高一物理万有引力定律和天体运动
- 格式:ppt
- 大小:1.44 MB
- 文档页数:74
高一物理天体运动知识点总结天体运动是天文学的重要内容之一,研究宇宙中各种天体的运动规律,揭示宇宙的奥秘。
在高一物理学习中,我们也学习了一些关于天体运动的基本知识。
本文将对高一物理天体运动的知识点进行总结。
一、天体的运动天体的运动分为自转和公转两种。
自转是指天体围绕自身轴线旋转的运动,如地球的自转使得白昼和黑夜的交替。
公转是指天体围绕另一个天体旋转的运动,如地球围绕太阳的公转造成了四季的变化。
二、天体运动的规律1.开普勒定律开普勒定律是描述行星运动的规律,包括开普勒第一定律(椭圆轨道定律)、开普勒第二定律(面积定律)和开普勒第三定律(调和定律)。
这些定律揭示了行星运动的轨道形状、速度和时间的关系。
2.万有引力定律万有引力定律是描述天体之间相互作用的规律,由牛顿提出。
它表明两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。
这个定律解释了行星围绕太阳的椭圆轨道和卫星围绕行星的圆轨道。
三、地球的运动1.地球的自转地球的自转使得地球上的各地区经历白昼和黑夜的交替。
自转速度不同,使得地球上不同地区的时间不同。
2.地球的公转地球的公转使得地球围绕太阳运动,形成了四季的变化。
地球公转的轨道是椭圆形的,而不是圆形的。
四、天体间的相互作用1.行星和卫星行星和卫星之间存在引力相互作用,行星的引力使得卫星围绕行星运动。
行星和卫星的质量越大,引力越大,使得卫星绕行星运动的速度越快。
2.恒星和行星恒星是太阳系中的主要天体,行星围绕恒星运动。
恒星的引力决定了行星的轨道形状和运动速度。
五、天体测量1.天文单位天文单位是天文学中常用的长度单位,用来表示天体之间的距离。
1天文单位等于地球和太阳之间的平均距离,约为1.5亿公里。
2.光年光年是天文学中常用的长度单位,用来表示光在一年内传播的距离。
光年是一种非常大的距离单位,一光年约等于9.46万亿公里。
六、宇宙的起源和演化宇宙的起源和演化是天文学的核心问题之一。
宇宙大爆炸理论认为宇宙起源于一个巨大的爆炸,随着时间的推移,宇宙不断膨胀和演化。
天体运动公式应用【知识点整理】一.开普勒运动定律(轨道、面积、比值) 二.万有引力定律(1)内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比。
(2)公式:F =G 221r mm ,其中2211/1067.6kg m N G ⋅⨯=-,(称为为有引力恒量,由卡文特许扭称实验测出)。
(3)适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离.对于均匀的球体,r 是两球心间的距离. 说明:(1)对万有引力定律公式中各量的意义一定要准确理解,尤其是距离r 的取值,一定要搞清它是两质点之间的距离. 质量分布均匀的球体间的相互作用力,用万有引力公式计算,式中的r 是两个球体球心间的距离. (2)不能将公式中r 作纯数学处理而违背物理事实,如认为r→0时,引力F→∞,这是错误的,因为当物体间的距离r→0时,物体不可以视为质点,所以公式F =Gm 1m 2r2就不能直接应用计算.(3)物体间的万有引力是一对作用力和反作用力,总是大小相等、方向相反的,遵循牛顿第三定律,因此谈不上质量大的物体对质量小的物体的引力大于质量小的物体对质量大的物体的引力,更谈不上相互作用的一对物体间的引力是一对平衡力.注意:万有引力定律把地面上的运动与天体运动统一起来,是自然界中最普遍的规律之一,式中引力恒量G 的物理意义是:G 在数值上等于质量均为1千克的两个质点相距1米时相互作用的万有引力.【例题分析】1.下列说法符合史实的是 ( C ) A .