20_2第二型曲线积分
- 格式:ppt
- 大小:1.52 MB
- 文档页数:40
第二型曲线积分公式第二型曲线积分1. 引言在微积分中,曲线积分是一个重要的概念,它有两种类型,第一型曲线积分和第二型曲线积分。
本文将重点介绍第二型曲线积分,并列举相关公式和举例解释说明。
2. 第二型曲线积分的定义第二型曲线积分,也称为向量场的曲线积分,是指将一个向量场沿着一条曲线进行积分。
其中,曲线可以是一维曲线、二维曲线或者高维曲线。
3. 第二型曲线积分的公式参数方程表示若曲线C 可由参数方程表示为:{x =x (t )y =y (t )那么向量场F(x, y)在曲线C 上的第二型曲线积分定义为:∫F C (x,y )⋅dr =∫F ba (x (t ),y (t ))⋅(x′(t ),y′(t )) dt曲线的标量方程表示若曲线C 可由标量方程表示为:F:z =f (x,y ) 或 F:y =g (x )那么向量场F(x, y)在曲线C 上的第二型曲线积分定义为:∫F C (x,y )⋅dr =∫F ba (x (t ),y (t ))⋅(x′(t ),y′(t )) dt4. 第二型曲线积分的应用举例计算质量的重心假设一直线段在平面上由参数方程表示为:{x =3t y =2t一质量分布在该直线段上,其每一点的密度为1。
要计算该质量的重心位置,可以使用第二型曲线积分公式。
我们可以定义向量场F(x, y)为:{F(x,y )=(x,y )根据第二型曲线积分的公式,重心的位置可以通过计算如下曲线积分得到:∫F C (x,y )⋅dr =∫(3t,2t )10⋅(3,2) dt =∫(9t +4t )10 dt =∫1310t dt =132因此,质量的重心位置为(32,1)。
计算流体流速假设存在一个二维的流体流场,在平面上由矢量函数表示为:F(x,y)=(x2,xy)要计算流体在一条曲线C上的流速,可以使用第二型曲线积分公式。
假设曲线C为曲线y=x2从点(0,0)到点(1,1)的一段。
根据第二型曲线积分的公式,流速可以通过计算如下曲线积分得到:∫F C (x,y)⋅dr=∫(t2,t3)1⋅(1,2t) dt=∫(t2+2t4)1 dt=56因此,流体在曲线C上的流速为56。
第二十章 曲线积分 2第二型曲线积分一、第二型曲线积分的定义引例:如图,一质点受力F(x,y)的作用沿平面曲线L 从点A 移动到点B ,求力F(x,y)所作的功.在曲线⌒AB 内插入n-1个分点M 1, M 2, …, M n-1, 与A=M 0, B=M n 一起把有向曲线⌒AB分成 n 个有向小弧段⌒M i-1M i (i=1,2,…,n).若记小弧段⌒M i-1M i 的弧长为△s i ,则分割T 的细度为T =i ni s ∆≤≤1max .设力F(x,y)在x 轴和y 轴方面的投影分别为P(x,y)与Q(x,y),则 F(x,y)=(P(x,y),Q(x,y)). 又设小弧段⌒M i-1M i 在x 轴与y 轴上的投影分别为 △x i =x i -x i-1与△y i =y i -y i-1,(x i ,y i )与(x i-1,y i-1)分别为分点M i 与M i-1的坐标. 记ii M ML 1-=(△x i ,△y i ),于是力F(x,y)在小弧段⌒M i-1M i 上所作的功为W i ≈F(ξi ,ηi )·ii M ML 1-=P(ξi ,ηi )△x i +Q(ξi ,ηi )△y i ,其中(ξi ,ηi )是⌒M i-1M i 上任一点.因而力F(x,y)沿曲线⌒AB所作的功近似地等于 W=∑=n i i W 1≈∑=∆n i i i i x P 1),(ηξ+∑=∆ni i i i y Q 1),(ηξ.定义1:设函数P(x,y)与Q(x,y)定义在平面有向可求长度曲线L :⌒AB 上.对L 的任一分割T 把L 分成n 个小弧段⌒M i-1M i (i=1,2,…,n), A=M 0, B=M n . 记各小弧段⌒M i-1M i 的弧长为△s i ,分割T 的细度为T =i ni s ∆≤≤1max .又设T 的分点M i 的坐标为(x i ,y i ),并记△x i =x i -x i-1,△y i =y i -y i-1(i=1,2,…,n). 