碳纳米管与石墨烯的化学修饰
- 格式:ppt
- 大小:3.87 MB
- 文档页数:42
第四、五章总结石墨烯、碳纳米管的化学生物传感一、石墨烯和碳纳米管1、石墨烯是由碳原子以sp2杂化连接的单原子层构成的,其基本结构单元为有机材料中最稳定的苯六元环,其理论厚度仅为0.35 nm,是目前所发现的最薄的二维材料。
石墨烯是构成其它石墨材料的基本单元,可以翘曲变成零维的富勒烯, 卷曲形成一维的CNTs或者堆垛成三维的石墨。
2、碳纳米管是由碳六元环构成的类石墨平面卷曲而成的纳米级中空管,其中每个碳原子通过sp 2杂化与周围3个碳原子发生完全键合。
由于石墨烯和碳纳米管独有的结构和奇特的物理、化学特性,迅速成为备受瞩目的国际前沿和研究热点。
二、石墨烯和碳纳米管的制备1、石墨烯的制备(1)机械剥离法(机械剥离法就是利用机械力,将石墨烯片从具有高度定向热解石墨表面剥离开来。
是制备石墨烯最为直接的方法。
但低产率和尺寸不易控制等缺点使该方法仅适用于实验室的基础研究。
)(2)氧化石墨-还原法(利用KClO 和HNO 可以使石墨层深度氧化,获得氧化石墨(GO),GO与石墨烯具有类似的平面结构,以其为前体采用适当的还原方法可以使其表面的功能团消除,获得石墨烯材料。
)(3)化学气相沉积法(采用一定化学配比的气体为反应物,在特定激活条件下,通过气相化学反应可在不同的基片表面生成石墨烯膜层。
优点一、获得单层石墨烯比例大,二、结晶完整度高。
缺点:成本高产量低。
)2、碳纳米管的制备方法自发现CNTs以来人们尝试了多种方法进行制备研究,取得了一定的进展。
如电弧法、激光蒸发法、催化裂解法等。
在以上许多的制备方法中,有一个共同的特点,即产生小的碳(Cn)组分以使CNTs生长,从这一点来看,各种合成方法的区别在于产生碳组分的方法不同。
电弧法和激光蒸发是由电极或靶蒸发产生的碳蒸气;催化裂解法是由碳氢化合物与催化剂相互作用产生的碳蒸气。
三、石墨烯和碳纳米管的功能化所谓功能化就是利用石墨烯和CNTs在制备过程中表面产生的缺陷和基团通过共价、非共价或掺杂等方法,使石墨烯或CNTs表面的某些性质发生改变,更易于研究和应用。
●自Iijima [1]首次用高分辨透射电镜发现碳纳米管(CNTs)后,碳纳米管及其相关材料以其独特的性质、新颖的结构及许多潜在的应用前景引起了人们极大的兴趣和关注,而用纳米材料来修饰和填充碳纳米管成为人们研究的热点之一[2-4]。
探索碳纳米管的物理、化学性能及其在各个领域中的应用也成为众多科研工作者研究的目标。
碳纳米管的结构比较特殊是由类似于石墨的六边形网络所组成的管状物,独特的纳米中空结构、封闭的拓扑构型及不同的螺旋结构等使其具有大量特殊的优异性能,如导电性好,耐热,机械强度比较高,耐腐蚀,有自润滑性和生物相容性等。
这些优异特性使得碳纳米管在复合材料、储氢材料、催化剂材料等方面有着巨大的应用潜力。
纳米中空结构使得它有可能作为一种纳米反应器[5]。
作为碳家族的新成员,它有合适的孔径分布,便于金属组分更好地分散[6]。
它独特而又稳定的结构及形貌,尤其是表面性质,能依据人们的需要进行不同方法的修饰,使其适合作为新型催化剂载体[7-8]。
1碳纳米管的性质1.1碳纳米管的结构碳纳米管可分为单壁碳纳米管(SWNTs )和多璧碳纳米管(MWNTs )。
碳纳米管可看作是由石墨烯层片卷成、直径为纳米尺度的圆桶,其两端由富勒烯半球封帽而成。
多壁碳纳米管则是由若干个单层管同心套迭而成的,石墨碳原子中的4个价电子只有3个成键,形成六边形的平面网状结构。
这种排列使石墨中的每个碳原子有一个未成对电子,这个未成对电子围绕着这个碳环平面高速运转,因而使石墨具有较好的导电性,碳纳米管中存在大量的六边形结构,当六边形往外逐渐延伸成为五边形时,会造成碳纳米管突出;而形成七边形时碳纳米管则凹进。
这样就形成了碳纳米管独特的纳米中空结构、封闭的拓扑构型及不同的螺旋结构。
