分形基本概念
- 格式:ppt
- 大小:5.85 MB
- 文档页数:54
分形和混沌的基本概念和应用在科学和数学领域中,分形和混沌是两个非常重要的概念。
它们不仅有着丰富的理论内涵,而且在实际应用中也有着广泛的用途。
本文旨在介绍分形和混沌的基本概念、性质以及其应用领域。
一、分形的基本概念和性质分形最初是由法国数学家Mandelbrot所提出的。
分形,定义简单点来说,就是在各种尺度下都表现出相似性的图形。
比如说,我们在放大树叶时,会发现树叶的分支和小结构上会有许多特征,在不断放大过程中,树叶上的分支和结构会产生类似于整个树叶的结构。
这个例子就是分形学的一个典型例子。
分形的最重要的特性是自相似性和不规则性。
自相似性是指,在分形中,任意一部分都与整个结构相似,这种相似性具有尺度不变性,即不会因为放大或缩小而改变。
不规则性是指,分形的形状十分奇特,与传统的几何图形相比,分形形状复杂多变,没有任何几何规律可循。
分形广泛用于科学研究、艺术美学、计算机图像处理等领域。
在生物学、地震学、天文学中也有广泛应用。
例如,在生物学中,许多生物组织和器官都具有分形结构,如肺组织、血管系统、神经元等。
利用分形理论可以更好地研究这些生物结构的形态和发展规律。
此外,在土地利用和城市规划领域,也可以应用分形理论来研究城市建筑的空间结构和空间分布规律。
二、混沌的基本概念和性质混沌又称为非线性动力学。
混沌指的是用微观因素推算出宏观效应的过程,该过程结果不可预测,但随着时间的推移,能够生成复杂、有规律的系统。
混沌体系可用方程式表示出来,但由于该方程式是个非线性方程式,所以其结果会随这方程式微小变化而产生巨大的差异。
混沌具有以下几个突出的性质:灵敏依赖于初始条件,长期不稳定,难以预测和控制。
混沌理论可以用于预测经济和金融领域中出现的一些紊乱现象,如股市波动。
混沌最初应用在天文学领域,例如研究太阳系中行星之间的轨道。
这些轨道不像我们所想的那样规律。
然而,混沌的发现不仅在天文学领域中应用,也在许多其它领域解决一些不规则的问题。
分形几何学的基本概念与应用分形几何学是一门研究复杂、自相似结构的几何学科。
它的研究对象包括自然界中的许多现象和图形,如云朵、山脉、植物的分枝结构等。
分形几何学的出现和发展,为我们认识自然界的复杂性提供了新的视角。
本文将介绍分形几何学的基本概念,并重点探讨其在科学研究和实际应用中的价值。
一、分形几何学的基本概念分形几何学最核心的概念是“分形”。
分形是指具有自相似性质或统计尺度不变性的几何图形或物体。
它具备以下特点:1. 自相似性:分形的一部分与整体的形状非常相似,即具有自我重复的特性。
无论从整体还是局部的角度观察,其形状和结构都保持不变。
2. 统计尺度不变性:无论在什么尺度上观察分形,都能发现相似的图形和结构。
分形具有无标度的特性,不受空间尺度的限制。
3. 复杂性和碎形维度:分形体现了自然界中复杂系统的普遍性和多样性。
通过碎形维度的衡量,我们可以描述分形的几何形态。
二、分形几何学的应用领域分形几何学的研究成果,对科学研究和实际应用有着广泛的影响和应用价值。
1. 自然科学领域在物理学、化学、天文学等自然科学领域,分形几何学的应用已经取得了许多重要的突破。
例如,在物质表面的研究中,分形维度可以帮助我们更好地理解物质的分布和表面形态;在流体力学领域,分形几何学可以用来描述复杂流体的运动和传输现象。
2. 生命科学领域分形几何学在生物学、医学和生态学等领域的应用也日益增多。
在生物进化研究中,利用分形模型可以揭示物种的分支进化和形态演化;在生物医学图像处理领域,分形分析可以用于肿瘤和病变的诊断。
3. 技术工程领域在工程学、计算机科学和通信领域,分形几何学为我们提供了一些创新的解决方案。
例如,在图像压缩和数据传输中,可以利用分形编码来提高传输效率和图像质量;在通信网络设计中,采用分形结构可以提高网络的可靠性和稳定性。
4. 艺术与设计领域分形几何学的美学价值也不可忽视。
