第届中国数学奥林匹克竞赛(CMO)考试及解答
- 格式:docx
- 大小:994.55 KB
- 文档页数:7
奥林匹克数学竞赛试题及答案奥林匹克数学竞赛是一项国际性的数学竞赛,旨在激发中学生对数学的兴趣和热爱。
以下是一份奥林匹克数学竞赛的模拟试题及答案,供参考:奥林匹克数学竞赛模拟试题一、选择题(每题2分,共10分)1. 如果一个数的平方等于它本身,那么这个数是:A. 0B. 1C. -1D. 0或12. 下列哪个数不是有理数?A. πB. √2C. -3D. 1/33. 将一个圆分成三个扇形,每个扇形的圆心角都是120°,那么这三个扇形的面积之和等于:A. 圆的面积B. 圆面积的1/3C. 圆面积的2/3D. 圆面积的1/24. 如果一个三角形的三边长分别为a, b, c,且满足a^2 + b^2 =c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定5. 一个数列的前三项为1, 1, 2,从第四项开始,每一项都是前三项的和。
这个数列的第10项是:A. 144B. 145C. 146D. 147二、填空题(每题3分,共15分)6. 一个数的立方根等于它本身,这个数可以是______。
7. 如果一个直角三角形的两条直角边长分别为3和4,那么它的斜边长是______。
8. 一个圆的半径为5,那么它的周长是______。
9. 一个等差数列的前5项之和为50,如果这个数列的公差为3,那么它的首项是______。
10. 如果一个多项式f(x) = ax^3 + bx^2 + cx + d,其中a, b, c, d是整数,且f(1) = 5,f(-1) = -1,那么a - d的值是______。
三、解答题(每题5分,共20分)11. 证明:对于任意的正整数n,1^3 + 1^2 + 1 + ... + 1/n^3总是大于1/n。
12. 解不等式:2x^2 - 5x + 3 > 0。
13. 一个圆的直径为10,求圆内接正六边形的边长。
14. 给定一个等比数列的前三项分别为2, 6, 18,求这个数列的第20项。
CMO 中国数学奥林匹克竞赛试题1987第二届年中国数学奥林匹克1.设n为自然数,求方程z n+1-z n-1=0有模为1的复根的充份必要条件是n+2可被6整除。
2.把边长为1的正三角形ABC的各边都n等分,过各分点平行于其它两边的直线,将这三角形分成小三角形,和小三角形的顶点都称为结点,在第一结点上放置了一个实数。
已知i.A、B、C三点上放置的数分别为a、b、c。
ii.在每个由有公共边的两个最负三角形组成的菱形之中,两组相对顶点上放置的数之和相等。
试求3.放置最大数的点积放置最小数的点之间的最短距离。
4.所有结点上数的总和S。
3.某次体育比赛,每两名选手都进行一场比赛,每场比赛一定决出胜负,通过比赛确定优秀选手,选手A被确定为优秀选手的条件是:对任何其它选手B,或者A胜B,或者存在选手C,C胜B,A胜C。
结果按上述规则确定的优秀选手只有一名,求证这名选手胜所有其它选手。
4.在一个面积为1的正三角形内部,任意放五个点,试证:在此正三角形内,一定可以作三个正三角形盖住这五个点,这三个正三角形的各边分别平行于原三角形的边,并且它们的面积之和不超过0.64。
5.设A1A2A3A4是一个四面体,S1, S2, S3, S4分别是以A1, A2, A3, A4为球心的球,它们两两相切。
如果存在一点O,以这点为球心可作一个半径为r的球与S1, S2, S3, S4都相切,还可以作一个半径为R的球积四面体的各棱都相切,求证这个四面体是正四面体。
6.m个互不相同的正偶数与n个互不相同的正奇数的总和为1987,对于所有这样的m与n,问3m+4的最大值是多少?请证明你的结论。
1.设a1, a2, ... , a n是给定的不全为零的实数,r1, r2, ... , r n为实数,如果不等式r1(x1-a1)+r2(x2-a2)+...+r n(x n-a n)≦√(x12+ x22+ ... + x n2) + √(a12+ a22+ ... + a n2)对任何实数x1, x2, ... , x n成立,求r1, r2, ... , r n的值。
中国数学奥林匹克(cmo)的考试内容中国数学奥林匹克(CMO)是一个旨在选拔和培养我国数学界人才的重要赛事。
其考试内容涵盖了许多高阶数学知识,考察参赛者的数学素养和解决问题的能力。
下面就来谈谈CMO的考试内容。
首先,CMO的试题不仅仅是简单的计算和题型练习,更加注重参赛者对数学原理和定理的理解和运用。
试题难度相对较高,涉及到许多抽象的数学概念和方法,需要参赛者具备深厚的数学基础和灵活的思维能力。
通过解答这些题目,可以考察参赛者对数学问题的分析和解决能力,以及在面对复杂问题时的反应和处理方式。