牛顿发现了行星的运动规律 B .开普勒发现了万有引力定律 C .卡文迪许第一次在实验室里测出了万有引力常量 D .牛顿发现了海王星和冥王星2.关于开普勒行星运动的公式23TR =k ,以下理解正确的是( AD )A .k 是一个与行星无关的常量B .若地球绕太阳运转轨道的半长轴为R 地,周期为T 地;月球绕地球运转轨道的长半轴为R 月,周期为T 月,则2323月月地地T R T R =C .T 表示行星运动的自转周期D .T 表示行星运动的公转周期3.下列关于万有引力定律说法正确的是( ABD )A.万有引力定律是牛顿发现的B.万有引力定律适用于质点间的相互作用C.221r m m GF =中的G 是一个比例常数,没有单位 D.两个质量分布均匀的球体, r 是两球心间的距离 4.如图6-2-1所示,两球的半径远小于R ,而球质量均匀分布,质量为1m 、2m ,则两球间的万有引力大小为( D )A .2121R m m G B.2221R m m GC.()22121R R m m G+ D.()22121R R R m m G++5.引力常量很小,说明了( C )A.万有引力很小B.万有引力很大C.很难观察到日常接触的物体间有万有引力,是因为它们的质量很小D.只有当物体的质量大到一定程度时,物体之间才有万有引力 6.下列关于万有引力定律的适用范围说法正确的是( D )A.只适用于天体,不适用于地面物体B.只适用于质点,不适用于实际物体C.只适用于球形物体,不适用与其他形状的物体D.适用于自然界中任意两个物体之间 7.如果认为行星围绕太阳做匀速圆周运动,下列说法中正确的是( D )A.行星同时受到太阳的万有引力和向心力B.行星受到太阳的万有引力,行星运动不需要向心力C.行星受到太阳的万有引力与它运动的向心力不等D.行星受到太阳的万有引力,万有引力提供行星圆周运动的向心力8.苹果落向地球,而不是地球向上运动碰到苹果,产生这个现象的原因是( )A.由于地球对苹果有引力,而苹果对地球没有引力造成的B.由于苹果质量小,对地球的引力小,而地球质量大,对苹果的引力大造成的C.苹果与地球间的相互引力是相等的,由于地球质量极大,不可能产生明显加速度D.以上说法都不对9.要使两物体间万有引力减小到原来的1/4,可采取的方法是( ABC )A 使两物体的质量各减少一半,距离保持不变B 使两物体间距离变为原来的2倍,质量不变C 使其中一个物体质量减为原来的1/4,距离不变D 使两物体质量及它们之间的距离都减为原来的1/4 三.万有引力定律的应用1、解决天体(卫星)运动问题的两种基本思路:一、把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供,即222224T r m r m r v m ma r Mm G πω====向二、是地球对物体的万有引力近似等于物体的重力,即mg RMmG =2从而得出2gR GM = (黄金代换) 2、卫星的绕行角速度、周期与高度的关系: (1)由()()22mMv Gm r h r h =++,得()GMv r h =+,∴当h ↑,v ↓(2)由G()2h r mM+=m ω2(r+h ),得ω=()3h r GM+,∴当h ↑,ω↓(3)由G ()2h r mM+()224m r h T π=+,得T=()GM h r 324+π ∴当h ↑,T ↑ 【例题分析】1、海王星的公转周期约为5.19×109s ,地球的公转周期为3.16×107s ,则海王星与太阳的平均距离约为地球与太阳的平均距离的多少倍? 646倍2、有一颗太阳的小行星,质量是1.0×1021kg ,它的轨道半径是地球绕太阳运动半径的2.77倍,求这颗小行星绕太阳一周所需要的时间。
