小学数学人教版六年级上册数学广角 数形结合之一
- 格式:pptx
- 大小:912.55 KB
- 文档页数:10
数学广角—数形结合(教案)人教版六年级上册数学我今天要给大家讲解的是人教版六年级上册的数学广角—数形结合。
一、教学内容我们今天要学习的教材是人民教育出版社出版的六年级上册数学教科书,其中第五单元“数学广角”中的“数形结合”部分。
这部分内容主要包括了用图形来表示数字,以及通过图形来理解和解决数学问题。
二、教学目标通过本节课的学习,我希望学生们能够理解数形结合的概念,学会用图形来表示数字,并且能够通过图形来解决一些简单的数学问题。
三、教学难点与重点本节课的重点是让学生掌握数形结合的方法,能够用图形来表示数字。
难点则是如何让学生理解图形与数字之间的关系,并能够运用这种方法来解决实际问题。
四、教具与学具准备为了更好地进行教学,我准备了一些教具和学具,包括黑板、粉笔、直尺、圆规、三角板等,以及一些图形和数字的卡片。
五、教学过程1. 实践情景引入:我会先给大家展示一些生活中的实际问题,比如超市的商品打折,让学生们看到数学在生活中的应用。
2. 例题讲解:然后我会给大家讲解一些例题,展示如何用图形来表示数字,以及如何通过图形来解决数学问题。
3. 随堂练习:讲解完例题后,我会给大家一些随堂练习题,让学生们自己动手实践,巩固所学知识。
4. 小组讨论:我会让学生们分小组讨论,分享自己的解题方法和解题过程,互相学习和交流。
六、板书设计我会在黑板上设计一些图形的组合,用图形来表示数字,让学生们直观地看到图形与数字之间的关系。
七、作业设计作业题目:请用图形来表示数字8,并尝试解决一些与数字8相关的数学问题。
答案:可以用一个正方形来表示数字8,或者用两个圆圈来表示数字8。
解决与数字8相关的数学问题,比如8+8=16,88=0等。
八、课后反思及拓展延伸通过本节课的学习,我觉得学生们对数形结合的概念有了初步的理解,大部分学生能够用图形来表示数字,并解决一些简单的数学问题。
但是也发现有些学生在理解图形与数字之间的关系上还存在一些困难,需要在今后的教学中进一步加强引导和练习。
数学广角——数与形教学目标1、使通过“以形助数”或“以数解形”,使得复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。
2.体验数形结合的数学思想方法价值,激发学生用数形结合思想方法解决问题的兴趣,感受数学的魅力。
重点通过发现规律解决问题帮学生建立数形结合的数学思想,把抽象的数学语言与直观地图形结合起来思索,使抽象思维与形象思维结合,通过“以形助数”或“以数解形”,使得复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。
难点学生进入中高年级,他们的逻辑思维能力已有一定程度的发展,但是整个小学阶段学生的思维总是更多的带有形象思维的成分。
教学准备:课件教学过程教学过程:一、导入引导学生回答数学中离不开数形结合引出新课:数与形二、探索交流,解决问题1、例1的教学师(出示下图):我们一起来看看这些图中图2和图3各有多少个像图1这样的小正方形?图1 图图3生:图二中有四个图一这样的小正方形图三中有9个这样的小正方形? 师:同学们动动脑尝试用算式表示出每个图中小正方形的个数?生:图一:1×1=1:图二2×2=4:图三:3×3=9。
师:观察这几个图形与计算出的得数(1,4,9).你还有什么发现?生:从图一开始小正方形的个数是在前一图基础上分别加3,加5.根据学生的回答,把图中小正方形图上不同的颜色进行演示。