而碳纳米管也由于如此的特殊结构具有了一系列卓越的性质。
1.2碳纳米管的制备电弧法制备碳管的基本原理是在两个相距很近的石墨电极间加上高电压以至放电,放电电弧产生的高温使得阳极石墨棒上的碳物质迅速蒸发,随后蒸发物质中的碳原子以团簇为单元组成多种碳物质形态,沉积于阴极和反应腔壁上,碳纳米管是其中的沉积产物之一。
石墨烯化学改性及其应用研究石墨烯是一种由碳原子构成的平面六角形结构的材料,它具有很高的机械强度、热导率和导电率,被认为是一种前景广阔的新型材料。
然而,石墨烯的应用受到其在化学稳定性和生物相容性方面的限制。
为了解决这些问题,石墨烯化学改性被广泛研究。
一、石墨烯化学改性方法石墨烯的化学稳定性可以通过在其表面引入化学官能团来增强。
通常使用的方法有氧化、烷基化和芳基化等。
1. 氧化改性:氧化是最常用的化学改性方法之一,可以通过暴露石墨烯在有机溶剂和强氧化剂下,例如硝酸和过氧化氢,来引入氧化官能团。
氧化石墨烯(GO)的羟基、羧基和酮基等官能团可以提高其在水中的分散性,并可用于制备复合材料和高性能纳米电子器件。
2. 烷基化改性:烷基化是通过与自由基或亲电试剂反应来在石墨烯表面引入烷基官能团。
例如,用溴代烷或卤代乙酸盐可以在石墨烯表面引入烷基官能团,增加了其与有机分子的相容性。
3. 芳基化改性:芳基化包括用芳香族化合物进行反应或热解。
通过用过渡金属催化剂催化石墨烯和芳香族化合物的反应,可以在石墨烯表面引入芳基官能团,增加其化学反应性和电学性质。
二、石墨烯化学改性应用的研究进展通过石墨烯化学改性,可以实现对其物理和化学性质的精确调控,从而扩大其应用范围。
1. 生物医学应用研究石墨烯化学改性后的材料具有更好的生物相容性和生物可降解性。
例如,氧化石墨烯经过PEG化改性后可以在体内通过肝脏进行有效降解。
将石墨烯氧化物与生物大分子(如DNA、蛋白质)进行配合,可以用于有效地传递DNA和制备纳米载药系统,具有很好的药物控释效果。
2. 电子和储能应用研究石墨烯经过化学改性后可以用于制备新型的电子和储能器件。
例如,将石墨烯氧化物与其他功能性纳米材料(如金属纳米粒子和碳纳米管)进行配合,制备出复合材料,可用于电池、超级电容器和光电催化剂等领域。
同时,将石墨烯表面修饰具有机功能分子可以增强其在电路中的性能和稳定性。
3. 其他应用研究石墨烯经过化学改性之后,还可以用于各种领域。
碳纳米管的制备和表征研究碳纳米管是一种非常重要的纳米材料,由于其具有优异的物理和化学性质,能够广泛应用于电子、化学、生物和医学等领域,成为了当今最热门的研究课题之一。
本文将介绍碳纳米管的制备和表征研究,旨在尽可能全面深入地介绍它的相关研究进展。
一、碳纳米管的制备方法碳纳米管的制备方法主要有以下几种:1. 等离子体增强化学气相沉积法该方法先用金属作为催化剂,在氧化镁或氧化铝的载体上制备成催化剂阵列,通过引入碳源和氢气,使用等离子体的方式来生成碳纳米管。
2. 化学气相沉积法该方法将催化剂和碳源同时放置在反应器内,不用外加能量,通过化学反应来制备碳纳米管。
3. 化学还原-热解法该方法先用催化剂将氧化石墨烯还原为石墨烯,然后利用热解技术进行碳化反应,制备碳纳米管。
以上三种方法是主流的制备碳纳米管的方法,但随着研究的深入,其它方法,如水热合成法、溶液-液相界面法等也逐渐被应用于制备碳纳米管。
二、碳纳米管表征技术为了对制备的碳纳米管进行表征和刻画,研究人员开发出了各种表征技术来研究其结构和性质,下面我们来介绍一些常用的表征技术:1. 透射电子显微镜(TEM)透射电子显微镜是最常用的碳纳米管表征技术之一,通过它可以直观的获得碳纳米管的观察图像。
2. 扫描电子显微镜(SEM)与TEM不同,扫描电子显微镜可以观察到碳纳米管的表面形貌,并能够获得表面形貌的三维结构图像。