在每个小弧段⌒M i-1M i 上任取一点(ξi ,ηi ),若存在极限∑=→∆ni iiiT xP 1),(limηξ+∑=→∆ni i i i T y Q 1),(lim ηξ且与分割T 与点(ξi ,ηi )的取法无关,则称此极限为函数P(x,y), Q(x,y)沿有向曲线L 上的第二型曲线积分, 记作:⎰L dx y x P ),(+Q(x,y)dy 或⎰AB dx y x P ),(+Q(x,y)dy ,也可简写为⎰LPdx +Qdy 或⎰ABPdx +Qdy ,若L 为封闭的有向曲线,则记为⎰LPdx +Qdy.若记F(x,y)=(P(x,y),Q(x,y)),ds=(dx,dy),则有向量形式:⎰⋅L ds F 或⎰⋅AB ds F . 若L 为空间有向可求长度曲线,P(x,y,z), Q(x,y,z), R(x,y,z)为定义在L 的函数,可类似地定义沿空间有向曲线L 上的第二型曲线积分,并记为:⎰Ldx z y x P ),,(+Q(x,y,z)dy+R(x,y,z)dz 或⎰ABdx z y x P ),,(+Q(x,y,z)dy+R(x,y,z)dz ,也可简写为⎰L Pdx +Qdy+Rdz 或⎰AB Pdx +Qdy+Rdz.当把F(x,y)=(P(x,y),Q(x,y),R(x,y))与ds=(dx,dy,dz)看作三维向量时,有 向量形式⎰⋅L ds F 或⎰⋅AB ds F .注:第二型曲线积分与曲线L 的方向有关,对同一曲线,当方向由A 到B 改变由B 到A 时,每一小曲线段的方向都改变,从而所得△x i ,△y i 也随之变号,故有⎰AB Pdx +Qdy= -⎰BA Pdx +Qdy.性质:1、若⎰L i dx P +Q i dy 存在,c i (i=1,2,…,k)为常数,则dx P c L k i i i ⎰∑⎪⎭⎫ ⎝⎛=1+dy Q c k i i i ⎪⎭⎫ ⎝⎛∑=1也存在,且 dx P c L k i i i ⎰∑⎪⎭⎫⎝⎛=1+dy Q c k i i i ⎪⎭⎫⎝⎛∑=1=()dy Q dx P c iLiki i +⎰∑=1.2、若有向曲线L 是由有向曲线L 1,L 2,…,L k 首尾相接而成,且⎰iL Pdx +Qdy(i=1,2,…,k)存在,则⎰LPdx +Qdy 也存在,且⎰LPdx +Qdy =∑⎰=ki L iPdx 1+Qdy.二、第二型曲线积分的计算 设平面曲线L:⎩⎨⎧==)()(t y t x ψϕ, t ∈[α,β],其中φ(t),ψ(t)在[α,β]上具有一阶连续导函数,且 点A 与B 的坐标分别为(φ(α),ψ(α))与(φ(β),ψ(β)). 又设P(x,y)与Q(x,y)为定义在L 上的连续函数,则 沿L 从A 到B 的第二型曲线积分⎰Ldx y x P ),(+Q(x,y)dy=⎰'+'βαψψϕϕψϕdt t t t Q t t t P )]())(),(()())(),(([.注:1、对沿封闭曲线L 的第二型曲线积分的计算,可在L 上任取一点作为起点,沿L 所指定的方向前进,最后回到这一点.2、设空间有向光滑曲线L 的参量方程为x=x(t), y=y(t), z=z(t), t ∈[α,β], 起点为(x(α),y(α),z(α)),终点为(x(β),y(β),z(β)),则Rdz Qdy Pdx L ++⎰=⎰'+'+'βαdt t z t z t y t x R t y t z t y t x P t x t z t y t x P )]())(),(),(()())(),(),(()())(),(),(([.例1:计算⎰L xydx +(y-x)dy ,其中L 分别沿如图中路线: (1)直线AB ;(2)ACB(抛物线:y=2(x-1)2+1); (3)ADBA(三角形周界).解:(1)方法一:L:⎩⎨⎧+=+=ty tx 211, t ∈[0,1],∴⎰L xydx +(y-x)dy=⎰+++10]2)21)(1[(dt t t t =625. 