(完整版)计量经济学重点(简答题).doc
- 格式:doc
- 大小:103.52 KB
- 文档页数:19
计量经济学期末考试简答题1.简述计量经济学与经济学、统计学、数理统计学学科间的关系。
2.计量经济模型有哪些应用?3.简述建立与应用计量经济模型的主要步骤。
4.对计量经济模型的检验应从几个方面入手?5.计量经济学应用的数据是怎样进行分类的?6.在计量经济模型中,为什么会存在随机误差项?7.古典线性回归模型的基本假定是什么?8.总体回归模型与样本回归模型的区别与联系。
9.试述回归分析与相关分析的联系和区别。
10.在满足古典假定条件下,一元线性回归模型的普通最小二乘估计量有哪些统计性质?11.简述BLUE的含义。
12.对于多元线性回归模型,为什么在进行了总体显着性F检验之后,还要对每个回归系数进行是否为0的t检验?13.给定二元回归模型:,请叙述模型的古典假定。
14.在多元线性回归分析中,为什么用修正的决定系数衡量估计模型对样本观测值的拟合优度?15.修正的决定系数及其作用。
16.常见的非线性回归模型有几种情况?17. 18观察下列方程并判断其变量是否呈线性,系数是否呈线性,或都是或都不是。
19.什么是异方差性?试举例说明经济现象中的异方差性。
20.产生异方差性的原因及异方差性对模型的OLS估计有何影响。
21.检验异方差性的方法有哪些?22.异方差性的解决方法有哪些?23.什么是加权最小二乘法?它的基本思想是什么?24.样本分段法(即戈德菲尔特——匡特检验)检验异方差性的基本原理及其使用条件。
25.简述DW检验的局限性。
26.序列相关性的后果。
27.简述序列相关性的几种检验方法。
28.广义最小二乘法(GLS)的基本思想是什么?29.解决序列相关性的问题主要有哪几种方法?30.差分法的基本思想是什么?31.差分法和广义差分法主要区别是什么?32.请简述什么是虚假序列相关。
33.序列相关和自相关的概念和范畴是否是一个意思?34.DW值与一阶自相关系数的关系是什么?35.什么是多重共线性?产生多重共线性的原因是什么?36.什么是完全多重共线性?什么是不完全多重共线性?37.完全多重共线性对OLS估计量的影响有哪些?38.不完全多重共线性对OLS估计量的影响有哪些?39.从哪些症状中可以判断可能存在多重共线性?40.什么是方差膨胀因子检验法?41.模型中引入虚拟变量的作用是什么?42.虚拟变量引入的原则是什么?43.虚拟变量引入的方式及每种方式的作用是什么?44.判断计量经济模型优劣的基本原则是什么?45.模型设定误差的类型有那些?46.工具变量选择必须满足的条件是什么?47.设定误差产生的主要原因是什么?48.在建立计量经济学模型时,什么时候,为什么要引入虚拟变量?49.估计有限分布滞后模型会遇到哪些困难50.什么是滞后现像?产生滞后现像的原因主要有哪些?51.简述koyck 模型的特点。
1.什么是计量经济学?它与经济学、统计学和数学的关系怎样?答:1、计量经济学是一门运用经济理论和统计技术来分析经济数据的科学和艺术,它以经济理论为指导,以客观事实为依据,运用数学、统计学的方法和计算机技术,研究带有随机影响的经济变量之间的数量关系和规律。
2、经济理论、数学和统计学知识是在计量经济学这一领域进行研究的必要前提,这三者中的每一个对于真正理解现代经济生活中的数量关系是必要的,但不充分,只有结合在一起才行。
2计量经济学三个要素是什么?经济理论、经济数据和统计方法。
3.计量经济学模型的检验包括哪几个方面?其具体含义是什么?答:(1)统计检答:1在解释变量中被忽略的因素的影响(影响不显着的因素、未知的影响因素、无法获得数据的因素);变量观测值的观测误差的影响;模型关系的设定误差的影响;其它随机因素的影响。
11.为什么要计算调整后的可决系数?在应用过程中发现,如果在模型中增加一个解释变量,?往往增大。
这是因为残差平方和往往随着解释变量的增加而减少,至少不会增加。
这就给人一个错觉:要使得模型拟合得好,只要增加解释变量即可。