其次,CMO的考试内容还包括了一些较为实用和有趣的数学问题,如概率统计、数论和几何等。
这些问题旨在培养参赛者的数学兴趣和思维能力,让他们在解题过程中感受到数学的魅力和趣味。
在这些问题中,参赛者需要灵活运用数学知识,发挥自己的想象力和创造力,找到解题的独特方法和思路。
此外,CMO的考试内容还涉及到一定的数学推理和证明题目。
这些题目要求参赛者具备严密的逻辑思维和推理能力,能够清晰地表述自己的思路和观点,用数学语言和方法证明所给定的问题。
通过这类题目的解答,可以考察参赛者的数学思维和逻辑推理能力,培养他们的数学素养和思维能力。
总的来说,CMO的考试内容涵盖了广泛的数学领域,考察参赛者的数学基础和能力。
参加CMO考试不仅可以检验自己的数学水平,更可以提高自己的数学素养和解决问题的能力。
通过认真准备和练习,可以更好地应对CMO的考试内容,取得优异的成绩和表现。
希望广大数学爱好者和学生能够重视CMO的考试内容,不断提高自己的数学水平和能力,为我国数学事业的发展贡献自己的力量。
1、若一个正整数的各位数字之和为10,且这个数能被其各位数字中的任意一个整除,则这个数最小可能是:A. 1111111111B. 1234567890C. 109D. 28(答案:D)2、设n为正整数,且满足2的n次方减去1是质数,则n的值可能为:A. 10B. 12C. 15D. 17(答案:A)3、在三角形ABC中,若角A、角B、角C的度数之比是1:2:3,则三角形ABC是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形(答案:B)4、已知a、b、c为实数,且满足a+b+c=0,abc>0,则:A. a、b、c中只有一个正数B. a、b、c中只有一个负数C. a、b、c中有两个正数,一个负数D. a、b、c中有两个负数,一个正数(答案:D)5、设x、y为实数,且满足x2 - 2xy + y2 = 4,则(x+y)2的最大值为:A. 4B. 8C. 16D. 不存在(答案:C)6、已知正整数n的各位数字之和为20,且n的各位数字均不相同,则n的最小值为:A. 299B. 389C. 1999D. 10999(答案:B)7、在直角坐标系中,点A(1,1),点B(3,3),点C为x轴正半轴上一点,若角ABC=45度,则点C的横坐标为:A. 3+√2B. 4+√2C. 5+√2D. 6+√2(答案:A)8、设a、b为正整数,且满足ab = ba,则(a,b)的可能取值有:A. (2,2)B. (2,4)C. (3,3)D. (4,2)(答案:A、C、D)9、已知等差数列{an}的前n项和为Sn,且满足S7 = 7a4,则a2 + a5 + a8 =:A. 0B. a1C. 2a4D. 3a7(答案:C)10、设p、q为质数,且满足p+q=2006,则p、q的积为:A. 3998B. 4003C. 4013D. 无法确定(答案:C)。
2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 若实数1m 满足98log (log )2024m ,则32log (log )m 的值为 . 答案:4049.解:323898log (log )log (3log )12log (log )1220244049m m m .2. 设无穷等比数列{}n a 的公比q 满足01q .若{}n a 的各项和等于{}n a 各项的平方和,则2a 的取值范围是 .答案:1,0(0,2)4. 解:因为数列{}n a 的各项和为11a q,注意到{}n a 各项的平方依次构成首项为21a 、公比为2q 的等比数列,于是2{}n a 的各项和为2121a q. 由条件知211211a a q q,化简得11a q . 当(1,0)(0,1)q 时,22111(1),0(0,2)244a q q q . 3. 设实数,ab 满足:集合2{100}A x x x a R 与3{}B x bx b R 的交集为[4,9],则a b 的值为 .答案:7.解:由于2210(5)25x x a x a ,故A 是一个包含[4,9]且以5x 为中点的闭区间,而B 是至多有一个端点的区间,所以必有[1,9]A ,故9a .进一步可知B 只能为[4,) ,故0b 且34b b ,得2b .于是7a b .4. 在三棱锥P ABC 中,若PA 底面ABC ,且棱,,,AB BP BC CP 的长分别为1,2,3,4,则该三棱锥的体积为 .答案:34. 解:由条件知PA AB ,PA AC .因此PA AC .在ABC 中,22219131cos 22132AB BC AC B AB BC ,故sin B .所以1sin 2ABC S AB BC B 又该三棱锥的高为PA ,故其体积为1334ABC V S PA . 