师:如果我们把刚才同学们表示图中小正方形个数而列出的不同算式综合起来,会是什么样的呢? 生:1=1×1 1=1的平方1+3=2×2=4教师板书归纳 1+3=2的平方1+3+5=3×3=9 1+3+5= 3的平方师:在这里形能直观解释数的计算.同学们想一想,按照这样的规律图4会是什么样子?有几个这样的小正方形?同桌两人合作,仿照黑板上的算式,一人说等号左边的部分怎么写,一人说等号右边部分怎么写,有困难可以在草稿上画一画图.学生合作交流,并利用规律完成例1下面题目师:观察例1中的这些题目,你有什么发现?生1:大正方形左下角的小正方形和其他正方形图形所包含的小正方形个数之和正好是每行或每列小正方形个数的平方。
人教版数学六年级上册教学设计-第8单元数学广角——数与形-第1课时数与形(1)一. 教材分析人教版数学六年级上册第8单元“数学广角——数与形”主要让学生感受数与形的联系,通过研究一些简单的数学问题,发现其中的规律,培养学生的数形结合思想。
本节课是本单元的第一课时,主要让学生通过观察、操作、推理等活动,发现图形中隐藏的数的规律。
教材内容紧密联系学生的生活实际,具有较高的实用性和趣味性。
二. 学情分析六年级的学生已经具备了一定的数学基础,对图形和数字有一定的认识。
但在数形结合方面,部分学生可能还缺乏直观的感受和深入的理解。
因此,在教学过程中,教师需要关注学生的个体差异,引导他们通过观察、实践、思考、交流等活动,逐步建立数形结合的思想。
三. 教学目标1.让学生通过观察、操作、推理等活动,发现图形中隐藏的数的规律,体会数与形的联系。
2.培养学生独立思考、合作交流的能力,提高解决问题的能力。
3.引导学生感受数学的趣味性和实用性,培养学生的数学素养。
四. 教学重难点1.重点:让学生发现图形中隐藏的数的规律,体会数与形的联系。
2.难点:引导学生运用数形结合的思想,解决实际问题。
五. 教学方法1.情境教学法:通过生活实际问题,引导学生感受数与形的联系。
2.启发式教学法:引导学生观察、操作、推理,发现规律。
3.合作学习法:鼓励学生互相交流、讨论,共同解决问题。
六. 教学准备1.课件:准备与教学内容相关的课件,展示图形和数字的关系。
2.学具:为学生准备一些图形和数字的卡片,方便学生观察和操作。
3.练习题:准备一些有关数与形的练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的实际问题,如停车场、公交车等,引导学生观察其中的数与形的联系。
通过这些问题,激发学生的学习兴趣,引入新课。
2.呈现(10分钟)展示一些简单的图形,如正方形、三角形等,引导学生观察这些图形中隐藏的数的规律。
让学生通过小组合作,共同探讨并总结出这些规律。
六年级上数学广角——数与形知识梳理在六年级上册的数学学习中,“数学广角——数与形”为我们打开了一扇全新的思维之门。
数与形的结合,不仅让数学变得更加直观、有趣,还帮助我们更深入地理解数学的本质和规律。
接下来,让我们一起对这部分知识进行详细的梳理。
一、数与形的概念数,是用来表示数量和顺序的抽象符号;形,则是通过图形、图像等直观形式来呈现信息。
数与形相互关联、相辅相成,它们之间的巧妙结合能够帮助我们解决许多复杂的数学问题。
二、数与形结合的优势1、直观易懂当我们面对抽象的数学概念和复杂的数量关系时,图形能够将其直观地展示出来,让我们一目了然。
比如,通过画线段图来表示应用题中的数量关系,能够让我们更清晰地看到各个量之间的关系,从而更容易找到解题的思路。
2、发现规律在探索数学规律时,数与形的结合常常能让我们更快地发现规律。