方法二:L: y=2x-1, x ∈[1,2],∴⎰L xydx +(y-x)dy=⎰-+-21)]1(2)12([dx x x x =625. (2)⎰L xydx +(y-x)dy=⎰+--++-2122)]352)(44()342([dx x x x x x x=⎰-+-2123)12353210(dx x x x =610.(3)⎰L xydx +(y-x)dy=⎰AD xydx +(y-x)dy+⎰DB xydx +(y-x)dy+⎰BA xydx +(y-x)dy. 又⎰AD xydx +(y-x)dy=⎰21xdx =23;⎰DBxydx +(y-x)dy=⎰-31)2(dy y =0;⎰BAxydx +(y-x)dy=-625;∴⎰L xydx +(y-x)dy=23+0-625=-38.例2:计算ydx xdy L +⎰,这里L(如图) (1)沿抛物线y=2x 2, 从O 到B 的一段; (2)沿直线段OB :y=2x ; (3)沿封闭曲线OABO.解:(1)ydx xdy L +⎰=⎰+1022)24(dx x x =2. (2)ydx xdy L +⎰=⎰+10)22(dx x x =2. (3)ydx xdy OA +⎰=⎰100dx =0;ydx xdy AB+⎰=⎰2dy =2;ydx xdy BO+⎰=-2;∴⎰+L ydx xdy =ydx xdy OA +⎰+ydx xdy AB +⎰+ydx xdy BO +⎰=0+2-2=0.例3:计算第二型曲线积分⎰+-+L dz x dy y x xydx 2)(,L 是螺旋线:x=acost, y=asint, z=bt 从t=0到t=π上的一段. 解:⎰+-+L dzx dy y x xydx 2)(=dt t b a t t t a t t a ⎰+-+-π022223]cos )sin (cos cos cos sin [=⎰⎰⎰-++-πππ222223cos sin cos )1(cos sin tdtt a atdt b a tdt t a=⎰+π022cos )1(tdt b a =21a 2(1+b)π.例4:(如图)求在力F(y,-x,x+y+z)作用下, (1)质点由A 沿螺旋线L 1到B 所作的功. 其中L 1: x=acost, y=asint, z=bt, 0≤t ≤2π; (2)质点由A 沿直线L 2到B 所作的功. 解:(1)W=⎰+++-L dzz y x xdy ydx )(=dt bt t a t a b t a t a ⎰+++--π202222)]sin cos (cos sin [=dt t b t ab t ab a ⎰+++-π2022)sin cos (=-2πa 2+2π2b 2=2π(πb 2-a 2).(2)∵L 2: x=a,y=0,z=bt ,0≤t ≤2π;∴W=⎰+++-L dz z y x xdy ydx )(=dt bt a b ⎰+π20)(=2πb(a+πb)三、两类曲线积分的联系设L 为从A 到B 的有向光滑曲线,它以弧长s 为参数,于是L: ⎩⎨⎧==)()(s y y s x x , 0≤s ≤l ,其中l 为曲线L 的全长,且点A,B 的坐标分别为(x(0),y(0))与(x(l),y(l)). 曲线L 上每一点的切线方向指向弧长增加的一方.现以(),()分别表示切线方向t 与x 轴与y 轴的夹角,则在曲线上的每一点的切线方向余弦为dsdx=cos(),dsdy=cos().若P(x,y), Q(x,y)为曲线L 上的连续函数,则由⎰Ldx y x P ),(+Q(x,y)dy=⎰'+'lds s y s y s x Q s x s y s x P 0)]())(),(()())(),(([得⎰LPdx +Qdy=⎰ls y s x P 0))(),(([cos()+))(),((s y s x Q cos()]ds=⎰L y x P ),([cos()+),(y x Q cos()]ds.最后得到一个根据第一型曲线积分化为定积分的等式. 即两类曲线积分之间的转换公式.注:当⎰L Pdx +Qdy 的方向改变时,⎰Ly x P ),([cos()+),(y x Q cos()]ds 中的夹角与原夹角相差弧度π,从而cos()和cos()也随之变号.