5. 一个不均匀的骰子,掷出1,2,3,4,5,6点的概率依次成等差数列.独立地先后掷该骰子两次,所得的点数分别记为,a b .若事件“7a b ”发生的概率为17,则事件“a b ”发生的概率为 . 答案:421. 解:设掷出1,2,,6 点的概率分别为126,,,p p p .由于126,,,p p p 成等差数列,且1261p p p ,故16253413p p p p p p . 事件“7a b ”发生的概率为1162561P p p p p p p . 事件“a b ”发生的概率为2222126P p p p . 于是22221216253411()()()333P P p p p p p p . 由于117P ,所以21143721P . 6. 设()f x 是定义域为R 、最小正周期为5的函数.若函数()(2)x g x f 在区间[0,5)上的零点个数为25,则()g x 在区间[1,4)上的零点个数为 .答案:11.解:记2x t ,则当[0,5)x 时,[1,32)t ,且t 随x 增大而严格增大.因此,()g x 在[0,5)上的零点个数等于()f t 在[1,32)上的零点个数.注意到()f t 有最小正周期5,设()f t 在一个最小正周期上有m 个零点,则()f t 在[2,32)上有6m 个零点,又设()f t 在[1,2)上有n 个零点,则625m n ,且0n m ,因此4,1m n .从而()g x 在[1,4)上的零点个数等于()f t 在[2,16)[1,16)\[1,2) 上的零点个数,即311m n .7. 设12,F F 为椭圆 的焦点,在 上取一点P (异于长轴端点),记O 为12PF F 的外心,若12122PO F F PF PF ,则 的离心率的最小值为 .答案 解:取12F F 的中点M ,有12MO F F ,故120MO F F . 记1212,,PF u PF v F F d ,则121212PO F F PM F F MO F F 12211()()2PF PF PF PF 222v u , 222121222cos PF PF uv F PF u v d ,故由条件知222222v u u v d ,即22232u v d . 由柯西不等式知222281(3)1()33d u v u v (当3v u 时等号成立).所以 的离心率d e u v .当::u v d 时, 的离心率e 8. 若三个正整数,,a b c 的位数之和为8,且组成,,a b c 的8个数码能排列为2,0,2,4,0,9,0,8,则称(,,)a b c 为“幸运数组”,例如(9,8,202400)是一个幸运数组.满足10a b c 的幸运数组(,,)a b c 的个数为 .答案:591.解:对于幸运数组(,,)a b c ,当10a b c 时,分两类情形讨论. 情形1:a 是两位数,,b c 是三位数.暂不考虑,b c 的大小关系,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置还未填,任选其中两个填2,最后三个位置填写4,8,9,这样的填法数为3255C C 3!600 .再考虑其中,b c 的大小关系,由于不可能有b c ,因此b c 与b c 的填法各占一半,故有300个满足要求的幸运数组.情形2:,a b 是两位数,c 是四位数.暂不考虑,a b 的大小关系,类似于情形1,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置填2,2,4,8,9,这样的填法数为600.再考虑其中,a b 的大小关系.若a b ,则必有20a b ,c 的四个数字是0,4,8,9的排列,且0不在首位,有33!18 种填法,除这些填法外,a b 与a b 的填法各占一半,故有600182912个满足要求的幸运数组. 综上,所求幸运数组的个数为300291591 .二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9. (本题满分16分) 在ABC 中,已知sin cos sin cos cos 22A AB B C,求cos C 的值.解:由条件知cos 44C A B. …………4分 假如44A B,则2C ,cos 0C ,但sin 04A ,矛盾. 所以只可能44A B .此时0,2A B ,2C A . …………8分注意到cos 04C A ,故2C ,所以,42A B ,结合条件得cos cos 2sin 22sin cos 244C A A A A2C ,又cos 0C ,化简得28(12cos )1C ,解得cos C…………16分 10.