变化,并自动调整加热功率。
4.报警和故障保护功能。
【系统设计】1.硬件设计:硬件部分包括传感器、执行机构和PLC。
传感器用于实时监测锅炉温度,常用的温度传感器有热电偶和敏感电阻。
执行机构用于控制加热功率,可采用电磁阀或电加热器。
PLC负责处理数据和控制信号,可以选择常用的西门子、施耐德等PLC。
2.软件设计:软件部分主要包括PLC编程和人机界面设计。
PLC编程可以使用基于LD(梯形图)或SFC(时序功能图)的编程语言,根据具体控制要求,设计合适的控制算法和逻辑。
人机界面设计可以使用HMI(人机界面)或SCADA(监控与数据采集系统),实时显示锅炉温度、加热功率和系统状态,并提供控制和设定温度的功能。
3.控制策略设计:控制策略需要根据具体情况进行设计,一般分为开环控制和闭环控制两种。
开环控制是根据经验或数学模型预先设定温度和加热功率曲线,直接输出控制信号。
闭环控制则根据实时监测的温度反馈信息,通过控制算法动态调整加热功率,使实际温度尽可能接近设定温度。
4.报警和故障保护设计:系统需要具备报警和故障保护功能,当温度超出设定范围或系统出现故障时,及时发出警报并采取相应的措施,以保护锅炉和工艺安全。
【实施与测试】在实施前,需要进行系统调试,确保PLC编程和硬件连接正常。
在实际运行中,需要对系统进行定期检测和维护,以保证系统的稳定性和可靠性。
总结起来,基于PLC的锅炉加热温度控制系统的设计是一个复杂的工程,需要综合考虑硬件和软件的因素。
基于PLC电热炉温度控制系统设计摘要:本文采用PLC控制系统对电热炉温度进行自动控制,实现了对炉内温度的精准控制。
通过对温度传感器、控制器及执行机构的设计与配置,确保了系统的稳定性和可靠性。
实验结果表明,该控制系统精度高、可靠性好,可以满足实际生产中的需求。
关键词:PLC控制系统,电热炉,温度控制,自动化,稳定性Abstract:This paper uses PLC control system to automatically controlthe temperature of electric furnace, realizing precisecontrol of temperature in the furnace. By designing and configuring temperature sensors, controllers and actuators,the stability and reliability of the system are ensured. Experimental results show that the control system has high precision and reliability, and can meet the requirements of actual production.Keywords: PLC control system, electric furnace, temperature control, automation, stability1.绪论电热炉是一种重要的热处理设备,其主要应用于金属材料的加热、熔炼及热处理等领域。
在生产实践中,电热炉的温度控制是保证热处理质量的关键。
传统的电热炉温度控制方法存在精度低、易受环境干扰等缺点,严重影响了工艺效率和生产质量。
因此,采用现代化智能化的控制方法对电热炉进行控制,成为了当前一个十分热门的研究方向。
课程设计题目:基于PLC的加热反应炉自动控制的设计学院:清华大学专业:电气自动化技术班级:学号:姓名:基于PLC的加热反应炉自动控制的设计摘要:基于PLC的加热反应炉自动控制能够实现温度的控制,用于液体等控制。
本次设计利用西门子S7-200PLC控制的加热炉控制设备。
关键词:PLC 课程设计加热反应炉概述:随着我国经济的迅速发展,能源短缺已成为制约我国工业发展的重要阻碍,如何保障被加热后的金属能够在有效压制前提下,降低加热炉的能耗,一直是冶金工业控制技术研究的主要方向。
近年来由于各企业重视节源效益,对加热炉生产工艺的不断完善和优化,加热炉生产自动化控制水平也相应提高和不断深入。
目前面向节能降耗,提高压制产品自量和产量设计的加热炉工程控制计算机系统已广泛的应用于现代冶金企业的加热炉生产控制中。
加热炉生产过程主要是个燃烧与热交换的物理化学过程,燃烧方面有一个如何使其在各种工况下特别是在热负荷变化的动态过程中保持最佳节能燃烧的问题。
另外从整个压制生产线来看,加热炉是局部环节,其主要任务是加热钢胚,使钢呸在出炉时达到压制所要求的温度分布。
评价加热炉性能优劣的主要指标是加热炉的单位燃烧消耗,产量,钢呸的加热质量,钢配的氧化烧损等。