天体运动公式应用【知识点整理】一.开普勒运动定律(轨道、面积、比值)二.万有引力定律(1)内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离 的平方成反比。
(2)公式:F =G 221rmm ,其中2211/1067.6kg m N G ⋅⨯=-,(称为为有引力恒量,由卡文特许扭称实验测出)。
(3)适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离.对于均匀的球体,r 是两球心间的距离. 说明:(1)对万有引力定律公式中各量的意义一定要准确理解,尤其是距离r 的取值,一定要搞清它是两质点之间的距离. 质量分布均匀的球体间的相互作用力,用万有引力公式计算,式中的r 是两个球体球心间的距离.(2)不能将公式中r 作纯数学处理而违背物理事实,如认为r→0时,引力F→∞,这是错误的,因为当物体间的距离r→0时,物体不可以视为质点,所以公式F =Gm 1m 2r2就不能直接应用计算.(3)物体间的万有引力是一对作用力和反作用力,总是大小相等、方向相反的,遵循牛顿第三定律,因此谈不上质量大的物体对质量小的物体的引力大于质量小的物体对质量大的物体的引力,更谈不上相互作用的一对物体间的引力是一对平衡力.注意:万有引力定律把地面上的运动与天体运动统一起来,是自然界中最普遍的规律之一,式中引力恒量G 的物理意义是:G 在数值上等于质量均为1千克的两个质点相距1米时相互作用的万有引力.【例题分析】1.下列说法符合史实的是 ( C ) A .牛顿发现了行星的运动规律 B .开普勒发现了万有引力定律 C .卡文迪许第一次在实验室里测出了万有引力常量 D .牛顿发现了海王星和冥王星2.关于开普勒行星运动的公式23TR =k ,以下理解正确的是( AD )A .k 是一个与行星无关的常量B .若地球绕太阳运转轨道的半长轴为R 地,周期为T 地;月球绕地球运转轨道的长半轴为R 月,周期为T 月,则2323月月地地T R T R =C .T 表示行星运动的自转周期D .T 表示行星运动的公转周期3.下列关于万有引力定律说法正确的是( ABD )A.万有引力定律是牛顿发现的B.万有引力定律适用于质点间的相互作用C.221r m m GF =中的G 是一个比例常数,没有单位 D.两个质量分布均匀的球体, r 是两球心间的距离 4.如图6-2-1所示,两球的半径远小于R ,而球质量均匀分布,质量为1m 、2m ,则两球间的万有引力大小为( D )A .2121R m m G B.2221R m m GC.()22121R R m m G+ D.()22121R R R m m G++5.引力常量很小,说明了( C )A.万有引力很小B.万有引力很大C.很难观察到日常接触的物体间有万有引力,是因为它们的质量很小D.只有当物体的质量大到一定程度时,物体之间才有万有引力 6.下列关于万有引力定律的适用范围说法正确的是( D )A.只适用于天体,不适用于地面物体B.只适用于质点,不适用于实际物体C.只适用于球形物体,不适用与其他形状的物体D.适用于自然界中任意两个物体之间 7.如果认为行星围绕太阳做匀速圆周运动,下列说法中正确的是( D )A.行星同时受到太阳的万有引力和向心力B.行星受到太阳的万有引力,行星运动不需要向心力C.行星受到太阳的万有引力与它运动的向心力不等D.行星受到太阳的万有引力,万有引力提供行星圆周运动的向心力8.苹果落向地球,而不是地球向上运动碰到苹果,产生这个现象的原因是( )A.由于地球对苹果有引力,而苹果对地球没有引力造成的B.由于苹果质量小,对地球的引力小,而地球质量大,对苹果的引力大造成的C.苹果与地球间的相互引力是相等的,由于地球质量极大,不可能产生明显加速度D.以上说法都不对9.