高等数学教学课件:v-9-2
- 格式:ppt
- 大小:1.46 MB
- 文档页数:35
高等数学完整全套教学课件一、教学内容本节课的教学内容来自高等数学教材的第五章——多元函数微分学。
本章主要内容包括多元函数的求导法则、隐函数求导、泰勒公式以及多元函数的极值问题。
具体教学内容如下:1. 多元函数的求导法则:主要包括偏导数的定义及其求导法则,如四则法则、链式法则、反函数求导法则等。
2. 隐函数求导:主要讲解如何利用偏导数求解隐函数的导数,包括直接求解和间接求解两种方法。
3. 泰勒公式:介绍泰勒公式的定义及其在多元函数中的应用,重点讲解如何利用泰勒公式展开多元函数。
4. 多元函数的极值问题:包括极值的存在性定理、极值的判定方法以及极值的求解方法。
二、教学目标1. 理解并掌握多元函数的求导法则,能够熟练运用各种法则求解多元函数的导数。
2. 学会隐函数求导的方法,能够独立求解复杂的隐函数导数问题。
3. 掌握泰勒公式的应用,能够利用泰勒公式展开多元函数并进行简化。
4. 理解多元函数极值的概念,学会使用极值判定方法和求解方法解决实际问题。
三、教学难点与重点1. 教学难点:隐函数求导、泰勒公式的应用以及多元函数极值的求解。
2. 教学重点:多元函数的求导法则、隐函数求导、泰勒公式以及多元函数的极值问题。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:笔记本、签字笔、直尺、橡皮。
五、教学过程1. 实践情景引入:以实际问题为例,引入多元函数的求导问题。
2. 讲解多元函数的求导法则:通过示例,讲解四则法则、链式法则、反函数求导法则等。
3. 隐函数求导方法讲解:以具体例子为例,讲解直接求解和间接求解两种方法。
4. 泰勒公式的介绍与应用:讲解泰勒公式的定义及其在多元函数中的应用,通过示例让学生掌握泰勒公式的运用。
5. 多元函数极值问题的讲解:介绍极值的存在性定理、极值的判定方法以及极值的求解方法,并通过实例进行分析。
6. 随堂练习:布置具有代表性的题目,让学生现场解答,检验学习效果。
六、板书设计1. 多元函数的求导法则:四则法则、链式法则、反函数求导法则。