3. 拉曼光谱(Raman)拉曼光谱具有非常高的灵敏性和分辨率,能够通过对碳纳米管的拉曼光谱图像进行功率谱分析,可以获得碳纳米管的结构、相互作用和物理特性等信息。
4. X射线粉末衍射(XRD)利用X射线的衍射实验,可以得到碳纳米管的晶格结构,晶格常数以及结晶度等信息。
5. 热重分析(TGA)热重分析可以帮助我们展现出材料在温度变化下的失重信息,从而推断出碳纳米管的热稳定性和热分解温度等相关信息。
以上技术对于制备和表征碳纳米管都有非常大的帮助,不同的表征方法可以从不同角度来对碳纳米管进行综合分析,有助于我们更好地了解碳纳米管的结构和性质。
碳纳米管和石墨烯的制备和性能碳纳米管和石墨烯是当今材料领域的热门研究对象。
它们具有独特的结构和性能,在电子学、化学、材料科学、能源等领域有广泛的应用前景。
那么,碳纳米管和石墨烯是如何制备的呢?它们具有哪些特殊的性能呢?一、碳纳米管的制备碳纳米管是由碳元素构成的管状结构,具有很好的导电性和机械强度。
目前,碳纳米管的制备方法主要有以下几种:1.化学气相沉积法化学气相沉积法是一种将碳原子在高温下沉积在金属催化剂表面形成碳纳米管的方法。
在这个过程中,金属催化剂通常采用铁、镍、钴等,碳源采用甲烷、乙烯、丙烯等气体。
此方法制备的碳纳米管成本低廉,但管子的成长方向难以控制,管子结构的单一性难以保证。
2.化学气相沉积-物理溅射复合法化学气相沉积-物理溅射复合法是在气相化学沉积的基础上加入物理溅射的方法。
物理溅射可以产生高能离子束,利于碳原子在金属催化剂表面形成碳纳米管。
此方法制备的碳纳米管管子结构相对单一,但管子的成长方向还是有随机性。
3.电弧重复熔化法电弧重复熔化法是一种以石墨材料为前驱体,在高温高压条件下通过电弧放电产生碳纳米管的方法。
此方法制备的碳纳米管管子结构比较规则,但成本较高。
4.化学还原法化学还原法是通过还原剂将氧化石墨烯还原为石墨烯片层中的碳原子结构之一,从而制备碳纳米管的方法。
此方法成本低廉,制备易于规模化,但管子的长度较短。
二、石墨烯的制备石墨烯是由一层碳原子单元组成的二维晶体,具有高导电性、高机械强度、微观尺度局部弯曲等重要性能。
目前,制备石墨烯的方法主要有以下几种:1.化学气相沉积法化学气相沉积法是将碳源气体在反应室中加热,在金属催化剂表面沉积石墨烯的方法。
该方法成本较低,但制备的石墨烯质量不太稳定。
2.机械剥离法机械剥离法通过机械去除石墨材料的表层,使其分解成一层层的石墨烯。
该方法虽然简单易行,但石墨烯的面积和厚度都不太容易控制。
3.化学氧化还原法化学氧化还原法是采用氧化剂氧化石墨材料,形成氧化石墨烯后,再通过还原剂还原去除氧化物的方法制备石墨烯的方法。
纳米材料—石墨烯/碳纳米管1. 前言由于碳单质和化合物组成的多样性,碳及其化合物一直是材料、物理和化学领域的研究重点之一。
特别近三十年来,随着C60、碳纳米管(CNTs)、石墨烯(Graphene)等明星材料的相续发现,逐次将碳材料的研究推向高潮。
碳纳米管(CNT)和石墨烯(Graphene)分别在1991年和2004年被人们所发现。
碳纳米管是一种具有特殊结构的一维量子材料,它的径向尺寸可达到纳米级,轴向尺寸为微米级,管的两端一般都封口,因此它有很大的强度,同时巨大的长径比有望使其制作成韧性极好的碳纤维。
石墨烯是一种由碳原子以sp2杂化轨道组成的六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维碳材料。
零维富勒烯、一维碳纳米管、二维石墨烯共同组成了骨干的碳纳米材料家族,并且它们之间可以在形式上转化(图1)。
图1 石墨烯及各种石墨形体石墨烯和碳纳米管在电学和力学等方面有着相似的性质,但由于结构不同,它们也有很多不同之处。
碳纳米管和石墨烯分别是优良的一维和二维碳材料,它们分别体现出了一维的和二维的各向异性,如导电性、力学性能和导热性等。
为了结合两者的优点,人们将石墨烯和碳纳米管共同用于复合材料。