要使两物体间万有引力减小到原来的1/4,可采取的方法是( ABC )A 使两物体的质量各减少一半,距离保持不变B 使两物体间距离变为原来的2倍,质量不变C 使其中一个物体质量减为原来的1/4,距离不变D 使两物体质量及它们之间的距离都减为原来的1/4三.万有引力定律的应用1R 2RR 图6-2-11、解决天体(卫星)运动问题的两种基本思路:一、把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供,即222224T r m r m r v m ma r Mm G πω====向二、是地球对物体的万有引力近似等于物体的重力,即mg RMm G =2从而得出2gR GM = (黄金代换) 2、卫星的绕行角速度、周期与高度的关系: (1)由()()22mMv Gmr h r h =++,得()GMv r h =+,∴当h ↑,v ↓ (2)由G()2h r mM+=m ω2(r+h ),得ω=()3h r GM+,∴当h ↑,ω↓(3)由G ()2h r mM+()224m r h T π=+,得T=()GM h r 324+π ∴当h ↑,T ↑【例题分析】1、海王星的公转周期约为5.19×109s ,地球的公转周期为3.16×107s ,则海王星与太阳的平均距离约为地球与太阳的平均距离的多少倍? 646倍2、有一颗太阳的小行星,质量是1.0×1021kg ,它的轨道半径是地球绕太阳运动半径的2.77倍,求这颗小行星绕太阳一周所需要的时间。
高中物理天体运动公式大全1. 万有引力定律公式。
- F = G(Mm)/(r^2)- 其中F是两个物体间的万有引力,G = 6.67×10^-11N· m^2/kg^2(引力常量),M和m分别是两个物体的质量,r是两个物体质心之间的距离。
2. 天体做圆周运动的基本公式(以中心天体质量为M,环绕天体质量为m,轨道半径为r)- 向心力公式。
- 根据万有引力提供向心力F = F_向- G(Mm)/(r^2)=mfrac{v^2}{r}(可用于求线速度v=√(frac{GM){r}})- G(Mm)/(r^2) = mω^2r(可用于求角速度ω=√(frac{GM){r^3}})- G(Mm)/(r^2)=m((2π)/(T))^2r(可用于求周期T = 2π√((r^3))/(GM))- G(Mm)/(r^2)=ma(a=(GM)/(r^2),这里的a是向心加速度)3. 黄金代换公式。
- 在地球表面附近(r = R,R为地球半径),mg = G(Mm)/(R^2),可得GM = gR^2。
这个公式可以将GM用gR^2替换,方便计算。
4. 第一宇宙速度公式(近地卫星速度)- 方法一:根据G(Mm)/(R^2) = mfrac{v^2}{R},且mg = G(Mm)/(R^2),可得v=√(frac{GM){R}}=√(gR)(R为地球半径,g为地球表面重力加速度),v≈7.9km/s。
- 第一宇宙速度是卫星绕地球做匀速圆周运动的最大环绕速度,也是卫星发射的最小速度。
5. 第二宇宙速度公式(脱离速度)- v_2=√(frac{2GM){R}},v_2≈11.2km/s,当卫星的发射速度大于等于v_2时,卫星将脱离地球的引力束缚,成为绕太阳运动的人造行星。
6. 第三宇宙速度公式(逃逸速度)- v_3=√((2GM_日))/(r_{地日) + v_地^2}(其中M_日是太阳质量,r_地日是日地距离,v_地是地球绕太阳的公转速度),v_3≈16.7km/s,当卫星的发射速度大于等于v_3时,卫星将脱离太阳的引力束缚,飞出太阳系。
万有引力与天体运动引言:在自然界中,存在着一种无所不在的力量,即万有引力。
万有引力是负责使得天体之间相互吸引的力量,它是牛顿力学的基本法则之一。
本文将探讨万有引力的定义、原理及其与天体运动的关系。