影响这些指标的因素较多,在众多因素中加热炉温度制度起着决定性的作用。
我国的加热炉大部分是六、七十年代的产品,其控制系统非常落后。
相当一部分还处于基地式仪表控制,表盘现实的水平,软件操作不易为普通工人所掌握。
为改变这种落后状况,有效途径之一就是进行加热炉监测和控制系统的技术改造。
加热炉的工作目标是在最短的时间内采取最经济的方式把炉内的钢呸加热到所要求的状态。
特别是一些目前小的钢铁企业,对这种投资少、见效快的技术改造感兴趣。
本文主要讲述加热反应炉自动控制系统的设计。
国际上对加热炉的优化控制开始与70年代,我国从80年代才开始对这方面进行研究。
在钢铁领域,以前人们对加热炉优化控制研究主要集中在钢呸的升温过程的控制模型、炉温优化设定以及燃烧控制,近年来智能控制技术正逐步被应用到加热炉炉温控制中。
目前,就我国带钢热连压加热炉控制系统整体而言,与国外相比,相差甚远。
在国外,多数带钢热连压加热炉控制系统一经采用了高智能型的专家系统,模糊控制或两者相结合的控制系统。
如美国的Bethlehem钢铁公司利用模糊控制和专家系统相结合的控制系统对带钢连热压加热炉进行控制。
而我国大部分钢铁企业加热炉控制系统仍是早期的DCS控制系统或PLC控制系统,有的好没有达到这个水平,因而为了参加国际竞争,赢得产品声誉,就必须对加热炉控制系统进行换代或改造。
对加热炉控制系统的改造,国内存在两种观点:一种认为要较好的实现加热炉的控制,必须坚持HCA高成本高投入,大力提高自动化部分的控制水平,采用高智能型的集中控制。
另一种为LCA低成本自动化。
低成本不是低水平,是在低成本前提下的先进性和实用性,LCA是简易自动化的延伸,是全新自动化的补充。
它往往成为中小企业的选择。
国内现有带钢热连压加热炉一千多座,由于资金技术等方面的原因,改造或换代为高智能型加热炉数量很少。
在这方面,由于宝钢、鞍钢等大型国有企业较重视科技在生产中的主要地位,在带钢连压加热炉改造中投入的力量较大,已成为我国钢铁行业领头羊。
本课题研究的内容是,实现基于S7-200加热反应炉自动控制系统设计。
一、工程分析在开始组态工程之前,先对该工程进行剖析,以便从整体上把握工程的结构、流程、需实现的功能及如何实现这些功能。
工程框架:●1个用户窗口:加热反应炉控制系统。
主要包括:加热炉、加热电阻丝、四个阀、温度计、压力表、加热指示灯、流动管件、两个控制按钮。
● 3个策略:启动策略、退出策略、循环策略数据对象:控制系统窗口:●加热炉、加热电阻丝、加热指示灯●卸放阀、进料阀、氮气阀、排气阀、温度计、压力表●六个控制按钮、上下液位传感器、压力传感器、温度传感器。
流程控制:按启动按钮后,反应炉进入工作状态。
按停止按钮后,反应炉停止运行。
第一阶段:送料控制1、检测下液面X1、炉内温度X2、是否都小于给定值(逻辑值:小于输出0,大于输出1)。
2、若小于给定值,则开启进料阀Y2。
3、当液位上升到上液面X4时,应打开泄放阀Y4和关闭进料阀Y2。
4、开启氮气阀X3,氮气进入炉内,炉内气压上升。
5、当压力上升到给定值,即X4=1时,关闭氮气阀。
送料过程结束。
第二阶段:加热反应控制。
1、当液面大于20%且炉内温度X2小于给定值时,接通加热炉电源Y 3。
2、当温度升高到给定值时,即X2=1时,切断加热器电源,加热的过程结束。
第三阶段:泄放控制。
1、打开排气阀,使炉内压力降到预定值(SP=0)。
∙当压力大于最大值时,打开泄放阀。
∙当压力小于给定值时,关闭排气阀。
打开泄放阀,当炉内溶液降到下液面时,延时10秒后关闭泄放阀。
2、课题要求(1)根据控制要求制定合理的设计方案;(2)写出系统流程;(3)设计电路并模拟调试;(4)PLC I/O点分配,并绘制I/O接线图。
(5)课程设计心得;整理技术材料,编写使用说明书。
加热反应炉的结构示意图如图(原理图)如下所示:(二)输入输出设备清单(三)控制流程图(四)I/O接线图I/O地址分配:根据示意图和控制要求可知,该系统需要6个输入点和5个输出点,其地址分配如下:二、建立工程可以按如下步骤建立样例工程:[1]鼠标单击文件菜单中“新建工程”选项,如果MCGS安装在D盘根目录下,则会在D:\MCGS\WORK\下自动生成新建工程,默认的工程名为:“新建工程X.MCG”(X表示新建工程的顺序号,如:0、1、2等)[2] 选择文件菜单中的“工程另存为”菜单项,弹出文件保存窗口。
[3] 在文件名一栏内输入“加热反应炉控制系统”,点击“保存”按钮,工程创建完毕。
三、制作工程画面1、建立画面[1] 在“用户窗口”中单击“新建窗口”按钮,建立“窗口0”。
[2] 选中“窗口0”,单击“窗口属性”,进入“用户窗口属性设置”。
[3] 将窗口名称改为:水位控制;窗口标题改为:机械手控制;窗口位置选中“最大化显示”,其它不变,单击“确认”。