例如,计算 1 + 3 + 5 + 7 ++ 99 的和,如果单纯从数的角度去计算会比较繁琐,但通过将这些数转化为图形,我们可以发现它们构成了一个边长为 50 的正方形,从而轻松得出结果为 2500。
3、验证结论对于一些通过推理得出的数学结论,我们可以用图形来进行验证。
这种验证方式不仅增加了结论的可信度,还能进一步加深我们对数学知识的理解。
三、常见的数与形结合的例子1、等差数列以 1,3,5,7,9 为例,这是一个公差为 2 的等差数列。
我们可以用点阵图来表示:第一行 1 个点,第二行 3 个点,第三行 5 个点通过观察点阵图,我们可以更直观地看出数列的规律。
2、平方数1²= 1,2²= 4,3²= 9,4²= 16我们可以用正方形来表示平方数。
边长为 1 的正方形面积是 1,边长为 2 的正方形面积是 4,以此类推。
通过观察正方形的面积变化,我们能更好地理解平方数的概念。
3、分数的计算计算 1/2 + 1/4 + 1/8 + 1/16 +,我们可以用一个正方形,每次减去剩下部分的一半来表示。
六年级上册数学教案数学广角数与形人教版教学内容本节教学内容选自人教版六年级上册数学广角,主题为“数与形”。
通过本节课的学习,学生将掌握数与形的相互关系,理解数形结合在数学问题解决中的应用。
具体内容包括:1. 数轴的认识与应用;2. 函数图像的初步认识;3. 平面几何图形的面积计算;4. 数形结合解决实际问题。
教学目标1. 知识与技能:使学生掌握数轴的基本概念,能够运用数轴解决实际问题;理解函数图像的基本特点;掌握平面几何图形的面积计算方法。
2. 过程与方法:通过数形结合的方法,培养学生观察、分析、解决问题的能力。
3. 情感态度价值观:激发学生对数学的兴趣,培养学生合作学习的意识。
教学难点1. 数轴与实数的关系;2. 函数图像的识别与分析;3. 平面几何图形面积计算公式的推导。
教具学具准备1. 教具:数轴模型、函数图像卡片、平面几何图形模型;2. 学具:直尺、圆规、量角器。
教学过程一、导入通过生活中的实例,引导学生理解数与形的密切关系,激发学生的学习兴趣。
二、新课导入1. 数轴的认识与应用:介绍数轴的概念,引导学生观察数轴的特点,学会在数轴上表示实数。
2. 函数图像的初步认识:通过函数图像卡片,让学生观察函数图像的特点,理解函数与图像之间的关系。
3. 平面几何图形的面积计算:介绍平面几何图形的面积计算方法,引导学生运用公式计算面积。
4. 数形结合解决实际问题:通过实例,让学生了解数形结合在解决问题中的重要作用。
三、案例分析分析数形结合在实际问题中的应用,让学生感受数形结合的优越性。
四、课堂小结五、课后作业布置1. 完成课后练习题;2. 观察生活中的数形结合实例,写下自己的感悟。
板书设计1. 数轴的认识与应用;2. 函数图像的初步认识;3. 平面几何图形的面积计算;4. 数形结合解决实际问题。
作业设计1. 基础题:数轴上表示实数,计算平面几何图形面积;2. 提高题:分析函数图像特点,解决实际问题;3. 拓展题:探讨数形结合在生活中的应用。
人教版六年级上册《数学广角──数与形》教案优质范文三篇人教版六班级上册《数学广角──数与形》教案优质范文一设计说明:数与形之间密不可分,它们相互转化,相辅相成。
在课堂教学中适当地应用数形结合思想,把握好数形结合的度,就可以把问题化难为易,化繁为简。
在引进新知、建构概念、解决问题时,还可以激发学生的学习爱好,有利于进展学生的(想象力),提高学生的思维能力。
1.重视数与形之间的联系,找到解题规律。
数形结合思想是小学阶段最重要的一种数学思想,在课堂教学中,重视数与形之间的联系,有助于学生抽象能力的提升。