但是,现实情况往往是,由增加解释变量个数引起的的增大与拟合好坏无关,需调整。
=0.89表示被解释变量Y的变异性的89%能用估计的回归方程解释。
12.叙述多重共线性的概念、后果和补救措施。
概念:如果两个或多于两个解释变量之间出现了相关性,则称模型存在多重共线性。
后果:1、估计量仍然是无偏的2、参数估计量的方差和标准差增大3、置信区间变宽4、t统计量会变小5、估计量对模型设定的变化及其敏感6、对方程的整体拟合程度几乎没有影响7、回归系数符号有误补救措施:1、什么都不做2、去掉多余的变量3、增大样本容量13.叙述异方差性的概念、后果和补救措施。
概念:对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,则认为出现了异方差性。
后果:参数估计非有效,变量的显着性检验失去意义,模型的预测失效补救措施:1、加权最小二乘法(WLS)(对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用OLS估计其参数)。
计量经济学考试重点整理第一章:P1:什么是计量经济学?由哪三组组成?定义:“用数学方法探讨经济学可以从好几个方面着手,但任何一个方面都不能和计量经济学混为一谈。
计量经济学与经济统计学绝非一码事;它也不同于我们所说的一般经济理论,尽管经济理论大部分具有一定的数量特征;计量经济学也不应视为数学应用于经济学的同义语。
经验表明,统计学、经济理论和数学这三者对于真正了解现代经济生活的数量关系来说,都是必要的,但本身并非是充分条件。
三者结合起来,就是力量,这种结合便构成了计量经济学。
”P9:理论模型的设计主要包含三部分工作,即选择变量,确定变量之间的数学关系,拟定模型中待估计参数的数值范围。
P12:常用的样本数据:时间序列,截面,虚变量数据P13:样本数据的质量(4点)完整性;准确性;可比性;一致性P15-16:模型的检验(4个检验)1、经济意义检验2、统计检验拟合优度检验总体显著性检验变量显著性检验3、计量经济学检验异方差性检验序列相关性检验共线性检验4、模型预测检验稳定性检验:扩大样本重新估计预测性能检验:对样本外一点进行实际预测P16计量经济学模型成功的三要素:理论、方法和数据。
P18-20:计量经济学模型的应用1、结构分析经济学中的结构分析是对经济现象中变量之间相互关系的研究.结构分析所采用的主要方法是弹性分析、乘数分析与比较静力分析。
计量经济学模型的功能是揭示经济现象中变量之间的相互关系,即通过模型得到弹性、乘数等。
2、经济预测计量经济学模型作为一类经济数学模型,是从用于经济预测,特别是短期预测而发展起来的。
计量经济学模型是以模拟历史、从已经发生的经济活动中找出变化规律为主要技术手段。
对于非稳定发展的经济过程,对于缺乏规范行为理论的经济活动,计量经济学模型预测功能失效。
模型理论方法的发展以适应预测的需要。
3、政策评价政策评价是指从许多不同的政策中选择较好的政策予以实行,或者说不同的政策对经济目标所产生的影响的差异。
计量经济学简答题第一章绪论(一)基本知识类题型1-1.什么是计量经济学?1-2.简述当代计量经济学发展的动向。
1-3.计量经济学方法与一般经济数学方法有什么区别?1-4.为什么说计量经济学是经济理论、数学和经济统计学的结合?试述三者之关系。
1-5.为什么说计量经济学是一门经济学科?它在经济学科体系中的作用和地位是什么?1-6.计量经济学的研究的对象和内容是什么?计量经济学模型研究的经济关系有哪两个基本特征?1-7.试结合一个具体经济问题说明建立与应用计量经济学模型的主要步骤。
1-8.建立计量经济学模型的基本思想是什么?1-9.计量经济学模型主要有哪些应用领域?各自的原理是什么?1-10.试分别举出五个时间序列数据和横截面数据,并说明时间序列数据和横截面数据有和异同?1-11.试解释单方程模型和联立方程模型的概念,并举例说明两者之间的联系与区别。
1-12.模型的检验包括几个方面?其具体含义是什么?1-13.常用的样本数据有哪些?1-14.计量经济模型中为何要包括随机误差项?简述随机误差项形成的原因。
