高中数学选修圆锥曲线
- 格式:doc
- 大小:1.91 MB
- 文档页数:41
高中数学选修圆锥曲线基本知识点与典型题举例汤阴一中 苏永鹏一、椭圆1.椭圆的定义:第一定义:平面内到两个定点F 1、F 2的距离之和等于定值2a (2a >|F 1F 2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.第二定义: 平面内到定点F 与到定直线l 的距离之比是常数e (0<e <1)的点的轨迹是椭圆,定点叫做椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率.2.例1. F 121212(A)椭圆 (B)直线 (C)圆 (D)线段例2. 已知ABC ∆的周长是16,)0,3(-A ,B )0,3(, 则动点的轨迹方程是( )(A)1162522=+y x (B))0(1162522≠=+y y x (C)1251622=+y x (D))0(1251622≠=+y y x例3. 若F (c ,0)是椭圆22221x y a b+=的右焦点,F 与椭圆上点的距离的最大值为M ,最小值为m ,则椭圆上与F点的距离等于2M m+的点的坐标是( ) (A)(c ,2b a±) 2()(,)b B c a -± (C)(0,±b ) (D)不存在例4 设F 1(-c ,0)、F 2(c ,0)是椭圆22x a +22y b=1(a >b >0)的两个焦点,P 是以F 1F 2为直径的圆与椭圆的一个交点,若∠PF 1F 2=5∠PF 2F 1,则椭圆的离心率为( )(A)2 (B)32 (D)3例5. P 点在椭圆1204522=+y x 上,F 1、F 2是两个焦点,若21PF PF ⊥,则P 点的坐标是 .例6. 写出满足下列条件的椭圆的标准方程:(1)长轴与短轴的和为18,焦距为6; .(2)焦点坐标为)0,3(-,)0,3(,并且经过点(2,1); . (3)椭圆的两个顶点坐标分别为)0,3(-,)0,3(,且短轴是长轴的31; ____. (4)离心率为23,经过点(2,0); .例7. 12F F 、是椭圆2214x y +=的左、右焦点,点P 在椭圆上运动,则12||||PF PF ⋅的最大值是 .二、双曲线1.双曲线的定义:第一定义:平面内到两个定点F 1、F 2的距离之差的绝对值等于定值2a (0<2a <|F 1F 2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点的距离叫做双曲线的焦距.第二定义: 平面内到定点F 与到定直线l 的距离之比是常数e (e >1)的点的轨迹是双曲线,定点叫做双曲线的焦点,定直线l 叫做双曲线的准线,常数e 叫做双曲线的离心率例8 .命题甲:动点P 到两定点A 、B 的距离之差的绝对值等于2a (a >0);命题乙: 点P 的轨迹是双曲线。
1人教版高中数学选修一圆锥曲线及方程知识点精汇椭圆的定义:平面内与两个定点21,F F 的距离之和等于常数(大于||21F F )的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距注意:椭圆定义中容易遗漏的两处地方: (1)两个定点---两点间距离确定(2)绳长--轨迹上任意点到两定点距离和确定思考:在同样的绳长下,两定点间距离较长,则所画出的椭圆较扁(→线段)在同样的绳长下,两定点间距离较短,则所画出的椭圆较圆(→圆)由此,椭圆的形状与两定点间距离、绳长有关(为下面离心率概念作铺垫)由椭圆的定义可知它的基本特征,但对于这种曲线还具有哪些性质,我们几乎一无所知,因此需要建立椭圆的方程,以便于做进一步的认识。
2.根据定义推导椭圆标准方程:取过焦点21,F F 的直线为x 轴,线段21F F 的垂直平分线为y 轴),(y x P 为椭圆上的任意一点,椭圆的焦距是c 2(0>c ).则)0,(),0,(21c F c F -,1又设M 与21,F F 距离之和等于a 2(c a 22>)(常数){}a PF PF P P 221=+=∴ 221)(y c x PF ++= 又,a y c x y c x 2)()(2222=+-+++∴,化简,得 )()(22222222c a a y a x c a -=+-, 由定义c a 22>,022>-∴c a令222b c a =-∴代入,得 222222b a y a x b =+,两边同除22b a 得:12222=+by a x (a >b>0),此即为椭圆的标准方程它所表示的椭圆的焦点在x 轴上,焦点是)0,()0,(21c F c F -,中心在坐标原点的椭圆方程, 其中22b c a +=注意若坐标系的选取不同,可得到椭圆的不同的方程如果椭圆的焦点在y 轴上(选取方式不同,调换y x ,轴)焦点则变成),0(),,0(21c F c F -,只要将方程12222=+b y a x 中的yx ,调换,即可得12222=+bx a y (a >b>0),也是椭圆的标准方程理解:(1)所谓椭圆标准方程,一定指的是焦点在坐标轴上,且两焦点的中点为坐标原点;(2)在12222=+b y a x 与12222=+bx a y 这两个标准方程中,都有0>>b a 的要求,椭圆标准方程的形式:左边是两个分式的平方和,右边是1;1(3)椭圆的标准方程中三个参数a 、b 、c 满足a 2=b 2+c 2,a 最大;由椭圆的标准方程可以求出三个参数a 、b 、c 的值;(4)椭圆的标准方程中,x 2与y 2的分母哪一个大,分母即为a 2,则焦点在哪一个轴上。