许多艺术家和设计师利用分形几何学的原理和方法创作出具有独特美感的艺术作品和设计。
分形图形分形理论是非线性科学的主要分支之一,它在计算机科学、化学、生物学、天文学、地理学等众多自然科学和经济学等社会科学中都有广泛的应用。
分形的基本特征是具有标度不变性。
其研究的图形是非常不规则和不光滑的已失去了通常的几何对称性;但是,在不同的尺度下进行观测时,分形几何学却具有尺度上的对称性,或称标度不变性。
研究图形在标度变换群作用下不变性质和不变量对计算机图形技术的发展有重大的意义。
说到分形(fractal),先来看看分形的定义。
分形这个词最早是分形的创始人曼德尔布诺特提来的,他给分形下的定义就是:一个集合形状,可以细分为若干部分,而每一部分都是整体的精确或不精确的相似形。
分形这个词也是他创造的,含有“不规则”和“支离破碎”的意思。
分形的概念出现很早,从十九世纪末维尔斯特拉斯构造的处处连续但处处不可微的函数,到上个世纪初的康托三分集,科赫曲线和谢尔宾斯基海绵。
但是分形作为一个独立的学科被人开始研究,是一直到七十年代曼德尔布诺特提出分形的概念开始。
而一直到八十年代,对于分形的研究才真正被大家所关注。
分形通常跟分数维,自相似,自组织,非线性系统,混沌等联系起来出现。
它是数学的一个分支。
我之前说过很多次,数学就是美。
而分形的美,更能够被大众所接受,因为它可以通过图形化的方式表达出来。
而更由于它美的直观性,被很多艺术家索青睐。
分形在自然界里面也经常可以看到,最多被举出来当作分形的例子,就是海岸线,源自于曼德尔布诺特的著名论文《英国的海岸线有多长》。
而在生物界,分形的例子也比比皆是。
近20年来,分形的研究受到非常广泛的重视,其原因在于分形既有深刻的理论意义,又有巨大的实用价值。
分形向人们展示了一类具有标度不变对称性的新世界,吸引着人们寻求其中可能存在着的新规律和新特征;分形提供了描述自然形态的几何学方法,使得在计算机上可以从少量数据出发,对复杂的自然景物进行逼真的模拟,并启发人们利用分形技术对信息作大幅度的数据压缩。
收稿日期:2005-07-04;修订日期:2006-02-22作者简介:刘 莹(1957-),女,江西南昌人,博士生导师,教授,主要从事微机械与微摩擦学研究。
基金项目:国家自然科学基金资助项目(50275071);南昌大学科研基金项目(z02879)。
第24卷 第2期2006年4月江 西 科 学JI A NGX I SC I ENCEVo.l 24N o .2Apr .2006文章编号:1001-3679(2006)02-0205-05分形理论及其应用刘 莹,胡 敏,余桂英,李小兵,刘晓林(南昌大学机电工程学院,江西南昌 330029)摘要:分形理论是现代非线性科学中的一个重要的分支,是科学研究中一种重要的数学工具和手段。
介绍了分形理论的基本概念,给出了分形理论的重要参数分形维数的几种常见定义和计算方法。
重点介绍了分形理论在从自然科学到社会科学的各个领域,如工程技术、物理、化学、生物医学、材料科学、天文地理、经济管理、计算机图形学等学科领域的应用及其最新的进展情况。
最后,展望了分形理论的应用前景及其发展方向,提出分形理论将面临和有待解决的问题。
关键词:分形理论;分形维数;应用状况中图分类号:TB11;TH3;N 32 文献标识码:ATheory of Fractal and its ApplicationsL I U Y i n g ,HU M i n ,YU Gu-i y i n g ,LI X iao -bing ,L I U X iao -lin(M echan ical and E lectron i c Eng i neering Schoo,l N anchang U n i versity ,Ji angx i N anchang 330029PRC)Abst ract :Fracta l theor y is a branch of non li n ear science and an i m portant m eans for