[4] 在“用户窗口”中,选中“加热反应炉控制”,点击右键,选择下拉菜单中的“设置为启动窗口”选项,将该窗口设置为运行时自动加载的窗口。
2、编辑画面选中“加热反应炉控制”窗口图标,单击“动画组态”,进入动画组态窗口,开始编辑画面。
3、制作文字框图[1] 单击工具条中的“工具箱”按钮,打开绘图工具箱。
[2] 选择“工具箱”内的“标签”按钮,鼠标的光标呈“十字”形,在窗口顶端中心位置拖拽鼠标,根据需要拉出一个一定大小的矩形。
[3] 在光标闪烁位置输入文字“加热反应炉监控系统”,按回车键或在窗口任意位置用鼠标点击一下,文字输入完毕。
[4] 如果需要修改输入文字,则单击已输入的文字,然后敲回车键就可以进行编辑,也可以单击鼠标右键,弹出下拉菜单,选择“改字符”。
[5] 选中文字框,作如下设置:第83章点击(填充色)按钮,设定文字框的背景颜色为:没有填充;第84章点击(线色)按钮,设置文字框的边线颜色为:没有边线。
第85章点击(字符字体)按钮,设置文字字体为:宋体;字型为:粗体;大小为:26第86章点击(字符颜色)按钮,将文字颜色设为:蓝色。
4、图形的绘制1)画电阻丝:单击绘图工具箱中“画线”工具按钮,挪动鼠标光标,此时呈“十字”形,在窗口适当位置按住鼠标左键并拖曳出一条一定长度的直线。
单击“线色”按钮选择:黑色。
单击“线型”按钮,选择合适的线型。
调整线的位置(按键或按住鼠标拖动)。
调整线的长短(按Shift和方向键,或光标移到一个手柄处,待光标呈“十字”形,沿线长度方向拖动)。
调整线的角度(按S hift和方向键,或光标移到一个手柄处,待光标呈“十字”形,向需要的方向拖动)。
线的删除与文字删除相同。
单击“保存”按钮。
2)画矩形的液面传感器:单击绘图工具箱中的“矩形”工具按钮,挪动鼠标光标,此时呈“十字”形。
在窗口适当位置按住鼠标左键并拖曳出一个一定大小的矩形。
单击窗口上方工具栏中的“填充色”按钮,选择:蓝色。
单击“线色”按钮,选择:没有边线。
调整位置(按键盘的键,或按住鼠标左键拖曳)。
调整大小(同时按键盘的Shift键和方向键中的一个;或移动鼠标,待光标呈横向或纵向或纵向或斜向“双箭头”形,按住左键拖曳)。
单击窗口其他任何一个空白地方,结束第1个矩形的编辑。
画面2个矩形分别代表上下液面传感器,单击“保存”按钮。
5、构件的选取[1] 加热炉的绘制:单击绘图工具箱中的(插入元件)图标,弹出对象元件管理对话框,如图:图2 反应炉构件的选择双击窗口左侧“图库”中的“罐”,展开该列表项,单击“罐1”,单击“确定”按钮。
画面窗口中出现反应器的图形。
在反应器被选中的情况下,调整位置和大小。
在机械手上面输入文字标签“机械手”。
单击“保存”按钮。
[2] 画其他的构件:利用“图库”工具,分别画出四个阀门、温度传感器、压力传感器、温度计、压力计、指示灯等将大小和位置调整好。
[3]选中工具箱内的流动块动画构件图标,鼠标的光标呈“十”字形,移动鼠标至窗口的预定位置,点击一下鼠标左键,移动鼠标,在鼠标光标后形成一道虚线,拖动一定距离后,点击鼠标左键,生成一段流动块。
再拖动鼠标(可沿原来方向,也可垂直原来方向),生成下一段流动块。
[4] 画按钮:单击画图工具箱的“标准按钮”工具,在画图中画出一定大小的按钮。
调整其大小和位置。
绘制2个按钮。
6、整体画面最后生成的画面见图1。
四、定义数据对象前面我们已经讲过,实时数据库是MCGS 工程的数据交换和数据处理中心。
数据对象是构成实时数据库的基本单元,建立实时数据库的过程也就是定义数据对象的过程。
定义数据对象的内容主要包括:1)指定数据变量的名称、类型、初始值和数值范围2)确定与数据变量存盘相关的参数,如存盘的周期、存盘的时间范围和保存期限等。
在开始定义之前,我们先对所有数据对象进行分析。
在本样例工程中需要用到以下数据对象:下面以数据对象“JIEDUAN”为例,介绍一下定义数据对象的步骤:[1] 单击工作台中的“实时数据库”窗口标签,进入实时数据库窗口页。
[2] 单击“新增对象”按钮,在窗口的数据对象列表中,增加新的数据对象,系统缺省定义的名称为“Data1”、“Data2”、“Data3”等(多次点击该按钮,则可增加多个数据对象)。
[3] 选中对象,按“对象属性”按钮,或双击选中对象,则打开“数据对象属性设置”窗口。
[4] 将对象名称改为:垂直移动量;对象类型选择:开关型;在对象内容注释输入框内输入:“系统所处的运行阶段”,单击“确认”。
按照此步骤,根据上面列表,设置其他17 个数据对象。
五、动画连接由图形对象搭制而成的图形画面是静止不动的,需要对这些图形对象进行动画设计,真实地描述外界对象的状态变化,达到过程实时监控的目的。