1-15.估计量和估计值有何区别?哪些类型的关系式不存在估计问题?1-16.经济数据在计量经济分析中的作用是什么?1-20.模型参数对模型有什么意义?习题参考答案第一章绪论1-1.答:计量经济学是经济学的一个分支学科,是以揭示经济活动中客观存在的数量关系为内容的分支学科,是由经济学、统计学和数学三者结合而成的交叉学科。
1-2.答:计量经济学自20年代末、30年代初形成以来,无论在技术方法还是在应用方面发展都十分迅速,尤其是经过50年代的发展阶段和60年代的扩张阶段,使其在经济学科占据重要的地位,主要表现在:①在西方大多数大学和学院中,计量经济学的讲授已成为经济学课程表中有权威的一部分;②从1969~2003年诺贝尔经济学奖的XX位获奖者中有XX位是与研究和应用计量经济学有关;著名经济学家、诺贝尔经济学奖获得者萨缪尔森甚至说:“第二次世界大战后的经济学是计量经济学的时代”。
计量经济学重点(简答论述题)计量经济学简答题重点一、计量经济学的定义及作用计量经济学,又称经济计量学,是基于经济理论和实际统计资料,利用数学、统计学和计算机技术建立模型,定量分析经济变量之间的随机因果关系的学科。
其作用在于提供科学的方法和工具,帮助经济学家和政策制定者更好地理解和预测经济现象,评估政策效果,推动经济理论的发展。
二、计量经济学研究步骤计量经济学研究步骤包括理论模型的设计、数据获取、模型参数估计、模型检验和模型应用。
其中,理论模型的设计需要明确理论或假说的陈述,建立数学模型和计量经济模型。
数据获取需要注意完整性、准确性、可比性和一致性。
模型参数估计采用普通最小二乘法。
模型检验包括经济学检验、统计学检验和计量经济学检验。
模型应用包括结构分析、经济预测、政策评价和经济理论的检验与发展。
三、统计数据的类别及注意事项统计数据的类别包括时间序列数据、截面数据、混合数据和虚变量数据。
时间序列数据是按时间先后排列收集的数据,需要注意样本区间的经济行为一致性、可比性和集中性以及随机误差项序列相关问题。
截面数据是一批发生在同一时间截面上的调查数据,需要注意样本与母体的一致性和随机误差项的异方差问题。
混合数据既有时间序列数据又有截面数据。
虚变量数据只能取和1两个值,表示某个对象的质量特征。
四、模型的检验内容及含义模型的检验包括经济学检验、统计学检验和计量经济学检验。
经济学检验主要检验参数的符合和大致取值。
统计学检验包括拟合优度检验、模型的显著性检验和参数的显著性检验。
计量经济学检验包括序列相关性、异方差检验和多重共线性检验。
模型的预测检验可通过扩大样本容量或变换样本重新估价模型,或利用模型对样本期以外的某一期进行预测。
五、回归分析和相关分析的联系与区别回归分析是一种数学方法,用于研究变量之间的依赖关系,以解释变量和解释变量为基础。
相关分析也是研究变量间关系的方法,但不考虑因果关系,只关注变量之间的相关程度。
一、 单选5*2 1、 线性相关系数r 与拟合优度R 2关系2、F 统计量公式及其变形3、t 检验与F 检验矛盾的原因 多重共线性的特点4、R 2与 的比较可见,当K=0时相等R 2总是小于 ;甚至可能为负数(若出现负数,视同等于0)。
2222221222[()()]()ˆ()()()xyi i i i ixx yyiLx x y y x x R r x x y y L L y y β---====---∑∑∑∑∑2222/1(1)/(1)1R k R n k F R n k R k --==⋅----~(,1)/(1)ESS kF F k n k RSS n k =----2R 22/(1)11111(1)/(1)11RSS n k RSS n n R R TSS n TSS n k n k ----=-=-⋅=-------2R5、6、回归的标准误差,即把下面的平方7、双对数模型单对数模型二、名词解释5*41、普通最小平方和(OLS):即最小二乘法,指根据使估计的剩余平方和最小的原则确定样本回归函数的方法。