因此,一旦方向确定,两类曲线积分之间的转换公式总是成立.习题1、计算第二型曲线积分:(1)⎰-L ydx xdy , 其中L (如图)(i)沿抛物线y=2x 2, 从O 到B 的一段; (ii)沿直线段OB :y=2x ; (iii)沿封闭曲线OABO.(2)⎰+-L dy dx y a )2(, 其中L 为摆线a(t-sint),y=a(1-cost) (0≤t ≤2π),沿t 增加方向的一段; (3)⎰++-Lyx ydy xdx 22, 其中L 为圆周x 2+y 2=a 2依逆时针方向; (4)⎰+L xdy ydx sin , 其中L 为y=sinx(0≤x ≤π)与x 轴所围的闭曲线,依顺时针方向;(5)⎰++L zdz ydy xdx , 其中L 为从(1,1,1)到(2,3,4)的直线段. 解:(1)(i)ydx xdy L -⎰=⎰-1022)24(dx x x =32. (ii)⎰-L ydx xdy =⎰-10)22(dx x x =0.(iii)ydx xdy OA -⎰=⎰100dx =0;ydx xdy AB -⎰=⎰20dy =2;ydx xdy BO -⎰=-32; ∴⎰-L ydx xdy =ydx xdy OA -⎰+ydx xdy AB -⎰+ydx xdy BO -⎰=0+2-32=34.(2)⎰+-L dy dx y a )2(=⎰+---π20}sin )cos 1)](cos 1(2[{dt t a t t a a a =dt t a dt t a ⎰⎰+-ππ202022sin )cos 1(=πa 2.(3)由圆的参数方程:x=acost, y=asint, (0≤t ≤2π)得⎰++-L y x ydyxdx 22=⎰+π20222)cos sin sin cos (adt t t a t t a =0. (4)记点A(π,0)则⎰+Lxdy ydx sin =⎰⎰⋂+++OAAOxdyydx xdy ydx sin sin=⎰⎰++000)cos sin (sin ππdx dx x x x =-cosx π0=2.(5)L 的参数方程为:x=t, y=2t-1, z=3t-2, (1≤t ≤2), ∴⎰++L zdz ydy xdx =⎰-+-+21)6924(dt t t t =⎰-21)814(dt t =13.2、设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比. 若由质点与(a,0)沿椭圆移动到(0,b),求力所作的功. 解:椭圆的参数方程为x=acost, y=bsint, 0≤t ≤2π.F=k ⎪⎪⎭⎫⎝⎛+-+-+222222,y x y y x x y x =(-kx,-ky), k>0. ∴力所作的功W=⎰L Pdx +Qdy=⎰+-L ydy xdx k )(=-k ⎰+-2022)cos sin sin cos (πdt t t b t t a =2k(a 2-b 2).3、设一质点受力作用,力的方向指向原点,大小与质点到xy 平面的距离成反比. 若质点沿直线x=at, y=bt, z=ct(c ≠0)从M(a,b,c)移动到N(2a,2b,2c),求力所作的功.解:F=zk , k ≠0. 由力的方向指向原点,故其方向余弦为:cos α=r x -, cos β=r y -, cos γ=r z-, 其中r=222z y x ++F 的三个分力为P=-r x z k , Q=-r y z k , P=-rz z k =-r k, ∴力所作的功为W=-dz r kdy rz ky dx rz kx L ++⎰=-k ⎰++++21222222)(dt tc b a ct t c b a =c c b a k 222++'ln2.4、证明曲线积分的估计公式:⎰+ABQdy Pdx ≤LM, 其中L 为AB 的弧长,M=22),(maxQ P ABy x +∈.利用上述不等式估计积分I R =⎰=+++-222222)(R yx y xy x xdyydx ,并证明+∞→R lim I R =0. 