(本题满分20分)在平面直角坐标系中,双曲线22:1x y 的右顶点为A .将圆心在y 轴上,且与 的两支各恰有一个公共点的圆称为“好圆”.若两个好圆外切于点P ,圆心距为d ,求d PA 的所有可能的值. 解:考虑以0(0,)y 为圆心的好圆2220000:()(0)x y y r r .由0 与 的方程消去x ,得关于y 的二次方程2220002210y y y y r . 根据条件,该方程的判别式22200048(1)0y y r ,因此220022y r .…………5分对于外切于点P 的两个好圆12, ,显然P 在y 轴上.设(0,)P h ,12, 的半径分别为12,r r ,不妨设12, 的圆心分别为12(0,),(0,)h r h r ,则有2211()22h r r ,2222()22h r r .两式相减得2212122()h r r r r ,而120r r ,故化简得122r r h. …………10分 进而221211222r r r r ,整理得 221122680r r r r .① 由于12d r r ,(1,0)A ,22212()114r r PA h ,而①可等价地写为2212122()8()r r r r ,即228PA d ,所以d PA…………20分 11.(本题满分20分)设复数,z w 满足2z w ,求2222S z w w z 的最小可能值.解法1:设i (,)z a b a b R ,则2i w a b ,故2222242(1)i 642(3)i S a a b b a a a b b a ,22222464a a b a a b2222(1)5(3)5a b a b . ①…………5分记1t a .对固定的b ,记255B b ,求22()(4)f t t B t B 的最小值.由()(4)f t f t ,不妨设2t .我们证明0()()f t f t ,其中0t . 当0[2,]t t 时,04[2,4]t t ,22200()()()((4))((4))f t f t B t B t B t2222220000(4)((4))(28)(28)t t t t t t t t0 (用到02t t 及228y x x 在[2,) 上单调增). …………10分当0[,)t t 时,22200()()(4)(4)f t f t t B t B t B222200(4)(4)t t t t 000()8t t t t t t0 (用到04t t ). …………15分所以200()(4)1616S f t B t .当0b (①取到等号),011a t 时,S 取到最小值16.…………20分解法2:设1i,1i (,)R z x y w x y x y ,不妨设其中0x . 计算得2222(41)(24)i z w x x y x y ,2222(41)(24)i w z x x y x y .所以22Re(2)Re(2)S z w w z 22224141x x y x x y . …………5分利用a b a b ,可得8S x ,① 亦有22222212(1)2(1)S x y x y x . ②…………10分注意到方程282(1)x x 2.当2x 时,由①得816S x .当02x 时,由②得222(1)2(12))16S x .因此当2,0x y 时,S 取到最小值16. …………20分 解法3:因为2w z =−,所以我们有222(2)2411z z z z z22(2)26411z z z z z从而上两式最右边各项分别是z 到复平面中实轴上的点1−1−,33+的距离,所以把i z x y =+换成其实部x 时,都不会增大.因此只需 考虑函数22()2464f x x x x x +−+−+在R 上的最小值.…………10分因为1313−−<<−+<,因此我们有以下几种情况:1.若1x ≤−,则2()24f x x x =−,在这一区间上的最小值为(116f −=+;2.若(13x ∈−−,则()88f x x =−+,在这一区间上的最小值为(316f =−+…………15分3.若31x ∈− ,则2()24f x x x =−+,在这一区间上的最小值为((3116f f =−+=−+;4.若13x ∈− ,则()88f x x =−,在这一区间上的最小值为(116f −+=−+;5.若3x ≥+,则2()24f x x x =−,在这一区间上的最小值为(316f =+.综上所述,所求最小值为((3116f f =−+=−.…………20分。
2009中国数学奥林匹克解答
一、给定锐角三角形PBC ,PC PB ≠.设A ,D 分别是边PB ,PC 上的点,连接AC ,BD ,相交于点O. 过点O 分别作OE ⊥AB ,OF ⊥CD ,垂足分别为E ,F ,线段BC ,AD 的中点分别为M ,N .