2、残差平方和:用RSS 表示:度量实际值与拟合值之间的差异,是由除解释变量以外的其他因素引起的被解释变量变化的部分3、总平方和(TSS): 即总离差平方和,用TSS 表示,用以度量被解释变量的总变动。
2ˆσ是包含所有k 个自变量时的均方误差 2ˆ);1kRSS n k σ=--ux y ++=10ln ββ2222()i iTSS y y y ny Y Y ny'=-=-=-∑∑22011222ˆ()ˆˆˆˆi i i i i i k ki i ESS y y y x y x y x y ny''nyββββ=-=++++-=-∑∑∑∑∑βX Y 2201122ˆ()ˆˆˆˆi i ii i i i i k ki iRSS y y y y x y x y x y ''ββββ=-=-----==∑∑∑∑∑∑Y'Y -βX Yuy y ++=ln ln ln 10ββ4、样本决定系数(R 2):回归平方和占总平方和的比重。
1. 请问自回归模型的估计存在什么困难?如何来解决这些苦难?答:主要存在两个问题:(1) 出现了随机解释变量Y,而可能与随机扰动项相关;(2) 随机扰动项可能存在自相关,库伊克模型和自适应预期模型的随机扰动项都会导致自相关,只有局部调整模型的随机扰动项无自相关。
对于第一个问题的解决可以使用工具变量法;对于第二个问题的检验可以用德宾h检验法,目前还没有很好的解决办法,唯一能做的就是模型尽可能的设定正确。
2. 为什么要进行广义差分变换?写出其过程。
答:进行广义差分变换是为了处理自相关,写出其过程如下:以一元模型为例:Y t = b o + b i X t +u t假设误差项服从AR(1)过程:U t = p u t-i +v t —1 <p < 1其中,v满足OLS假定,并且是已知的。
为了弄清楚如何使变换后模型的误差项不具有自相关性,我们将回归方程中的变量滞后一期,写为:Y t-1 = b o + b 1 X t-1 +u t-1方程的两边同时乘以p,得到:p Y t-1 = p b o + p b1 X t-1 + p u t-1现在将两方程相减,得到:(Y t —p Y t-1 ) = b o ( 1 —p ) + b 1 (X t —p X t-1 ) + v t由于方程中的误差项v t满足标准OLS假定,方程就是一种变换形式,使得变换后的模型无序列相关。
如果我们将方程写成:Y t = b0 + b1 X t +v t,其中,Y t = (Y t- p Y t-1 ) , X t =*(X t - p X t-1 ) , b o = b o ( 1 - p )o3. 什么是递归模型?答:递归模型是指在该模型中,第一个方程的内生变量丫1仅由前定变量表示,而无其它内生变量;第二个方程内生变量丫2表示成前定变量和一个内生变量丫1的函数;第三个方程内生变量丫3表示成前定变量和两个内生变量丫1与丫2的函数;按此规律下去,最后一个方程内生变量Y m可表示成前定变量和m —1个丫1, 丫2、,丫3,…、Y m-1的函数。
计量经济学重点(简答题)一、什么是计量经济学?计量经济学,又称经济计量学,它是以一定的经济理论和实际统计资料为依据,运用数学、统计学和计算机技术,通过建立计量经济学模型,定量分析经济变量之间的随机因果关系.。
二、计量经济学的研究的步骤是什么?1)理论模型的设计A.理论或假说的陈述;B.理论的数学模型的设定;C.理论的计量经济模型的设定。
i.把模型中不重要的变量放进随机误差项中;ii.拟定待估参数的理论期望值。
2)获取数据数据来源:网络、统计年鉴、报纸、杂志数据类别:时间序列数据、截面数据、混合数据、虚变量数据。
数据要求:完整性、准确性、可比性、一致性i.完整性:模型中包含的所有变量都必须得到相同容量的样本观察值。
ii.准确性:统计数据或调查数据本身是准确的。
iii.可比性:数据口径问题。
iv.一致性:指母体与样本的一致性。
3)模型的参数估计:普通最小二乘法。
4)模型的检验:经济学检验;统计学检验;计量经济学检验;模型的预测检验。