sc ience re -search.This paper introduces t h e basic concept and several calculati n g m ethods of fracta l d i m ension as a m ain para m eter of fractal theory .Pri m aril y ,it is summ arized that fractal t h eory have been used i nvarious fie l d s fr o m nat u re science to soc i a l science such as eng i n eer i n g ,physics ,che m istr y ,b i o m ed-i cine ,m aterial sc i e nce ,astrono m y and geography ,econo m y and m anage m en,t co m puter g raphics ,etc .In the end ,the foreg round and deve l o pm enta l orientation of fractal theory is prospected ,and proble m s i n face of fracta l theory is advanced.K ey w ords :Fractal theory ,Fracta l di m ension ,Applicati o n 分形理论作为一种新的概念和方法,正在许多领域开展应用探索。
2分形几何学的基本概念本章讨论分形几何学的一些基本内容,其中:第1节讨论自相似性与分形几何学的创立;第2节讨论分形几何学的数学量度,即三种不同的维数计算方法;第3节讨论应用分形几何方法所实现的对自然有机体的模拟。
2.1自相似性与分形几何学无论人们通过怎样的方式把欧几里得几何学的形体与自然界关联起来,欧氏几何在表达自然的本性时总是会遇到一个难题:即它无法表现自然在不同尺度层次上的无穷无尽的细节。
欧氏几何形体在局部放大后呈现为直线或光滑的曲线,而自然界的形体(如山脉、河流、云朵等)则在局部放大后仍呈现出与整体特征相关的丰富的细节(图版2-1图1),这种细节特征与整体特征的相关性就是我们现在所说的自相似性。
自相似性是隐含在自然界的不同尺度层次之间的一种广义的对称性,它使自然造化的微小局部能够体现较大局部的特征,进而也能体现其整体的特征。
它也是自然界能够实现多样性和秩序性的有机统一的基础。
一根树枝的形状看起来和一棵大树的形状差不多;一朵白云在放大若干倍以后,也可以代表它所处的云团的形象;而一段苏格兰的海岸线在经过数次局部放大后,竟与放大前的形状惊人地相似(图版2-1图2)。
这些形象原本都是自然界不可琢磨的形状,但在自相似性这一规律被发现后,它们都成为可以通过理性来认识和控制的了。
显然,欧氏几何学在表达自相似性方面是无能为力了,为此,我们需要一种新的几何学来更明确地揭示自然的这一规律。
这就是分形几何学产生的基础。
1977年,曼德布罗特(Benoit Mandelbrot)出版了《自然的分形几何学》(The Fractal Geometry of Nature)一书,自此分形几何学得以建立,并动摇了欧氏几何学在人们形态思维方面的统治地位。
分形几何学的研究对象是具有如下特性的几何形体:它们能够在不断的放大过程中,不停地展现出自相似的、不规则变化着的细节(图2-1图3)。
这些几何形状不同于欧氏几何形体的一维、二维或三维形状,它们的维数不是简单的1、2或3,而是处于它们之间或之外的分数。
自仿射分形,自反演分形和自平方分形是分形几何中的三种重要概念。
它们分别以自相似、自反演和自平方的特性而闻名,被广泛应用于数学、物理、生物学等领域。
本文将分别介绍这三种分形的基本概念、特点和应用,并对它们的发展和研究进行简要探讨。