因此,教学伊始,从观察、分析例1中图与算式的关系入手,引导学生探究算式左边的加数和与大正方形中每列(或每行)小正方形个数的关系,发现数与形之间的联系,找到其中的规律,使学生在体验用形表示数的直观性的同时,学会应用规律解决问题。
2.借助数与形之间的关系解决相关问题。
从观察抽象的算式特点开始,先通过简单的计算找到规律,再借助多种几何图形直观验证计算过程及结果,使学生在初步了解、运用数形结合思想(方法)的同时,体验到数学的极限思想。
课前准备:老师准备PPT课件教学过程:一、问题导入:1+3+5+...+95+97+99=( )设疑:怎样快速计算出这个算式的结果?二、探究新知:1.教学例1。
(1)课件出示例题。
观察图形,把算式补充完整。
1=()1+3=()1+3+5=()1+3+5+7=()(2)观察图形与算式,(总结)规律。
观察、讨论。
仔细观察,看一看上面的图形和算式左边的加数有什么关系。
汇报规律。
[规律一:算式左边加数的个数与对应的大正方形中每列(或每行)小正方形的个数相同。
规律二:算式左边加数的和是大正方形左下角的小正方形和其他“┐”形所包含的小正方形的个数和。
规律三:算式左边加数的和正好等于大正方形中每列(或每行)小正方形个数的平方。
]总结:即从1开始,几个连续奇数相加的和即是几的平方。
(3)运用规律解决问题。
人教版六年级上册数学《8 数学广角——数与形》说课稿一. 教材分析《8 数学广角——数与形》是人教版六年级上册数学的一章内容。
这一章节主要让学生感受数与形的联系,通过探索规律,培养学生的数形结合思想。
内容主要包括数字的变化规律、图形的变化规律以及数与形的相互转化。
二. 学情分析六年级的学生已经具备了一定的数学基础,对数字和图形有一定的认识。
但在数形结合方面,学生的认识可能还不够深入。
因此,在教学过程中,教师需要引导学生观察、分析、归纳,从而发现数与形的联系。
三. 说教学目标1.让学生掌握数字和图形的变化规律,体会数与形的联系。
2.培养学生的观察能力、分析能力和归纳能力。
3.激发学生对数学的兴趣,培养学生的创新思维。
四. 说教学重难点1.教学重点:让学生发现并总结数字和图形的变化规律。
2.教学难点:引导学生理解并体会数与形的联系,培养学生的数形结合思想。
五. 说教学方法与手段1.教学方法:采用问题驱动、案例分析、小组讨论等教学方法,引导学生主动探究、合作学习。
2.教学手段:利用多媒体课件、实物模型等教学辅助工具,生动形象地展示数字和图形的变换过程。
六. 说教学过程1.导入:通过一个有趣的数字游戏,引发学生对数字变化规律的兴趣,从而引入本节课的内容。
2.新课导入:讲解数字和图形的变化规律,引导学生观察、分析、归纳。
3.案例分析:通过具体案例,让学生体会数与形的联系,培养学生的数形结合思想。
4.小组讨论:学生分组讨论,分享自己的发现和感悟,互相学习,共同进步。
5.总结提升:教师引导学生总结本节课的学习内容,巩固知识。
6.课堂练习:设计一些具有挑战性的练习题,让学生运用所学知识解决问题。
7.课后作业:布置一些富有思考性的作业,引导学生深入思考。
七. 说板书设计板书设计要简洁明了,突出重点。
可以采用流程图、树状图等形式,展示数与形的联系,便于学生理解和记忆。
八. 说教学评价教学评价主要从学生的学习态度、参与程度、知识掌握程度等方面进行。
《数学广角——数与形》一、教学内容《数学广角——数与形》是六年级上册数学人教版的内容。
本节课旨在引导学生探究数学中数与形的相互关系,通过具体实例,让学生感受数学的趣味性和实用性,培养他们的数学思维能力和空间观念。
二、教学目标1. 知识与技能:使学生了解数与形的相互关系,掌握数形结合的方法,能够运用所学知识解决实际问题。