证:(1)∵⎰+AB Qdy Pdx =⎰⎪⎭⎫⎝⎛+AB ds dy Q dsdx Pds 且 ds dy Q ds dx P +≤⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+2222)(ds dy ds dx Q P ≤22Q P +,从而 ⎰+ABQdy Pdx ≤⎰+ABdsdyQ ds dx Pds ≤⎰+AB Q P 22ds ≤⎰AB M ds=LM. (2)42222)(max222y xy x y x R y x +++=+=4222)21(R R R -=34R ; 由(1)知222)(y xy x xdyydx ++-≤2πR·34R =28R π.∵|I R |≤28R π→0 (R →+∞), ∴+∞→R lim I R =0.5、计算沿空间曲线的第二型积分:(1)⎰L xyzdz , 其中L 为x 2+y 2+z 2=1与y=z 相交的圆,其方向按曲线依次经过1,2,7,8封限;(2)⎰-+-+-L dz y x dy x z dx z y )()()(222222, 其中L 为球面x 2+y 2+z 2=1在第一卦限部分的边界线,其方向按曲线依次经过xy 平面部分,yz 平面部分和zz 平面部分.解:(1)曲线L 的参数方程为:x=cost, y=z=t sin 22, 0≤t ≤2π, 当t 从0增加到2π时,点(x,y,z)依次经过1,2,7,8卦限,于是⎰Lxyzdz =⎰π20224sin cos 2tdt t =162π.(2)(如图)设I=⎰-+-+-L dz y x dy x z dx z y )()()(222222=⎰1L +⎰2L +⎰3L ,其中L 1: ⎪⎩⎪⎨⎧===0sin cos z y x θθ(0≤θ≤2π); L 2: ⎪⎩⎪⎨⎧===ϕϕsin cos 0z y x (0≤φ≤2π); L 3: ⎪⎩⎪⎨⎧===ψψcos 0sin z y x (0≤ψ≤2π); 则⎰-+-+-1)()()(222222L dz y x dy x z dx z y =⎰--2033)cos sin (πθθθd =-32-32=-34.同理⎰2L =⎰3L =-34,∴I=-34-34-34=-4.。
【最新整理,下载后即可编辑】§2 第二型曲线积分 教学目的与要求:掌握第二型曲线积分的定义和计算公式,了解第一、二型曲线积分的差别.教学重点,难点:重点:第二型曲线积分的定义和计算公式 难点:第二型曲线积分的计算公式 教学内容:第二型曲线积分一 第二型曲线积分的意义在物理学中还碰到另一种类型的曲线积分问题。
例如一质点受力),(y x F 的作用沿平面曲线L 从点A 移动到点B ,求力),(y x F 所作的功(图220-)。
为此在曲线B A内插入1-n 个分点121,,,-n M M M ,与n M B M A ==,0一起把有向曲线B A分成n 个有向小曲线段),,2,1(1n i M M i i =-,若记小曲线段i i M M 1-的弧长为i s ∆,则分割T 的细度为i ni s T ∆=≤≤1max 。
设力),(y x F 在x 轴和y 轴方向的投影分别为),(y x P 与),(y x Q ,那么)),(),,((),(y x Q y x P y x F =。
又设小曲线段i i M M 1-在x 轴与y 轴上的投影分别为1--=∆i i i x x x 与1--=∆i i i y y y ,其中),(i i y x 与),(11--i i y x 分别为分点i M 与1-i M 的坐标,记),(1i i M M y x L i i∆∆=-,于是力),(y x F 在小曲线段i i M M 1-上所作的功 i i i i i i M M i i i y Q x p L F W ii ∆+∆=⋅≈-),(),(),(1ηξηξηξ,其中),(i i ηξ为小曲线段i i M M 1-上任一点。
因而力),(y x F 沿曲线B A所作的功近似的等于∑∑∑===∆+∆≈=ni i i i ni i i i ni i y Q x p W W 111),(),(ηξηξ当细度0→T 时,上式右边和式的极限就应该是所求的功。