在不能肯定焦点在哪个轴上的情况下,椭圆方程可设为:),0,0(122n m n m ny m x ≠>>=+;(5)判断焦点在哪个轴上的方法:①由标准方程的结构;②由焦点坐标的写法;(6)椭圆有互相垂直的两条对称轴,其焦点总在较长的对称轴上,若较长的轴在x 轴上,则),0,(),0,(21c F c F -若较长的轴在y 轴上,则),,0(),,0(21c F c F -(7)方程C B A C By Ax ,,,22=+均不为0且B A ≠表示椭圆的条件:方程C By Ax =+22可化为122=+BC y A C x所以只要C B A ,,同号且B A ≠时,方程表示椭圆; 当B C A C >时,椭圆的焦点在x 轴上;当BCA C <时,椭圆的焦点在y 轴上;三、讲解范例:例1 (教材第103页例1)写出适合下列条件的椭圆的标准方程: ⑴两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点P 到两焦点的距离之和等于10;⑵两个焦点坐标分别是(0,-2)和(0,2)且过(23-,25)解:(1)因为椭圆的焦点在x 轴上,所以设它的标准方程为12222=+by a x )0(>>b a19454,582,10222222=-=-=∴==∴==c a b c a c a所以所求椭圆标准方程为92522=+y x⑵ 因为椭圆的焦点在y 轴上,所以设它的标准方程为12222=+b x a y )0(>>b a 由椭圆的定义知,22)225()23(2++-=a +22)225()23(-+-10211023+=102=10=∴a 又2=c 6410222=-=-=∴c a b所以所求标准方程为61022=+x y 另法:∵ 42222-=-=a c a b∴可设所求方程142222=-+a x a y ,后将点(23-,25)的坐标代入可求出a ,从而求出椭圆方程点评:题(1)根据定义求 若将焦点改为(0,-4)、(0,4)其结果如何;题(2)由学生的思考与练习,总结有两种求法:其一由定义求出长轴与短轴长,根据条件写出方程;其二是由已知焦距,求出长轴与短轴的关系,设出椭圆方程,由点在椭圆上的条件,用待定系数的办法得出方程例2 (《导学与评价》第100页例2(2)) 四、课堂练习:教材第106页练习第1、2、3题五、课堂小结 :本节课学习了椭圆的定义及标准方程,应注意以下几点:①椭圆的定义中, 0>ca;22>②椭圆的标准方程中,焦点的位置看x,y的分母大小来确定;③a、b、c的几何意义六、课后作业:教材第106页习题8.1 第2、3题11课题:8.1椭圆及其标准方程(二) 教学目的:1.能正确运用椭圆的定义与标准方程解题; 2.学会用待定系数法与定义法求曲线的方程教学重点:用待定系数法与定义法求曲线的方程教学难点:待定系数法授课类型:新授课 课时安排:1课时教 具:多媒体、实物投影仪教学过程: 一、复习引入: 1 椭圆定义:平面内与两个定点21,F F 的距离之和等于常数(大于||21F F )的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距注意:椭圆定义中容易遗漏的两处地方:(1)两个定点---两点间距离确定(2)绳长--轨迹上任意点到两定点距离和确定在同样的绳长下,两定点间距离较长,则所画出的椭圆较扁(→线段)两定点间距离较短,则所画出的椭圆较圆(→圆)椭圆的形状与两定点间距离、绳长有关(为下面离心率概念作铺垫)1 2.椭圆标准方程:(1)2222=+by a x 它所表示的椭圆的焦点在x 轴上,焦点是)0,()0,(21c F c F -,中心在坐标原点的椭圆方程 其中22b c a +=(2)2222=+bx a y它所表示的椭圆的焦点在y 轴上,焦点是),0(),,0(21c F c F -,中心在坐标原点的椭圆方程其中22b c a +=所谓椭圆标准方程,一定指的是焦点在坐标轴上,且两焦点的中点为坐标原点;在12222=+b y a x 与12222=+b x a y 这两个标准方程中,都有0>>b a 的要求,如方程),0,0(122n m n m ny m x ≠>>=+就不能肯定焦点在哪个轴上;分清两种形式的标准方程,可与直线截距式1=+bya x类比,如12222=+by a x 中,由于b a >,所以在x 轴上的“截距”更大,因而焦点在x 轴上(即看22,y x 分母的大小)二、讲解范例:例1 求适合下列条件的椭圆的标准方程.