5)模型的应用:结构分析;经济预测;政策评价;经济理论的检验与发展。
三、简述统计数据的类别?时间序列数据、截面数据、混合数据、虚变量数据。
1)时间序列数据:按时间先后排列收集的数据。
采纳时间序列数据的注意事项:A.所选择的样本区间的经济行为一致性问题。
B.样本数据在不同样本点之间的可比性问题。
C.样本数据过于集中的问题。
不能反映经济变量间的结构关系,应增大观察区间。
D.模型的随机误差项序列相关问题。
2)截面数据:又称横向数据,是一批发生在同一时间截面上的调查数据。
研究某时点上的变化情况。
采纳截面数据的注意事项:A.样本与母体的一致性问题。
B.随机误差项的异方差问题。
3)混合数据:也称面板数据,既有时间序列数据,又有截面数据。
4)虚变量数据:又称二进制数据,只能取0和1两个值,表示的是某个对象的质量特征。
四、模型的检验包括哪几个方面?具体含义是什么?1)经济学检验:参数的符合和大致取值。
第一章三、简答题1•简述计量经济学与经济学、统计学、数理统计学学科间的关系。
答:计量经济学是经济理论、统计学和数学的综合。
经济学着巫经济现象的定性研究,而计量经济学着重于定量方而的研究。
统计学是关于如何惧、整理和分析数据的科学,而计量经济学则利用经济统计所提供的数据来估计经济变量之间的数最关系并加以验证。
数量统计各种数据的惧、整理与分析提供切实町靠的数学方法,是计量经济学建立计最经济模型的主要工貝,但它与经济理论、经济统计学结合而形成的计最经济学则仅限于经济领域。
计最经济模型建立的过程,是综合应用理论、统计和数学方法的过程。
因此计量经济学是经济理论、统计学和数学三者的统一。
2.计童经济模型有哪些应用.答:①结构分析,即是利用模型对经济变量之间的相互关系做出研究,分析当其他条件不变时,模型屮的解释变屋发生一定的变动对被解释变最的影响程度。
②经济预测,即是利用建立起来的计量经济模型对被解释变量的未来值做出预测估计或推算。
③政策评价,対不同的政策方案可能产生的后果进行评价对比,从中做出选择的过程。
④检验和发展经济理论,计量经济模型町用來检验经济理论的正确性,并揭示经济活动所遵循的经济规律。
3.简述建立与应用计量经济模型的主要步骤。
答:一般分为5个步骤:①根据经济理论建立计量经济模型:②样本数据的收集;③估计参数:④模型的检验;⑤计量经济模型的应用。
4.对计量经济模型的检验应从几个方面入手。
答:①经济意义检验;②统计准则检验;③计呈经济学准则检验;④模型预测检验。
第二章三、简答题I •简述用普通最小二乘法求解模型x =时卩心比的参数估计量的过程。
答:一元线性回归模型X = /70 + /71X x +/z x ,采用普通故小二乘法进行参数估计的基本准则:niin Q (A= £ e x 2 = £(X - A - A\)2 ⑴ i-l i-1利用微积分多元函数极值原理,要使Q&,&)达到最小,(1)式对久、心的一阶偏导数都等于零, 即:工X+1讥-匹X"由⑵式可知’n 瓦W 屯X- B 工兀T-恥 ⑷(令耳孝,耳工斗)并将式(4)代入(3),可得:0 =工(\也-人人)1工乜4(工丫 J 工斗)工X J 工亡0 =工(\一心一6爼)兀=工(\一£+厶文一厶均)冯=>工(\-刃兀-几工(X-乂)儿=0?或“=工X (X ]刃=工(兀_子)(\_卫=工I 。
各位同学:请大家按照这个复习重点进行认真复习,考试时请大家带上计算器,平时成绩占30%,期末占70%。
考试题型:一、名词解释题(每小题4分,共20分)计量经济学:一门由经济学、统计学和数学结合而成的交叉学科. 经济学提供理论基础,统计学提供资料依据,数学提供研究方法总体回归函数:被解释变量的均值同一个或者多个解释变量之间的关系样本回归函数:是总体回归函数的近似OLS 估计量 :以残差平方和最小的原则对回归模型中的系数进行估计的方法。
普通最小二乘法估计量OLS 估计量可以由观测值计算OLS 估计量是点估计量一旦从样本数据取得OLS 估计值,就可以画出样本回归线BLUE 估计量、BLUE :最优线性无偏估计量, 其估计量是无偏估计量,且在所有的无偏估计量中其方差最小。