一、自仿射分形1. 基本概念自仿射分形是指其每个部分都与整体相似的分形。
在自仿射分形中,整体的图形可以被分成若干个部分,每个部分都与整体相似,且比例尺相同。
这种自相似的特性使得自仿射分形具有无限的细节和结构,能够在不同尺度下展现出相似的图像。
著名的科赫雪花和谢尔宾斯基三角形就是自仿射分形的典型代表。
2. 特点自仿射分形的特点主要包括:自相似性、边界无限长度、面积有限、维数非整数等。
这些特点使得自仿射分形不同于传统的几何图形,展现出更加复杂和多样的结构。
3. 应用自仿射分形广泛应用于图像压缩、信号处理、地理信息系统等领域。
它能够有效地描述和处理自然界中复杂的图形和结构,为数据的分析和处理提供了新的途径和方法。
二、自反演分形1. 基本概念自反演分形是指通过一定的数学变换,将整体分成若干个部分,每个部分又是整体的缩小复制。
在自反演分形中,通过不断的反复迭代和变换,可以生成具有高度复杂结构和无限细节的图形。
著名的分段几何、龙曲线等都是自反演分形的典型代表。
2. 特点自反演分形的特点主要包括:无限复杂、嵌套结构、自相似性等。
这些特点使得自反演分形能够描述和展现出自然界中许多复杂的现象和图形,具有重要的理论和应用意义。
3. 应用自反演分形在信号处理、图像压缩、计算机图形学等领域有着广泛的应用。
通过自反演分形的特性,可以更加有效地描述和处理复杂的图形和数据,为信息的存储和传输提供了新的技术手段。
三、自平方分形1. 基本概念自平方分形是指通过对整体进行一定的变换和缩放,使得整体可以被分成若干个部分,每个部分又是整体的缩小复制。
在自平方分形中,通过不断的平方变换和迭代,可以生成具有无限细节和结构的图形。
数学的分形几何分形几何是一门独特而迷人的数学领域,它研究的是自相似的结构和形态。
分形几何的概念由波蒂亚·曼德博(Benoit Mandelbrot)在1975年首次提出,之后得到了广泛应用和发展。
本文将介绍分形几何的基本概念和应用领域,旨在帮助读者更好地了解这一令人着迷的学科。
一、分形几何的基本概念分形(fractal)是一种非几何形状,具有自相似的特点。
简单来说,分形就是在各个尺度上都具有相似性的图形。
与传统的几何图形相比,分形图形更加复杂、细致,其形状常常无法用传统的几何方法进行描述。
分形几何的基本概念包括分形维度、分形特征和分形生成等。
1. 分形维度分形维度是分形几何中的重要概念之一。
传统的几何图形维度一般为整数,如直线的维度为1,平面的维度为2,而分形图形的维度可以是非整数。
分形维度能够描述分形的复杂程度和空间占据情况,是衡量分形图形特性的重要指标。
2. 分形特征分形几何的分形特征是指分形图形所具有的一些独特性质。
其中最著名的就是自相似性,即分形图形在不同尺度上具有相似的形态和结构。
此外,分形图形还具有无限的细节,无论放大多少倍都能够找到相似的结构。
3. 分形生成分形图形的生成是分形几何中的关键问题之一。
分形图形可以通过递归、迭代等方式进行生成,比如著名的分形集合——曼德博集合就是通过迭代运算得到的。
分形生成的过程常常需要计算机的辅助,对于不同的分形形状,生成算法也有所不同。
二、分形几何的应用领域分形几何的独特性质使其在许多领域中得到广泛应用。
以下列举了几个典型的应用领域。
1. 自然科学分形几何在自然科学中有着广泛的应用。
例如,分形理论可以用来研究自然界中的地形、云雾形态等。
通过分形几何的方法,我们能够更好地理解和描述自然界的复杂性,揭示出隐藏在表面之下的规律。
2. 经济金融分形几何在经济金融领域也有着重要的应用。
金融市场的价格走势往往具有分形特征,通过分形几何的方法可以更好地预测未来的市场走势和波动。
分形理论及其在机械工程中的应用引言分形理论是20世纪80年代提出的一种新的数学研究领域,它提出了一种全新的描述自然界和社会现象的数学模型。
分形理论的提出对科学领域产生了深远的影响,不仅在自然科学中有广泛的应用,而且在工程领域也有着重要的意义。
本文将介绍分形理论的基本概念及其在机械工程中的应用。