石墨烯和碳纳米管复合材料形成三维网状结构,通过它们之间的协同效应,使其表现出比任意一种单一材料更加优异的性能,例如更好的各向同性导热性、各向同性导电性、三维空间微孔网络等特性。
基于以上性质,使得石墨烯/碳纳米管复合材料在超级电容器、太阳能电池、显示器、生物检测、燃料电池等方面有着良好的应用前景。
此外,掺杂一些改性剂的石墨烯/碳纳米管复合材料也受到人们的广泛关注,例如在石墨烯/碳纳米管复合电极上添加CdTe量子点制作光电开关、掺杂金属颗粒制作场致发射装置。
由此可见,石墨烯/碳纳米管复合材料越来越多的被人们所应用,也使得石墨烯/碳纳米管复合材料的制备和应用得到更加广泛的关注。
2. 石墨烯/碳纳米管复合材料的制备方法2.1 化学气相沉积法(CVD)CVD法因易于控制膜的组成及成份分散度而被广泛应用于制备石墨烯/碳纳米管复合膜。
碳时代开启:碳纳米管与石墨烯技术分析利用已发现20多年的碳纳米管和发现10年的石墨烯等微细碳材料,电子部件终于开始实用化。
包括最近性能大幅提高的金刚石半导体在内,碳电子将大大改变电子部件和电子电路的形态。
我的梦想是用碳(C)取代硅(Si),实现全部用碳制造电子电路的全碳化、3000年前是青铜器(Cu)时代,20世纪前半期是铁(Fe)时代,之后是硅时代,而今后将是碳时代。
一位碳材料研究人员就研究的意义和目标如此说道。
尤其是电子电路的全碳化,可以说是碳材料研究人员的共识。
如今,这个梦想正朝着实现奋进。
如果全碳化成为现实,电子产品将比现在更轻量、更结实,柔性产品也能实现超高性能,而且价格会大幅降低。
鸿海开发,华为采用碳化的动向似将从电子产品的外围向中心进发。
个人电脑等的机壳材料就常使用碳纤维增强树脂基复合材料(CFRP)。
其最大优点是,既轻又结实。
在电子产品的内部,碳作为导电材料的使用虽未能取得进展,但2013年中期终于在触摸面板和太阳能电池等上开始了实用化。
触摸面板配备在了中国华为技术有限公司于2013年5月上市的智能手机上。
触摸面板的开发商是台湾鸿海精密工业在中国大陆的集团公司中国富纳源创(CNTouch)。
为高度兼顾透明性和导电性而采用了管状碳材料碳纳米管(CNT)。
备注:碳纳米管(CarbonNanotube)即管状碳材料。
把碳原子以蜂窝状相连的薄膜(石墨烯)再制成管状。
管的直径细至0.4nm~50nm。
根据把薄膜卷成管状的方法的不同(手性),分为金属型和半导体型。
半导体型的带隙因直径而异。
碳纳米管是名城大学研究生院理工学研究科教授、NEC特别研究员饭岛澄男1991年发现的。
太阳能电池方面,从前有机薄膜太阳能电池就一直将称为富勒烯*的足球状碳材料作为n 型半导体使用。
经过长期的研究开发,2013年三菱化学开始量产并开始了样品供货。
富勒烯(Fullerene)即组成五元环或六元环的碳原子相互连接形成的球状或椭球状材料的总称。
石墨烯和碳纳米管在橡胶中的分散性研究近年来,随着石墨烯和碳纳米管技术的发展,研究人员开始研究这种重要的功能材料在橡胶中的分散性。
石墨烯和碳纳米管是一种具有良好力学性能,强度和导热性的材料。
由于其可塑性差和低力学性能,橡胶往往用作现代工业的一种重要的材料,特别是用于汽车行业的软底垫,运动鞋,橡胶带和填充类材料等。
添加微纳米结构功能化材料可显著改善橡胶的性能,包括强度,硬度,模量,可塑性,耐老化性,耐磨性,以及导热性。
由于其与橡胶成分的离子性,微纳米结构功能性材料往往不能很好地分散或混合在橡胶中。
目前,用于提高石墨烯和碳纳米管分散性的方法包括化学处理,物理屏蔽和表面改性。
研究表明,化学处理有助于改善石墨烯和碳纳米管的分散性。
但是,由于工艺复杂,该方法的应用仍受到限制。
物理屏蔽方法包括制备复合物,形状聚集,以及分散吸附剂等,可以在不影响其物理性质的前提下改善材料的分散性。
然而,表面改性处理将影响材料的性能,例如阻燃性,导电性和热稳定性等。