(1)若A ,B ,C ,D 四点共圆,求证:EM FN EN FM ⋅=⋅;
(2)若 EM FN EN FM ⋅=⋅,是否一定有A ,B ,C ,D 四点共圆?证明你的结论.
,
二、求所有的素数对(p ,q ),使得q p pq 55+.
三、设m ,n 是给定的整数,n m <<4,1221+n A A A 是一个正2n +1边形,
{}1221,,,+=n A A A P .求顶点属于P 且恰有两个内角是锐角的凸m 边形的个数.
C
B
四、给定整数3≥n ,实数n a a a ,,,21 满足 1min 1=-≤<≤j i n
j i a a .求∑=n
k k a 1
3
的最小值.
五、凸n 边形P 中的每条边和每条对角线都被染为n 种颜色中的一种颜色.问:对怎样的n ,存在一种染色方式,使得对于这n 种颜色中的任何3种不同颜色,都能找到一个三角形,其顶点为多边形P 的顶点,且它的3条边分别被染为这3种颜色?
六、给定整数3≥n ,证明:存在n 个互不相同的正整数组成的集合S ,使得对S 的任意两个不同的非空子集A ,B ,数
A
x
A
x ∑∈ 与
B
x
B
x ∑∈
是互素的合数.(这里∑∈X
x x 与X 分别表示有限数集X 的所有元素之和及元素个数.)。
中国数学奥林匹克(cmo)的考试内容中国数学奥林匹克(CMO)是我国最高级别的数学竞赛,旨在选拔优秀的学生,激发他们的数学潜能,培养未来的数学人才。
考试内容涵盖了许多数学领域的知识,包括代数、几何、组合、数论等。
下面将对这些考试内容进行详细介绍。
一、代数部分代数作为数学的基础领域,在中国数学奥林匹克中占据着重要地位。
考试内容主要包括以下几个方面:1.基本概念和运算:包括实数、复数、向量、矩阵、行列式等基本概念,以及加法、乘法、除法、幂运算等基本运算。
2.代数式和方程:涉及代数式的求值、化简、分解,以及一元一次方程、一元二次方程、二次曲线等方面的知识。
3.函数和极限:包括基本函数(如指数函数、对数函数、三角函数等)的性质和图像,以及函数的极限、连续性、导数、积分等概念。
4.代数结构:涉及群、环、域等代数结构的基本概念和性质,以及它们在实际问题中的应用。
二、几何部分几何作为数学的另一重要领域,在CMO中同样具有重要地位。
考试内容主要包括以下几个方面:1.基本概念和性质:包括点、线、面、角、三角形、四边形等基本图形的性质和关系,以及平面几何和空间几何的基本概念。
2.变换和几何问题:涉及平移、旋转、对称等几何变换,以及它们在解决几何问题中的应用。
3.曲线和曲面:包括曲线和曲面的方程、性质、分类等方面的知识,以及它们在实际问题中的应用。
4.拓扑学:涉及基本拓扑概念,如连通性、维数、同伦等,以及拓扑学在实际问题中的应用。
三、组合部分组合作为数学的一个重要分支,在CMO中占据一定比重。
考试内容主要包括以下几个方面:1.基本概念和原理:包括排列、组合、二项式定理、鸽巢原理等基本概念和原理。
2.计数和排列组合:涉及排列组合的计算方法,以及计数原理在实际问题中的应用。
3.抽屉原理和极端原理:包括抽屉原理、极端原理的基本概念和应用。
四、数论部分数论作为数学的基础领域,在CMO中也具有一定的地位。
考试内容主要包括以下几个方面:1.基本概念和性质:包括自然数、整数、有理数、实数等基本概念,以及数的性质和运算。