一、分形理论的基本概念1. 分形的定义分形是指在任意尺度下具有相似结构的图形或物体。
换句话说,分形是一种具有自相似性质的几何图形,即无论是放大还是缩小,都具有相同或相似的形状。
这种自相似性是传统几何图形所不具备的特征,因此分形具有特殊的几何结构特征。
2. 分形的特征分形具有以下几个显著特征:(1)分形维数:分形物体的维数可以是小数或者非整数。
这与传统的欧几里德几何中的整数维度有着本质的区别。
分形维数也被称为“分形量度”,用来描述分形图形的粗糙程度或者曲折程度。
(2)分形的不规则性:分形图形通常具有不规则性和复杂性,无法用传统的几何图形来精确描述。
(3)分形的自相似性:分形图形在各种尺度上都具有相似的结构,这是其与传统几何图形最大的区别。
以上特征使得分形成为一种新型的几何结构,有着广泛的应用前景。
二、分形理论在机械工程中的应用1. 分形表面处理技术分形理论在机械工程中的应用最为广泛的领域之一就是表面处理技术。
利用分形理论,可以设计出具有特定粗糙度和摩擦特性的表面结构,从而实现对摩擦、磨损和润滑等性能的控制。
传统的表面处理方法往往要求加工具有规则的结构,而分形表面处理技术则可以通过模拟自然界中的分形结构,设计出更为复杂和多样化的表面形貌。
2. 分形几何构型在机械设计中的应用分形理论提出的自相似性概念在机械设计中也有着重要的应用。
在机械零部件的设计过程中,通过引入分形几何构型,可以实现对结构的自相似性设计,提高零部件的疲劳寿命和强度,改进结构的性能。
分形几何构型还可以用来设计具有分形特性的传感器和控制器等机电一体化系统,提高系统的精度和稳定性。
分形标度律一、分形标度律的起源分形标度律是一个揭示自然界和社会现象中自相似性和尺度相关性的概念。
它的起源可以追溯到20世纪80年代,当时法国数学家曼德布罗特在研究自然界和艺术中的自相似性时,提出了分形几何的概念。
分形几何描述的是具有非整数维度的几何形状,其中每个部分都以某种方式与整体相似。
这种自相似性和尺度相关性在许多自然现象和社会现象中都有所体现,如云彩的形状、山脉的高度分布、人口的分布、网络的连接等等。
二、分形的基本概念分形是指具有自相似性的几何形状,其每个部分都与整体相似。
这种自相似性可以是数学上的精确相似,也可以是统计上的相似。
分形可以是规则的,也可以是非规则的。
规则分形可以通过简单的数学公式或迭代算法来生成,如谢尔宾斯基三角形、科赫曲线等;而非规则分形则无法通过简单的数学公式来描述,只能通过计算机模拟或统计分析来近似描述。
三、分形标度律的数学表述分形标度律是指在一定条件下,某些量与尺度的对数成正比。
这个规律可以用数学公式来表示:y = c * x^n,其中y是某个量,x是尺度,c和n是常数。
在这个公式中,y与x的对数成正比,因此可以得出结论:这个量具有分形标度律。
分形标度律不仅在自然科学中有广泛的应用,在社会科学中也有广泛的应用,如人口统计学、市场营销、网络分析等等。
四、分形标度律的应用领域1.物理学:在物理学中,分形标度律被广泛应用于描述物质的扩散、凝聚和热传导等过程。
例如,在研究布朗运动时,通过测量不同尺度下颗粒的扩散距离,可以验证分形标度律的存在。
2.生物学:在生物学中,分形标度律被广泛应用于描述生物体的结构和功能。
例如,许多生物体的血管、肺部和消化道等都具有分形结构,这种结构有助于提高生物体的生存能力和适应环境的能力。
此外,在研究物种分布和生态系统的稳定性等方面,分形标度律也具有重要的应用价值。
3.地理学:在地理学中,分形标度律被广泛应用于描述地形地貌、城市规模分布和自然灾害等方面的现象。
分形理论在物理学中的应用随着科学技术的不断发展,分形理论作为一种新兴数学工具,越来越受到各学科领域的重视,并被广泛应用于物理学中,为人类理解自然界的规律提供了新的思路和方法。
一、分形理论的基本概念分形是由分形维数来描述的一类图形,分形维数通常比整数大且为非整数。
分形理论主要研究的是非线性系统中的自相似性结构,这些结构是由一些基本单元通过自同构基于某些变换,进行不断细分,生成的纷繁复杂特征。