拟合优度、衡量了解释变量能解释的离差占被解释变量的百分比。
拟合优度R 2(被解释部分在总平方和(SST)中所占的比例)虚拟变量陷阱、 带有截距项的回归模型,如果有m 个定性变量,只能引入m-1个虚拟变量。
如果引入了m 个,就将陷入虚拟变量陷阱。
既模型中存在完全共线性,使得模型无法估计方差分析模型、解释变量仅包含定性变量或虚拟变量的模型。
协方差分析模型、回归模型中的解释变量有些是定性的有些是定量的。
多重共线性 多重共线性是指解释变量之间存在完全的线性关系或近似的线性关系.分为完全多重共线性和不完全多重共线性ˆˆ)X |E(Y ˆ) )X |E(Y ( ˆˆˆ :SRF 2211i 21i 21的估计量。
是的估计量;是的估计量;是其中相对于ββββββββi i ii Y X X Y +=+=∑∑==222ˆi i y y TSS ESS R自相关: 随机误差项当期值和滞后期相关。
在古典线性回归模型中,我们假定随机扰动项序列的各项之间,如果这一假定不满足,则称之为自相关。
即用符号表示为:自相关常见于时间序列数据。
异方差、 是指模型误差项的方差随着变量的改变而不同随机误差项:模型中没有包含的所有因素的代表例:Y — 消费支出 X —收入、— —参数 u —随机误差项 显著性检验 :显著性检验时利用样本结果,来证实一个零假设的真伪的一种检验程序。
计量经济学重点(简答题)一、什么是计量经济学?计量经济学,又称经济计量学,它是以一定的经济理论和实际统计资料为依据,运用数学、统计学和计算机技术,通过建立计量经济学模型,定量分析经济变量之间的随机因果关系 .。
二、计量经济学的研究的步骤是什么?1)理论模型的设计A.理论或假说的陈述;B.理论的数学模型的设定;C.理论的计量经济模型的设定。
i.把模型中不重要的变量放进随机误差项中;ii.拟定待估参数的理论期望值。
2)获取数据数据来源:网络、统计年鉴、报纸、杂志数据类别:时间序列数据、截面数据、混合数据、虚变量数据。
数据要求:完整性、准确性、可比性、一致性i.完整性:模型中包含的所有变量都必须得到相同容量的样本观察值。
ii.准确性:统计数据或调查数据本身是准确的。
iii.可比性:数据口径问题。
iv.一致性:指母体与样本的一致性。
3)模型的参数估计:普通最小二乘法。
4)模型的检验:经济学检验;统计学检验;计量经济学检验;模型的预测检验。
5)模型的应用:结构分析;经济预测;政策评价;经济理论的检验与发展。
三、简述统计数据的类别?时间序列数据、截面数据、混合数据、虚变量数据。
1)时间序列数据:按时间先后排列收集的数据。
采纳时间序列数据的注意事项:A.所选择的样本区间的经济行为一致性问题。
B.样本数据在不同样本点之间的可比性问题。
C.样本数据过于集中的问题。
不能反映经济变量间的结构关系,应增大观察区间。
D.模型的随机误差项序列相关问题。
2)截面数据:又称横向数据,是一批发生在同一时间截面上的调查数据。
研究某时点上的变化情况。
采纳截面数据的注意事项:A.样本与母体的一致性问题。
B.随机误差项的异方差问题。
3)混合数据:也称面板数据,既有时间序列数据,又有截面数据。
4)虚变量数据:又称二进制数据,只能取0 和 1 两个值,表示的是某个对象的质量特征。
四、模型的检验包括哪几个方面?具体含义是什么?1)经济学检验:参数的符合和大致取值。
2)统计学检验:拟合优度检验;模型的显著性检验;参数的显著性检验。
3)计量经济学检验:序列相关性;异方差检验;多重共线性检验。
4)模型的预测检验:a,扩大样本容量或变换样本重新估价模型;b,利用模型对样本期以外的某一期进行预测。
五、回分析和相关分析的系和区是什么?回分析是理量与量之关系的一种数学方法,是研究一个量关于另一个(些)量的依关系的算理和方法。
其目的在于通后者的已知或定,去估或前者的(体)均。
前一个量被称被解量,后一个(些)量称解量。
回分析与相关分析的系:都是量非确定相关关系的研究,均能通一定的方法量之的性依程度行定。
