材料力学性能_金属的疲劳
- 格式:pptx
- 大小:5.86 MB
- 文档页数:77
金属的疲劳实际工作中构件,一般工作于变动的应力状态,称之为动载。
§1金属的疲劳现象一、变动载荷及应力循环1.变动载荷——大小、方向随时间变化而变化的载荷①周期性的:②无规则的:长期、长周期来看也可能成为有规则的和周期性的2.应力循环(周期性)描述(参数)特性物理量:σmax,σmin;平均应力σm=(σmax+σmin)/2;应力半辐σ a =(σmax-σmin)/2;应力循环对称系数(应力比):r = σmin/σmax;对称应力循环:r =-1 轴类构件所有r≠-1的应力循环均叫不对称应力循环脉动应力循环:r = 0齿轮类构件二、金属的疲劳现象及特点:1.疲劳:构件在变动载荷作用下,经一定时间工作后,因细微损伤的累积而造成构件断裂的现象,叫疲劳断裂。
2.特点:①应力处于变动状态;②低的工作应力值:无论材料是塑性还是脆性的,在静载下的断裂表现为脆性还是韧性,在疲劳断裂时其宏观表现均无明显塑性变形,表现为低应力脆断,一般工作应力远低于σ甚至远低于σp和σe,断裂常常是突然发生的,具有0.2隐蔽性和危害大的特点;③时间性损伤积累性:客观上表现为具有一定的使用寿命或一定的应力循环周次(Nf);一般地并不一定要求Nf = ∞,只须Nf大于某要求值即可。
常规正常情况下使用而断裂的工程构件,绝大多数破断是由疲劳引起,其原因:①工作应力不可能永久恒定;、σe或σp;②正常工作应力一般较低,其设计均低于σ0.2③一次性破断常于厂内质检时或第一次使用时即发生,为质量不合格产品,不属于正常使用状态。
对于疲劳断裂还需要注意的是:1)Nf与工作应力σ有密切关系;2)为裂纹的萌生、扩展过程,即所谓的损伤积累过程;指工作构件常为带裂纹工作体,其裂纹扩展的主过程为亚临界扩展,在工作时裂纹因应力循环而逐步亚稳扩展,直至其最终连接部分不能承受(KI ≥KI C)而最后快速扩展而断裂。
这就提出一种工作的安全模式:含正在扩展的裂纹的工程构件可能是安全的,其使用寿命是可能估算的。
金属材料的力学性能-疲劳强度疲劳强度:机械零件,如轴、齿轮、轴承、叶片、弹簧等,在工作过程中各点的应力随时间作周期性的变化,这种随时间作周期性变化的应力称为交变应力(也称循环应力)。
在交变应力的作用下,虽然零件所承受的应力低于材料的屈服点,但经过较长时间的工作后产生裂纹或突然发生完全断裂的现象称为金属的疲劳。
疲劳强度是指金属材料在无限多次交变载荷作用下而不破坏的最大应力称为疲劳强度或疲劳极限。
实际上,金属材料并不可能作无限多次交变载荷试验。
一般试验时规定,钢在经受107次、非铁(有色)金属材料经受108次交变载荷作用时不产生断裂时的最大应力称为疲劳强度。
疲劳破坏是机械零件失效的主要原因之一。
据统计,在机械零件失效中大约有80%以上属于疲劳破坏,而且疲劳破坏前没有明显的变形,所以疲劳破坏经常造成重大事故,所以对于轴、齿轮、轴承、叶片、弹簧等承受交变载荷的零件要选择疲劳强度较好的材料来制造。
材料力学性能第五章-金属的疲劳一、前言金属是工业中广泛使用的材料之一,而疲劳是金属失效的常见原因。
疲劳现象是指材料在循环加载下,由于应力的交变和变形的累积,导致材料最终发生断裂的失效现象。
由于疲劳是材料失效的高发期之一,因此疲劳强度及其寿命评估在工程实践中极其重要。
本文将对金属疲劳相关的概念、实验方法、疲劳表征和机理等方面进行详细介绍。
二、疲劳相关概念2.1 疲劳应力和疲劳极限疲劳应力是指材料在循环加载下,在一个给定的时间内重复加载的最大应力,其值通常低于材料的屈服强度。
疲劳极限是指材料在循环加载下,在一个给定的时间内可以承受的最大应力,其值也低于材料的屈服强度。