由于这种不断细分的过程,分形所表现出来的状态还是非常混沌的,从而具有了自相似性的特点和可复制性的性质,是一种十分特殊的结构。
二、分形理论在物理学中的应用2.1 热力学分形结构的复杂性可以被用来处理难以用传统方法处理的物理问题。
例如,在讨论非均质体系中的热力学过程时,研究分形特征可以提供有关体系纷繁复杂的形态和性质的信息。
分形在热力学中的应用主要体现在两个方面,第一是作为研究非均质物质状态的量化手段,可以描述不同尺度上的物理性质;第二是研究某些不可逆过程,例如相变等,运用分形理论可以解释物理过程。
2.2 图像处理分形理论作为一种有力的数学工具,可以用于图像处理。
在数字图像处理中,分形已经被广泛地用来对图像进行压缩和重建。
目前,分形压缩技术已经成为一种广泛使用的压缩技术,具有压缩率高、图像质量好及少损失等特点,成功地被应用到数码相册、数字电视及互联网相关领域。
2.3 环境科学环境科学是一门涉及到广泛领域的综合性学科,而分形理论在环境科学中的应用尤为重要。
例如,研究土地利用变化、植被变化、土壤侵蚀等问题时,运用分形的形态分析以及分形的统计特征分布分析,可以更好地描绘这些自然现象,并为环境修复和保护提供参考依据。
2.4 力学分形理论在力学研究中也有着广泛的应用。
根据分形理论的观点,宏观世界中存在着无数微观部分组成的整体。
对于机械问题,运用分形理论来研究物体的表面形貌、材质等特征,分析其微观结构分布变化情况,可以更好地解释物理过程,为实际工程问题提供理论指导。
分形图形生成原理探究随着计算机技术的不断发展,分形图形在数字艺术、自然科学和工程领域中得到广泛应用。
分形是一种具有自相似性质的数学对象,其生成原理深受人们的关注。
本文将探究分形图形的生成原理,介绍分形的基本概念,以及常用的分形生成算法。
一、分形的基本概念分形是一种具有自相似性质的几何图形。
即整体结构和局部细节之间存在某种相似关系,不论放大还是缩小,都可以看到相同的图形。
分形的自相似性质使得它们具有无限的细节和复杂度。
二、分形图形的生成原理1. 迭代运算迭代运算是生成分形图形的常用方法之一。
这种方法通过重复应用某种变换或映射规则,不断生成新的图形。
具体步骤如下:- 首先选定一个初始图形,例如一个简单的线段或几何形状。
- 然后根据一定的规则进行变换或映射操作,生成下一级的图形。
- 重复上述步骤,直到达到期望的分形效果。
迭代运算可以产生各种各样的分形图形,如科赫曲线、谢尔宾斯基三角形等。
2. 噪声函数噪声函数是通过随机性来生成分形图形的一种方法。
噪声函数可以产生随机性纹理或图案,并通过适当的参数调节,实现分形效果。
生成分形图形的基本步骤如下:- 首先定义一个噪声函数,它可以是简单的随机数生成器或更复杂的数学函数。
- 然后使用噪声函数来计算每个像素的数值或颜色,从而生成图像。
噪声函数可以用于生成山脉、云彩等具有分形特征的自然图像。
三、常用的分形生成算法1. 递归细分递归细分是一种通过使用分形规则进行逐级细分的方法。
它基于拆分和替代的原则,不断将图形细分为更小的部分,然后用更小的部分替代原有的部分。
递归细分可以生成多种复杂的分形图形,如分形树、雪花等。
2. 碎形图像编码碎形图像编码是一种基于碎形压缩理论的分形生成方法。
它通过找到一组变换规则和关联函数,将整个图像分割成小的区域,然后用适当的变换规则对每个区域进行编码。
这种方法可以生成高质量的分形图像,并用较小的存储空间保存。
3. 分形几何建模分形几何建模是一种通过将分形规则应用于三维空间中的几何体来生成分形图形的方法。
1现在天津大学化工学院化工研究所就读博士。
收稿日期:1997210217;修改稿收到日期:1998204221专题综述分形理论及其在化学和化工中的应用郭从容1杨桂琴王雪松崔建中严乐美张万东(天津大学理学院化学系,天津300072摘要分形(F ractal 是一门正处于迅速发展中的新学科,其影响范围和应用领域也在日益扩大。