回分析与相关分析的区: 1 相关分析研究的是两个随机量之的相关形式及相关程度,是通相关系数来定的,不考量之是否存在因果关系;而回分析是以因果分析基的,量之的地位是不称的,有解量与被解量之分,被解量是随机量,而解量在一般情况下假定是确定性量。
2相关分析所采用的相关系数,是一种粹的数学算,相关分析关注的是量之的相互关的程度,而回分析在用之就量之是否存在依关系行了因果分析,在此基上行的回分析,达到了深入分析量依存关系、掌握其运律的目的。
六、典假条件的内容是什么?(用最小二乘法足的古典假定?)1)解量 x1,x2,⋯,xk 是确定性量,不是随机量;而且解量之互不相关。
2)随机误差项具有 0 均值和同方差。
3)随机误差项在不同样本点之间是独立的,不存在序列相关。
4)随机误差项与解释变量之间不相关。
5)随机误差项服从 0 均值,同方差的正态分布。
七、总体回归函数和样本回归函数之间有哪些区别与联系?总体回归函数是将总体被解释变量的条件期望表示为解释变量的某种函数。
样本回归函数是将被解释变量 Y 的样本观测值的拟和值表示为解释变量的某种函数。
二者区别:描述的对象不同;模型建立的依据不同。
二者联系:样本回归模型是总体回归模型的一个估计式,之所以建立样本回归模型,目的是用来估计总体回归模型。
八、什么是随机误差项?随机误差项包括哪些因素?设定随机误差项的原因有哪些?随机误差项是模型设定中省略下来而又集体地影响着被解释变量 Y 的全部变量的替代物。
随机误差项包括以下因素:在解释变量中被忽略的因素的影响。
变量观测值的观察误差的影响。
模型关系的设定误差的影响。
其它随机因素的影响。
设定随机误差项的原因:理论的含糊性;数据的欠缺;节省的原则。
九、最小二乘估计量有哪些特性?高斯-马尔科夫定理的内容是什么?判断一个估计量是否为优良估计量需要考察的统计性质:线性,考察估计量是否是另一个随机变量的线性函数;无偏性,考察估计量的期望是否等于其真值;有效性,考察估计量在所有的无偏估计量中是否有最小方差。
上述三个统计特性称为估计量的小样本性质。
具有这类性质的估计量是最佳的线性无偏估计量。
在模型假定条件成立的情况下,根据普通最小二乘估计法得到的估计量具有 BLUE 的性质,这就是高斯 -马尔科夫定理定理。
上述三个性质针对的是小样本,针对大样本还有三个渐近性质:渐近无偏性:表示当样本容量趋于无穷大时,估计量的均值趋于总体均值。
一致性:表示当样本容量趋于无穷时,估计量依概率收敛于总体的真值。
渐近有效性:样本容量趋于无穷时,估计量在所有的一致估计中,具有最小的渐近方差。
十、为什么用可决系数R2 评价拟合优度,而不是用残差平方和作为评价标准?可决系数和相关系数有什么区别与联系?样本可决系数 R2 反映了回归平方和占总离差平方和的比重,表示由解释变量引起被解释变量的变化占被解释变量总的变化的比重,因而可用来判定回归直线拟合程度的优劣,该值大表示回归直线对样本店的拟合程度好。
残差平方和反映随机误差项包含因素对被解释变量变化影响的绝对程度,它与样本容量有关,样本容量大时,残差平方和一般也大,样本容量小时,残差平方和也小,因此样本容量不同时得到的残差平方和不能用于比较。
此外,检验统计量一般应是相对量而不能是绝对量,因而不宜使用残差平方和判断模型的拟合优度。
可决系数和相关系数的联系和区别:A.相关系数是建立在相关分析基础上的,研究的是随机变量之间的关系;可决系数则是建立在回归分析基础上,研究的是非随机变量 X 对随机变量 Y的解释程度。
B.在取值上,可决系数是样本相关系数的平方。
C.样本相关系数是由随机的 X 和 Y 抽样计算得到,因而相关关系是否显著,还需进行检验。
十一、说明显著性检验的过程。
提出原假设和备择假设。
选择并计算在原假设成立情况下的统计量。
给定显著水平 a,查临界值表进行判断。
十二、影响预测精度的主要因素是什么?样本容量;模拟的拟合优度。
十三什么是正规方程组?并说明多元线性回归最小二乘估计的正规方程组,能解出唯一的参数估计的条件是什么?正规方程组是根据最小二乘原理得到的关于参数估计值的线性代数方程组。