因此,在橡胶中分散石墨烯和碳纳米管技术及其工艺还存在一定的挑战。
本研究的目的是探讨有效的分散性技术,以提高石墨烯和碳纳米管在橡胶中的分散性。
首先,我们研究了不同的分散性技术,以及其在橡胶中的分散性的影响。
其次,对改善橡胶分散性的有效技术进行了系统评价,评价其性能及其与其他性能的关系。
最后,通过将石墨烯和碳纳米管添加到橡胶中,比较了不同处理方法之间橡胶的性能差异。
结果表明,光化学处理在有效分散石墨烯和碳纳米管方面具有良好的效果,而表面改性处理可以改善橡胶的热稳定性和热导率。
研究还发现,增加石墨烯和碳纳米管的含量可显著提升橡胶的压缩模量和抗拉强度等多种性能。
因此,光化学处理和表面改性技术可以有效地改善橡胶中石墨烯和碳纳米管的分散性,从而提高橡胶的性能。
本研究结果表明,石墨烯和碳纳米管有望成为橡胶行业的一项重要材料,并改善橡胶基础材料的性能。
此外,有必要开展进一步的研究,以推动石墨烯和碳纳米管在橡胶中的实际应用。
石墨烯的制备及其电化学性能一、本文概述石墨烯,一种由单层碳原子紧密排列构成的二维纳米材料,自2004年被科学家首次成功制备以来,便因其独特的结构和优异的性能引发了全球范围内的研究热潮。
石墨烯以其高导电性、高热导率、高强度以及良好的化学稳定性等特性,在材料科学、电子学、能源科学等多个领域展现出巨大的应用潜力。
特别是在电化学领域,石墨烯因其高比表面积、优良的电子传输性能和化学稳定性,被广泛应用于电极材料、储能器件以及电化学传感器等方面。
本文旨在全面介绍石墨烯的制备方法及其电化学性能。
我们将概述石墨烯的基本结构和性质,以及其在电化学领域的应用背景。
随后,我们将详细介绍石墨烯的几种主要制备方法,包括机械剥离法、化学气相沉积法、氧化还原法等,并分析各方法的优缺点及适用范围。
接着,我们将重点探讨石墨烯在电化学领域的应用,包括其在锂离子电池、超级电容器、燃料电池等储能器件中的性能表现,以及其在电化学传感器中的应用。
我们将对石墨烯的电化学性能进行综合分析,展望其在未来电化学领域的发展趋势和应用前景。
二、石墨烯的制备方法石墨烯的制备方法多种多样,根据其制备原理,主要可以分为物理法和化学法两大类。
物理法:物理法主要包括机械剥离法、取向附生法和碳纳米管切割法等。
机械剥离法是最早用来制备石墨烯的方法,其原理是利用物体与石墨烯之间的摩擦和相对运动,得到石墨烯薄层材料。
取向附生法则是在一定条件下,使碳原子在金属单晶(如Ru)表面生长出单层碳原子,然后利用金属与石墨烯之间的弱相互作用,将石墨烯与金属基底分离。
碳纳米管切割法则是通过切割碳纳米管得到石墨烯纳米带。
化学法:化学法主要包括氧化还原法、SiC外延生长法、化学气相沉积法(CVD)等。
氧化还原法是通过将天然石墨与氧化剂反应,得到氧化石墨,再将其进行热还原或化学还原,从而制备出石墨烯。
SiC外延生长法是在高温条件下,使SiC中的Si原子升华,剩余的C 原子在基底表面重新排列,形成石墨烯。
石墨烯碳纳米管导电浆料
石墨烯和碳纳米管都是具有优异电导性能的碳材料,它们可以以导电浆料的形式使用。
石墨烯碳纳米管导电浆料是将石墨烯和碳纳米管等碳纳米材料分散在溶剂中形成的导电性浆料。
这种导电浆料在电子、能源、传感等领域具有广泛的应用。
例如,在电子器件制备中,石墨烯碳纳米管导电浆料可以用于印刷电路板、柔性电子等领域;在能源存储和转换中,它可以用于超级电容器、锂离子电池等设备;在传感器领域,它可以用于电化学传感器、生物传感器等。
石墨烯碳纳米管导电浆料具有优异的电导性能和导电性可调控性,能够提高器件的电子传输效率和性能。
同时,由于石墨烯和碳纳米管的特殊结构,导电浆料还具有较好的柔性和机械强度,适用于制备柔性电子器件。
在使用石墨烯碳纳米管导电浆料时,需要进行有效的分散处理,以确保碳纳米材料的均匀分散和稳定性,从而获得高质量的导电浆料。