一、万有引力的定义与原理万有引力是指任意两个物体之间存在相互吸引的力量,这种力量与物体的质量和距离有关。
根据牛顿第三定律,相互作用的两个物体之间的引力大小相等,方向相反。
万有引力的存在与质量有关,质量越大的物体,其引力也越大。
而且,两个物体之间的引力与它们之间的距离的平方成反比,即距离越近,引力越强。
二、天体运动的基本规律根据万有引力的原理,天体运动遵循以下基本规律:1. 开普勒定律约翰内斯·开普勒是天体运动领域的重要科学家之一,他总结出三个著名的运动定律。
第一定律表明天体绕太阳运动的轨道是椭圆形,而不是圆形。
这就意味着天体在其轨道上的位置不是固定的,而是变化的。
2. 第二定律开普勒的第二定律,也称为面积定律,表明天体在相同时间内扫过的面积相等。
换句话说,当天体离太阳较远时,它的速度较慢;当它距离太阳较近时,速度较快。
这个定律说明了天体在椭圆轨道上的运动速度是不均匀的。
3. 第三定律开普勒的第三定律,也称为调和定律,阐述了天体轨道周期与半长轴的关系。
具体来说,天体运动的周期的平方与它的椭圆轨道的半长轴的立方成正比。
这个定律揭示了天体运动的规律性,使得科学家们可以通过研究地球运动来推导出其他天体的运动规律。
三、天体运动和万有引力的关系天体运动与万有引力有着密不可分的关系,万有引力是驱动天体运动的根本力量。
在太阳系中,太阳是最重要的引力中心,其他行星、卫星以及小行星等都围绕太阳进行运动。
1. 行星运动行星绕太阳运动的轨道是椭圆形,行星距离太阳越近,它们的速度越快;相反,距离越远,速度越慢。
这符合开普勒定律中的第二定律。
行星的运动速度与距离有关,而这种变化正是受到万有引力的影响。
2. 月球运动月球是地球的卫星,它也受到地球的引力影响,围绕地球进行运动。
深入理解高中一年级物理中的万有引力和行星运动在高中一年级物理学中,学生们将首次学习和探讨万有引力和行星运动的概念。
万有引力是指地球和其他物体之间存在的引力相互作用,而行星运动则是形成天体运动的基础原理。
在本文中,我们将深入理解这两个重要的物理概念。
一、万有引力的概念万有引力是描述地球和其他物体之间相互作用的物理定律。
根据牛顿的万有引力定律,两个物体之间的引力与它们的质量大小成正比,与它们之间的距离的平方成反比。
这一定律可以用以下公式表示:F =G * (m1 * m2) / r^2在公式中,F代表两个物体之间的引力,G代表万有引力常数,m1和m2分别代表两个物体的质量,而r则代表它们之间的距离。
万有引力的单位是牛顿(N)。
二、行星运动的原理行星运动的原理源自万有引力定律。
根据这个定律,行星与太阳之间存在引力相互作用,使得行星沿着椭圆轨道围绕太阳运动。
这一运动原理可以通过开普勒的三定律来解释。
首先,开普勒的第一定律,也被称为椭圆轨道定律,指出行星运动沿着椭圆轨道而不是圆形轨道。
行星与太阳的距离会在运动过程中发生变化,使得轨道呈现椭圆形状。
其次,开普勒的第二定律,也被称为面积速度定律,指出行星在椭圆轨道上的面积速度是相等的。
这意味着当行星离太阳较近时,它将更快地运动,在离太阳较远时则会减慢。
最后,开普勒的第三定律,也被称为调和律定律,指出行星公转周期的平方与它们与太阳平均距离的立方成正比。
换句话说,行星的公转周期较长的行星将距离太阳较远,公转周期较短的行星则距离太阳较近。
三、万有引力和行星运动的应用万有引力和行星运动的概念广泛应用于天体物理学领域,帮助我们理解和研究宇宙中的许多现象。
例如,利用万有引力定律,科学家可以计算行星之间的引力,以及卫星轨道的运动。
此外,行星运动的定律也有助于解释天体的周期性现象,如日食和月食。
行星与月球之间的引力相互作用导致了地球和月球在适当的位置上出现了这些天文现象。
最后,万有引力和行星运动也对导航系统和航天探测任务产生影响。