(1)焦点在x 轴上,且经过点(2,0)和点(0,1).(2)焦点在y 轴上,与y 轴的一个交点为P (0,-10),P 到它较近的一个焦点的距离等于2.1 选题意图:训练待定系数法求方程的思想方法,考查椭圆上离焦点最近的点为长轴一端点等基本知识.解:(1)因为椭圆的焦点在x 轴上,所以可设它的标准方程为:)0(12222>>=+b a b y a x ∵椭圆经过点(2,0)和(0,1)∴⎪⎩⎪⎨⎧==∴⎪⎪⎩⎪⎪⎨⎧=+=+14a 1101022222222b b a b a 故所求椭圆的标准方程为1422=+y x(2)∵椭圆的焦点在y 轴上,所以可设它的标准方程为:)0(12222>>=+b a bx a y ∵P(0,-10)在椭圆上,∴a =10. 又∵P 到它较近的一焦点的距离等于2, ∴-c -(-10)=2,故c =8. ∴36222=-=c a b .∴所求椭圆的标准方程是13610022=+x y . 说明:(1)标准方程决定的椭圆中,与坐标轴的交点横坐标(或纵坐标)实际即为a 与b 的值.(2)后面的学习中将证明椭圆长轴端点距焦点最远或最近. 例2 已知椭圆经过两点()5,3()25,23与-,求椭圆的标准方程解:设椭圆的标准方程),0,0(122n m n m ny m x ≠>>=+则有 ⎪⎪⎩⎪⎪⎨⎧=+=+-1)5()3(1)25()23(2222n mn m,解得 ,6==n m 所以,所求椭圆的标准方程为10622=+y x例3(教材第104页例2)已知B ,C 是两个定点,|BC |=6,且1 ABC ∆的周长等于16,求顶点A 的轨迹方程解:以BC 所在直线为x 轴,BC 中垂线为y 轴建立直角坐标系,设顶点),(y x A ,根据已知条件得|AB|+|AC|=10再根据椭圆定义得,3,5===b c a所以顶点A 的轨迹方程为1162522=+y x (y ≠0)(特别强调检验) 因为A 为△ABC 的顶点,故点A 不在x 轴上,所以方程中要注明y ≠0的条件例4 (教材第105页例3)如图,已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作垂线段PPˊ,求线段PPˊ的中点M 的轨迹(若M 分 PPˊ之比为21,求点M 的轨迹)解:(1)当M 是线段PPˊ的中点时,设动点M 的坐标为),(y x ,则P 的坐标为2,(y x因为点P 在圆心为坐标原点半径为2的圆上,所以有 4)2(22=+y x ,即 1422=+y x所以点M 的轨迹是椭圆,方程是1422=+y x(2)当M 分 PPˊ之比为21时,设动点M 的坐标为),(y x ,则P 的坐标为23,(y x1 因为点P 在圆心为坐标原点半径为2的圆上,所以有 4)23(22=+y x ,即 1169422=+y x 所以点M 的轨迹是椭圆,方程是1169422=+y x 可以看到:将圆按照某个方向均匀地压缩(拉长),可以得到椭圆。
三、课堂练习:教材第106页练习第4题四、课堂小结 :椭圆标准方程的两种形式及运用待定系数法求椭圆的标准方程的方法五、课后作业:教材第106页习题8.1 第4、5、6题《导学与评价》第101页 自练自查自评 第1、2题,第102页第5、6、8、9题课题:8.2椭圆的简单几何性质(一)教学目的:1.熟练掌握椭圆的范围,对称性,顶点等简单几何性质2.掌握标准方程中ca,b,,的相互关系,的几何意义,以及ecba,3.理解、掌握坐标法中根据曲线的方程研究曲线的几何性质的一般方法教学重点:椭圆的几何性质教学难点:如何贯彻数形结合思想,运用曲线方程研究几何性质授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:根据曲线的方程,研究曲线的几何性质,并正确地画出它的图形,是解析几何的基本问题之一,根据曲线的条件列出方程,如果说是解析几何的手段,那么根据曲线的方程研究它的性质、画图就是解析几何的目的怎样用代数的方法来研究曲线原性质呢?本节内容为系统地按照方程来研究曲线的几何性质提供了一个范例,因此,本节内容在解析几何中占有非常重要的地位通过本节的学习,使学生掌握应从哪些方面来讨论一般曲线的几何性质,从而对曲线的方程和方程的曲线彼此之间的相辅相成的辩证关系,对解析几何的基本思想有更深的了解通过对椭圆几种画法的11学习,能深化对椭圆定义的认识,提高画图能力;通过几何性质的简单的应用,了解到如何应用几何性质去解决实际问题,提高学生用数学知识解决实际问题的能力本节内容的重点是椭圆的几何性质――范围、对称性、顶点、离心率、准线方程;根据方程研究曲线的几何性质的思路与方法;椭圆的几种画法。