§2 第二型曲线积分教学目的与要求:掌握第二型曲线积分的定义和计算公式.教学重点:第二型曲线积分的定义和计算.教学难点:第二型曲线积分的计算公式.教学过程一、第二型曲线积分的定义: (一)、力场()),( , ),(),(y x Q y x P y x =沿平面曲线L 从点A 到点B 所作的功:一质点受变力F(x,y)的作用沿平面曲线C 运动,当质点从C 之一端点A 移动到另一端B 时,求力F(x,y)所做功W.大家知道,如果质点受常力 F 的作用沿直线运动, 位移为s.那末这个常力所做功为 W=||F||||s||cos θ, 其中||F||.||s||分别表示向量(矢量)的长度,θ为F 与S 的夹角.现在问题的难度是质点所受的力随处改变,而所走路线又是弯弯曲曲.怎么办呢?还是用折线逼近曲线和局部一常代变的方法来解决它(微分分析法).为此,我们对有向曲线C 作分割},,.....,,{110n n A A A A T -=,即在AB 内插入 n-1个分点,,.....,,121-n M M M 与A=n M B M =,0一起把曲线分成n 个有向小曲线段i i M M 1-(i=1,2,……,n),以Si ∆记为小曲线段i i M M 1-的弧长.}max{Si ∇=λ.设力F(x,y)在x 轴和y 轴方向上的投影分别为 P(x,y)与Q(x,y),即F(x,y)=(P(x,y),Q(x,y))=P(x,y)i+Q(x,y)j,由于),,().,(111i i i i i i y x M y x M --- 记11,---=∆-=∆i i i i i i y y y x x x 和i i m C 1-=(),(y x ∆∆) 从而力F(x,y)在小曲线段i i M M 1-上所作的功i W ),(i F ηξ≈ii m C 1-= P(j i ηξ,)i x ∆+Q (j i ηξ,)i y ∆,其中(j i ηξ,)为小曲线段i i M M 1-上任一点,于是力F 沿C(AB)所作的功可近似i W =∑=n i i W 1i ni i i i n i i i y s Q x S P ∆+∆≈∑∑==11),()),((ηη当0→λ时,右端积分和式的极限就是所求的功,这种类型和式极限计算上述形式的和式上极限,得 ),(dy dx W AB ⋅=⎰⋂ , 即 W L⋅=⎰. (二)、稳流场通过曲线 ( 从一侧到另一侧 ) 的流量: 解释稳流场. ( 以磁场为例 ). 设有流速场),(y x ()),( , ),(y x Q y x P =. 求在单位时间内通过曲线AB 从左侧到右侧的流量E . 通过曲线AB 从左侧到右侧的总流量E 为⎰⎰-=AB ABdx y x Q dy y x P dE ),(),(. (三)、第二型曲线积分的定义: 设P,Q 为定义在光滑或分段光滑平面有向曲线C 上的函数,对任一分割T,它把C 分成n 个小弧段i i M M 1-,I=1,2,3,……,n;记),(i i i y x M ,i i M M 1-弧长为i s ∆,}max{Si ∇=λ,11,---=∆-=∆i i i i i i y y y x x x , I=1,2,3,……,n.又设 (j i ηξ,)∈ i i M M 1-,若极限lim ∑=n i i i p 1. ),(ηξxi ∆+lim ∑=ni i i Q 1. ),(ηξyi ∆存在且与分割T 与界点(j i ηξ,)的取法无关,则称此极限为函数P,Q 有线段C 上的第二类曲线积分,记为⎰cQdy Pds + 或⎰AB Qdy Pds +,也可以记为 ⎰⎰+c c Qdy Pdx 或 ⎰AB Qdy Pds AB ⎰+.注:(1)若记f(x,y)= (P(x,y),Q(x,y)) ,ds=(dx,dy)则上述记号可写成向量形式:⎰cfds(2)倘若C 为光滑或分段光滑的空间有向连续曲线,P,Q,R 为定义在C 上的函数,则可按上述办法定义沿有向曲线C 的第二类曲线积分,并记为dz z y x R dy z y x Q dx z y x P fds c c ),,(),,(),,(++=⎰⎰.按这一定义 , 有力场()),( , ),(),(y x Q y x P y x =沿平面曲线L 从点A 到点B 所作的功为⎰+=ABQdy Pdx W . 