2. 过程与方法:培养学生观察、分析、归纳、总结的能力,提高他们的逻辑思维能力和空间观念。
3. 情感、态度与价值观:激发学生对数学的兴趣,培养他们合作、探究的学习精神,增强他们的创新意识。
三、教学难点1. 理解数与形的相互关系,掌握数形结合的方法。
2. 运用所学知识解决实际问题,培养学生的逻辑思维能力和空间观念。
四、教具学具准备1. 教具:多媒体设备、PPT课件、黑板、粉笔等。
2. 学具:三角板、直尺、圆规、量角器等。
五、教学过程1. 导入新课:通过PPT展示生活中的数与形实例,引导学生关注数与形的相互关系,激发他们的学习兴趣。
2. 新课内容:讲解数与形的定义、特点,分析数形结合的方法,并通过实例演示,让学生感受数学的趣味性和实用性。
3. 案例分析:分组讨论,让学生运用所学知识分析实际问题,培养他们的合作精神和解决问题的能力。
4. 课堂小结:总结本节课的主要内容,强调数与形的关系,提醒学生关注生活中的数学现象。
六、板书设计1. 《数学广角——数与形》2. 主要内容:数与形的定义、特点、数形结合的方法、实例演示等。
七、作业设计1. 基础题:让学生运用所学知识解决实际问题,巩固课堂所学。
2. 提高题:引导学生深入研究数与形的关系,培养学生的创新意识。
八、课后反思1. 教学内容:本节课内容丰富,实例生动,有助于学生理解数与形的关系。
2. 教学方法:采用多媒体教学,生动形象,激发学生的学习兴趣。
3. 学生反馈:学生对本节课内容表现出浓厚兴趣,课堂气氛活跃。
4. 改进措施:在今后的教学中,注重培养学生的动手操作能力和创新能力,提高他们的数学素养。
数学广角—数形结合(教案)教学内容:本节课的教学内容为人教版六年级上册数学中的“数学广角—数形结合”。
通过本节课的学习,学生将掌握数形结合的基本概念,学会利用图形的性质来解决问题,提高数学思维能力和解决问题的能力。
教学目标:1. 知识与技能:学生能够理解数形结合的概念,掌握数形结合的基本方法,并能运用数形结合思想解决实际问题。
2. 过程与方法:通过观察、分析、归纳等数学活动,培养学生的逻辑思维能力和解决问题的能力。
3. 情感态度价值观:激发学生对数学的兴趣,培养学生积极主动参与数学学习的态度,增强学生的合作意识和团队精神。
教学难点:1. 数形结合的概念理解和应用。
2. 学生对图形性质的理解和运用。
3. 学生在解决问题时对数形结合思想的运用。
教具学具准备:1. 教师准备:PPT课件、教具(如几何图形、模型等)。
2. 学生准备:学习用品(如笔记本、文具等)。
教学过程:1. 导入:通过PPT展示一些数形结合的实例,引起学生的兴趣和好奇心,引导学生进入本节课的学习。
2. 新课导入:通过讲解数形结合的概念,让学生了解数形结合的基本思想和方法。
通过一些具体的例子,让学生理解数形结合的应用。
3. 案例分析:通过分析一些具体的案例,让学生学会利用数形结合思想解决问题。
引导学生观察图形的性质,发现图形与数量之间的关系,从而解决问题。
4. 实践操作:让学生分组进行实践操作,通过合作完成一些数形结合的问题。
教师巡回指导,解答学生的疑问。
5. 总结归纳:通过总结归纳,让学生掌握数形结合的基本方法和技巧。
引导学生总结数形结合的解题思路和策略。
6. 课堂练习:布置一些数形结合的练习题,让学生巩固所学知识。
教师解答学生的疑问,指导学生的解题方法。
7. 课后作业:布置一些数形结合的作业题,让学生在课后进行练习。
要求学生在作业中运用数形结合思想解决问题。
板书设计:1. 数形结合的概念和基本思想。
2. 数形结合的应用案例分析。
3. 数形结合的解题方法和技巧。