从最小二乘原理和最大似然原理出发,欲得到参数估计量,不管其质量如何,样本容量必须不少于模型中解释变量的数目(包括常数项),即 n ≥ k + 1。
十三、在多元线性回归分析中,为什么用调整的可决系数衡量估计模型对样本观测值的拟合优度?未调整可决系数R2 的一个总要特征是:随着样本解释变量个数的增加,R2 的值越来越高,(即R2 是解释变量个数的增函数)。
也就是说,在样本容量不变的情况,在模型中增加新的解释变量不会改变总离差平方和(TSS),但可能增加回归平方和(ESS),减少残差平方和( RSS),从而可能改变模型的解释功能。
因此在多元线性回归模型之间比较拟合优度时, R2 不是一个合适的指标,需加以调整。
而修正的可决系数:~ 9 ~其值不会随着解释变量个数k 的增加而增加,因此在用于估计多元回归模型方面要优于未调整的可决系数。
十四、在多元线性回归分析中,可决系数 R2 与总体线性关系显著性检验统计量 F之间有何关系? t 检验与 F检验有何不同?是否可以替代?在一元线性回归分析中二者是否有等价作用?在多元线性回归分析中,可决系数 R2 与总体线性关系显著性检验统计量 F 关系如下:可决系数是用于检验回归方程的拟合优度的, F 检验是用于检验回归方程总体显著性的。
两检验是从不同原理出发的两类检验,前者是从已经得到的模型出发,检验它对样本观测值的拟合程度,后者是从样本观测值出发检验模型总体线性关系的显著性。
但两者是关联的,这一点也可以从上面两者的关系式看出,回归方程对样本拟和程度高,模型总体线性关系的显著性就强。
在多元线性回归模型分析中, t 检验常被用于检验回归方程各个参数的显著性,是单一检验;而 F 检验则被用作检验整个回归关系的显著性,是对回归参数的联合检验。
在多元线性回归中,若F 检验拒绝原假设,意味着解释变量与被解释变量之间的线性关系是显著的,但具体是哪个解释变量与被解释变量之间关系显著则需要通过 t 检验来进一步验证,但若 F 检验接受原假设,则意味着所有的 t 检验均不显著。
两者是不可互相替代的。
在一元线性回归模型中,由于解释变量只有一个,因此 F 检验的联合假设等同于 t 检验的单一假设,两检验作用是等价的。
十五、什么是异方差?异方差产生的原因是什么?如何检验和处理?~ 11 ~1)性回模型Yt = b0 + b1X1t + b2X2t +⋯⋯ + bkXkt +ut典回中所同方差是指不同随机差Ut(t =1,2,⋯,n) 的方差相同,即Var(Ut) = 戴塔方(怎么打?)如果随机差的方差不是常数,称随机Ut 具有异方差性。
Var(Ut) = 戴塔方≠ 常数2)异方差性生的原因:A.模型中漏了某些逐增大的因素的影响。
B.模型函数形式的定差。
C.随机因素的影响。
3)异方差性的方法:解法、帕克、格莱、斯皮曼的等相关、哥德德 -匡特。
4)修正异方差性的主要方法:加最小二乘法,通予不同点以不同的数,从而提高估精度,即重小差的作用,大差的作用。
十六、模型存在异方差,会回参数的估与的生什么影响?1)最小二乘估不再是有效估。
2)无法确定估系数的准差。
3)T 的可靠性降低。
4)增大模型的差。
当模型存在异方差时,根据普通最小二乘法估计出的参数估计量仍具有线性特性和无偏性,但不再具有有效性;用于参数显著性的检验统计量,要涉及到参数估计量的标准差,因而参数检验也失去意义。
十七、序列相关违背了哪些基本假定?其来源有哪些?检验方法有哪些,都适用于何种形式的序列相关检验?模型的序列相关违背的基本假定是Cov(ui,uj) = 0 (i ≠ j)。
序列相关的来源有:A.经济变量固有的惯性;B.模型设定的偏误;C.模型中遗漏了重要的带有自相关的解释变量;D.数据的“编造”。
序列相关的检验有:A.图示法B.D-W 检验,适用于检验一阶自回归形式的序列相关;C.回归检验法,适用于各种类型的序列相关检验;D.拉格朗日乘子检验( LM),适用于高阶序列相关及模型中存在滞后解释变量的情形。