流速场),(y x ()),( , ),(y x Q y x P =在单位时间内通过曲线AB 从左侧到右侧的总流量E 为⎰-=ABQdx Pdy E .第二型曲线积分的鲜明特征是曲线的方向性 . 对二型曲线积分有⎰⎰-=BA AB ,因此, 定积分是第二型曲线积分中当曲线为X 轴上的线段时的特例. 可类似地考虑空间力场()),,( , ),,( , ),,(),,(z y x R z y x Q z y x P z y x =沿空间曲线AB 所作的功. 导出空间曲线上的第二型曲线积分⎰++AB dz z y x R dy z y x Q dx z y x P ),,(),,(),,(.(四)、第二型曲线积分的性质:第二型曲线积分可概括地理解为向量值函数的积累问题 . 与我们以前讨论过的积分相比, 除多了一层方向性的考虑外, 其余与以前的积累问题是一样的, 还是用Riemma 的思想建立的积分 . 因此 , 第二型曲线积分具有(R )积分的共性 , 如线性、关于函数或积分曲线的可加性 . 但第二型曲线积分一般不具有关于函数的单调性 , 这是由于一方面向量值函数不能比较大小, 另一方面向量值函数在小弧段上的积分还与弧段方向与向量方向之间的夹角有关.(1)线性性 设C 为有向曲线,⎰c fds ,⎰cgds 存在, 则 ,,R ∈∀βα则ds f f c )(⎰+βα存在,且⎰⎰⎰+=+cc c gds fds ds f f βαβα)(. (2)可加性:设⎰c fds 存在,,21C C C ⋃=⎰⎰⇒21,c c fds fds 存在,且 ⎰⎰⎰+=21c c c fds fds fds . 注: (1)平面上光滑闭曲线如何规定方向呢?此时无所谓”起点””终点”,若为封闭有向线段,则记为⎰cfds(2) 设C -是C 的反向曲线(即C -和C 方向相反),则⎰c fds =-⎰cfds 即是说第二类曲线积分与曲线的方向有关(注意第一类曲线积分表达示是函数f 与弧长的乘机,它与曲线C 的方向无关),这是两种类型曲线积分的一个重要差别.二、第二型曲线积分的计算:曲线的自然方向: 设曲线L 由参数式给出. 称参数增大时曲线相应的方向为自然方向.设L 为光滑或按段光滑曲线 , L : βαψϕ≤≤==t t y t x , )( , )(. A ())( , )(αψαϕ, B ())( , )(βψβϕ; 函数),(y x P 和),(y x Q 在L 上连续, 则沿L 的自然方向( 即从点A 到点B 的方向)有()()[]⎰⎰'+'=+L dt t t t Q t t t P dy y x Q dx y x P βαψψϕϕψϕ)()( , )()()( , )(),(),(. (证略)注:起点参数值作下限,终点参数值作上限.例1 计算()⎰-+L dy x y xydx ,其中L 分别沿以下路线从点()1,1A 到点()3,2B , ⅰ)直线AB ;ⅱ)抛物线ACB :()1122+-=x y ; ⅲ)三角形周界ADBA .解ⅰ)直线AB :[]⎩⎨⎧∈+=+=1,0,21,1t t y t x , 故()⎰-+AB dy x y xydx =()()[]dtt t t ⎰+++102211=625. ⅱ)抛物线ACB :()1122+-=x y ,21≤≤x ,ⅲ)三角形周界ADBA :()⎰-+ADBA dy x y xydx =()⎰-+AD dy x y xydx +()⎰-+DB dy x y xydx +()⎰-+Bady x y xydx 注:这里沿不同路径积分值不同,而沿封闭曲线的值不为0.例2计算⎰+L ydx xdy ,这里L :ⅰ)沿抛物线从O 到B :I ) 沿抛物线22y x =;ⅱ)沿直线段O B :x y 2=;ⅲ)沿封闭曲线OABO .解 ⅰ)沿抛物线从O 到B:⎰+L ydxxdy =()[]dx x x x ⎰+10224=2.ⅱ)沿直线段O B :x y 2=,⎰+Lydx xdy =()dx x x ⎰+1022=2.注:这里不同路径积分值相同ⅲ)沿封闭曲线OABO : 注:由于这里不同路径积分值相同,造成沿封闭曲线的值为0。