2.2 疲劳曲线疲劳曲线通常是由应力-amplitude循环次数(N)图给出,包括S-N曲线和e-N 曲线。
其中S-N曲线是指材料应力振幅和循环次数之间的关系曲线,其垂直轴是应力振幅,水平轴是循环次数(N)。
e-N曲线是指材料应变振幅和循环次数之间的关系曲线,其垂直轴是应变振幅,水平轴也是循环次数(N)。
三、疲劳实验方法3.1 疲劳试验机疲劳试验机一般分为拉伸疲劳试验机、弯曲疲劳试验机和转子疲劳试验机等。
其中拉伸疲劳试验机主要用于金属杆件、薄壁件等线性部件的疲劳试验。
弯曲疲劳试验机主要用于梁疲劳试验,其挠度和载荷均可调节。
转子疲劳试验机主要用于模拟飞机、发动机等转子叶片的疲劳试验。
3.2 疲劳试验方法常用的疲劳试验方法包括:恒振幅疲劳试验、逐渐增加振幅疲劳试验、多级疲劳试验和积累损伤疲劳试验等。
其中恒振幅疲劳试验是常见的疲劳试验方法,以波形、频率和振幅不变的周期周次循环载入,记录疲劳寿命。
逐渐增加振幅疲劳试验是从小到大逐渐增加载荷振幅的疲劳试验,称为低对高试验。
多级疲劳试验则是将恒定载荷振幅的疲劳试验进行多个不同振幅载荷循环,记录没个载荷级的疲劳寿命,绘制多级S-N曲线。
四、疲劳表征4.1 疲劳极限疲劳极限是材料在循环加载下允许承受的最大应力,疲劳极限的单位是MPa(N/mm^2)。
金属材料的疲劳性能金属材料是工程中应用最广泛的一类材料,因其优良的力学性能、良好的加工性和广泛的适用性而受到青睐。
然而,在实际应用中,金属材料往往需要承受周期性的载荷,这种条件下的失效主要表现为疲劳破坏。
因此,了解金属材料的疲劳性能,对提高产品的可靠性与安全性具有至关重要的意义。
疲劳的基本概念疲劳是指材料在反复或交变载荷作用下,经过一定的循环次数后,出现的逐渐积累损伤并导致破坏的现象。
疲劳破坏通常是由微小的裂纹开始,在多次循环加载下逐步扩展,最终导致材料的断裂。
疲劳破坏与静态强度无直接关系,且其发生往往是在较低于材料屈服强度和抗拉强度的荷载下进行,表明这是一种特殊的破坏模式。
疲劳寿命疲劳寿命一般用于描述材料在特定载荷和环境条件下能承受多少次循环而不发生破坏。
通常我们用以下两个指标来表征疲劳寿命:循环次数(Nf):这是指在出现疲劳破坏之前材料所能承受的加载循环次数。
疲劳极限(σf):对于大多数金属材料,存在一个应力水平(称为疲劳极限),低于这个水平时材料即使经过无限次循环也不会发生疲劳破坏。
值得注意的是,并非所有金属都具有明显的疲劳极限,如铝合金等常见金属,其 fatigue limit 不易确定。
疲劳性能影响因素影响金属材料疲劳性能的因素包括但不限于以下几个方面:材料成分金属材料中的化学成分对其疲劳性能有明显影响。
例如,合金元素如镍、钼、铬等可以显著提高钢材的抗疲劳性能。
适当增加合金元素的比例,使得金属晶体结构更加稳定,从而提高了其疲劳强度。
此外,非金属杂质(如硫、磷等)的存在,则会降低材料的疲劳性能。
材料组织材料的微观组织结构直接决定了其机械性能。
在热处理过程中,通过控制冷却速度和温度,可以改变金属材料的相组成与晶粒尺寸,从而优化组织,提高疲劳性能。
例如,细化晶粒可以显著提高金属件的抗疲劳能力。
调质处理后的钢材,相较于退火状态下,会表现出更高的抗疲劳能力。
应力集中在实际使用中,构件往往因为几何形状的不均匀性(如凹坑、切口、焊缝等)而产生应力集中现象。
金属材料的疲劳性能金属材料是工程领域中常用的材料之一,其疲劳性能对于工程结构的安全性和可靠性具有重要影响。
疲劳是指材料在交变载荷作用下,经过一定次数的循环加载和卸载后,产生裂纹并最终破坏的现象。
本文将介绍金属材料的疲劳机理、影响因素以及改善疲劳性能的方法。