本文简要介绍了分形理论的基本概念,以及分形应用于化学及化工领域中的研究进展情况。
关键词分形概念,分形维数,分形应用The Fractal Theory and its Application i n Chem istryand Chem ical Eng i neer i ngGuo Congrong Yang Gu iqin W ang Xuesong Cu i J ianzhong Yan L em ei Zhang W andong(D epartm ent of Chem istry ,Schoo l of Science ,T ianjin U niversity ,T ianjin 300072AbstractF ractal theo ry is a rap idly develop ing sub ject of science .Its influence range and app licati on field are en larging .In th is pap er ,the concep t of fractal is exp lained ,andits app licati on in the research in chem istry and in chem ical engineering isdescribed .Keywords fractal ,fractal di m en si on ,fractal app licati on 1分形理论简介经典几何学是以欧氏几何学为基础的逻辑体系,它将自然界的空间规律归结为点、线及面的规律,其中线和面都被理想化为规则而光滑的,微积分与近代数学的许多分支均以此为基础。
分形几何及其在音乐中的应用摘要:本文介绍了分形的基本概念,分形产生的背景。
文章主要就分形在音乐中的应用做了详细的阐述。
人们经过研究发现:巴赫的作品有着数学般的精确,然而,古琴曲《幽兰》有着较巴赫《创意曲》No.1更为精确的数学。
《幽兰》曲早《创意曲》千年而作,况中国与德国又相距万里之遥,且又分属东西方两种不同的文化圈,何以二者都服从分形关系呢?关键字: 分形、音乐、古琴、巴赫分形在英文中为fractal,是美籍法国数学家B.B.Mandelbrot 用拉丁词根拼造成的,原意为“支离破碎,断裂”等。
传统的欧式几何可以解决许许多多的问题,但是自然界还有很多解析几何无法解决的问题,因为它们有着不规则的边缘和形状。
像地上的花草树木、天上的云、海里的浪花等等。
大自然中这样的物体现象举不胜举。
传统的物理学研究之中,牛顿的确定论是运动学的基础,牛顿在表达物体运动时所用的质量、加速度、惯性等概念至今仍在沿用,但是美国气象学家洛伦兹( Loren) 在通过一组微分方程组预报天气时发现: 如果将一次输入所得六位数结果四舍五入并作为第二次的输入值时, 这一步很小的误差却能造成结果的巨大差异, 另外,在1827年就发现的布朗运动其轨迹的复杂性, 岩石在受击破碎时裂纹的复杂性等, 也很难用牛顿的确定论来描述。
在化学领域里,传统化学对一些高分子的复杂空间结构很难描述,化学振动现象在量上的规律等也很难用已有的化学知识来解释。
伴随着多个学科类是问题的出现及研究,在20世纪70年代由美国科学家曼德布罗特提出了分形论。
分形具有重要的应用,下面就古琴音乐中的分形几何阐述分形的重要应用:为了研究音乐的分形几何,首先必须把它加以量化,因此撇开音乐的社会学定义不讲,现在我们从数学上给它下一个定义:音乐是具有不同音高(频率)的音的一种有序排列。
既然如此,那么这种有序的数学表达是什么?随意地敲击琴键不会产生音乐,不同音的有序排列组成了旋律,这种排列是分形的吗?如果答案是肯定的话,那么在一首音乐作品中两相邻音之间的音程 i 与其出现的几率 F 应满足下述关系:F = C/iD 或logF=C’- Dlogi即音程 i 的对数与其出现几率F的对数之间存在线性关系,也就是说以 logF 和 logi 为纵横坐标作图,则各点均应在同一直线上。