一、疲劳机理金属材料的疲劳机理主要包括以下几个方面:1. 微观裂纹形成和扩展:在交变载荷作用下,金属材料内部会产生微观裂纹,这些裂纹会随着循环加载和卸载的重复作用逐渐扩展,最终导致材料破坏。
2. 塑性变形和应力集中:在循环加载和卸载的过程中,金属材料会发生塑性变形,这会导致应力集中,从而加速裂纹的形成和扩展。
3. 金属材料的内部缺陷:金属材料内部存在各种缺陷,如夹杂物、气孔等,这些缺陷会成为裂纹的起始点,加速裂纹的扩展。
二、影响因素金属材料的疲劳性能受到多种因素的影响,主要包括以下几个方面:1. 材料的力学性能:材料的强度、韧性、硬度等力学性能对疲劳性能有重要影响。
强度高的材料能够承受更大的载荷,韧性好的材料能够吸收更多的能量,硬度高的材料能够抵抗塑性变形。
2. 循环载荷的幅值和频率:循环载荷的幅值和频率对疲劳性能有直接影响。
幅值越大、频率越高,材料的疲劳寿命越短。
3. 温度和环境条件:温度和环境条件对金属材料的疲劳性能也有一定影响。
高温环境下,金属材料的疲劳寿命会降低。
4. 表面处理和应力状态:表面处理和应力状态对金属材料的疲劳性能有重要影响。
表面处理可以改善材料的表面质量,减少裂纹的形成和扩展;应力状态的合理控制可以减少应力集中,延缓裂纹的扩展。
三、改善疲劳性能的方法为了改善金属材料的疲劳性能,可以采取以下几种方法:1. 优化材料的组织结构:通过合理的热处理、合金设计等方法,优化金属材料的组织结构,提高其强度和韧性,从而提高疲劳寿命。
2. 表面处理:采用表面处理技术,如喷丸、镀层等,可以改善金属材料的表面质量,减少裂纹的形成和扩展。
3. 控制应力状态:通过合理的设计和加工工艺,控制金属材料的应力状态,减少应力集中,延缓裂纹的扩展。
疲劳定义:金属机件或构件在变动应力应变长期作用下,由于累积损伤而引起的断裂现象称为疲劳。
疲劳的特点:(1)疲劳是低应力循环延时断裂,即具有寿命的断裂,ζ↓,Nf↑.(2)疲劳是脆性断裂,是一种潜在的突发性断裂。
(3)疲劳对缺陷十分敏感。
疲劳的断口特征:(三个区):疲劳源,疲劳区,瞬断区,疲劳宏观特征:贝纹线(沙滩状花样),微观特征:疲劳韧带疲劳裂纹在表面形成的原因:(1)表面晶粒受周围介质约束小(2)表面晶粒不完全被其他晶粒包围,塑性变形约束小(3)表面晶粒易受损伤(4)弯曲,扭转载荷作用在表面应力最大。
疲劳强度影响因素⑴表面强化:①化学热处理:a渗碳,氮;b 表面淬火②表面塑变:a 喷丸; b 表面滚压表面强度增加(抵抗表面滑移,ζ-1提高),表面产生残余压应力(降低拉应力峰,ζ-1提高)⑵残余压应力的有利影响与外加应力的应力状态有关:机件承受弯曲疲劳时,残余压应力效果比扭转疲劳大;承受拉压疲劳时,影响小,这是不同应力状态下,机件表面应力梯度不同所致。
⑶只要提高材料的滑移抗力,如果用固溶强化,细晶强化等手段,均可以阻止疲劳裂纹的萌生,提高疲劳强度——只适用于高周疲劳。
高周疲劳特点:断裂寿命较长,N f>105周次;断裂应力水平较低,ζ<ζs,低应力疲劳。
应力腐蚀⑴产生条件:应力;化学介质;金属材料⑵应力腐蚀断口特征.宏观:灰黑色—亚稳扩展区,亮色—瞬间断口区微观:显微断裂呈枯树枝状,表面可见到“泥状花样”的腐蚀产物及腐蚀坑。
⑶防止应力腐蚀方法:a,合理选择金属材料 b,减少或清除机件中的残余拉应力 c,改善化学介质 d,采用电化学保护为什么bcc易于产生低温脆性,而fcc不易产生?加入Ni,Mn合金元素对韧性的影响?答:(1)ζs=ζi+k y d-1/2,bcc对温度变化更为敏感,与温度下降时,ζi 急剧增加,故ζs急剧增加,从而易于产生低温脆性(2)bcc与迟屈服现象有关,迟屈服即对低碳钢施加一高速载荷到高于ζs材料并不立即产生屈服,而需要经过一段孕育期才开始塑性变形。