信号量机制
- 格式:doc
- 大小:11.50 KB
- 文档页数:1
操作系统(三)——信号量、死锁1、信号量信号量机制:概念:其实就是⼀个变量,可以⽤⼀个信号量来表⽰系统中某种资源的数量、⽤户进程通过使⽤操作系统提供的⼀对原语来对信号量进⾏操作,从⽽⽅便的实现了进程互斥。
这⾥的⼀对原语是指wait(S)和signal(S),也简写为P(S)和V(S),即申请和释放资源。
P、V操作必须成对出现。
整数型信号量:⽤⼀个整数作为信号量,数值表⽰某种资源数。
对信号量的操作只有三种:初始化、P操作、V操作。
不满⾜让权等待原则。
记录型信号量:S.value表⽰某种资源数,S.L指向等待该资源的队列。
P操作中,先S.value++,之后可能执⾏block阻塞原语。
V操作中,先S.value--,之后可能执⾏wakeup唤醒原语。
可以⽤记录型信号量实现系统资源的申请和释放,申请S.value--,然后如果S.value<0说明资源分配完了,就阻塞;释放S.value++,然后如果S.value<=0说明还有进程在等待队列中等待,就唤醒。
记录型信号量可以实现进程互斥、进程同步。
实现进程互斥:划定临界区。
设置互斥信号量mytex,初值为1。
在临界区之前执⾏P(mutex),在临界区之后执⾏V(mutex)。
实现进程同步:分析那些地⽅是必须保证⼀前⼀后执⾏的两个操作。
设置同步信号量S,初始值为0。
在“前操作”之后执⾏V(S)。
在“后操作”之前执⾏P(S)。
实现前驱关系:每⼀对前驱关系都是⼀个进程同步问题。
为每⼀对前驱关系设置⼀个同步变量,初始值为0。
在“前操作”之后执⾏V操作。
在“后操作”之前执⾏P操作。
⽣产者消费者问题:⽣产者每次⽣产⼀个产品放⼊缓冲区,消费者每次从缓冲区取出⼀个产品使⽤。
缓冲区满⽣产者必须等待(同步关系1),缓冲区空消费者必须等待(同步关系2)。
缓冲区是临界资源,必须被互斥访问(互斥关系)。
问题中的P、V操作:⽣产者每次P⼀个缓冲区,V⼀个产品。
消费者每次V⼀个缓冲区,P⼀个产品。
ucos信号量用法一、引言在嵌入式系统的开发中,ucos作为一个开源的实时操作系统,被广泛应用于各种嵌入式设备中。
信号量是ucos中一种重要的同步机制,用于解决多任务环境下资源竞争的问题。
本文将介绍ucos中信号量的用法和注意事项。
二、信号量的概念信号量是一种用于多任务同步和资源管理的机制。
在ucos中,信号量是一种计数型变量,用于实现任务的互斥访问和同步操作。
信号量可以有两个操作:等待(wait)和释放(signal)。
三、信号量的创建和初始化在ucos中,信号量的创建和初始化是通过调用相应的API函数实现的。
首先需要定义一个信号量的变量,然后通过调用API函数对其进行初始化。
例如,可以使用以下代码创建一个信号量并初始化为1:SEM_HANDLE sem;sem = OSSemCreate(1);在上述代码中,SEM_HANDLE是信号量的句柄类型,OSSemCreate()是ucos提供的一个用于创建和初始化信号量的函数。
四、信号量的等待操作信号量的等待操作是任务在使用共享资源之前进行的操作。
如果资源已被占用,则任务需要等待,直到资源可用。
在ucos中,可以通过调用OSSemPend()函数来完成等待操作。
以下是一个示例代码,展示了任务如何进行信号量等待操作:void Task1(void *arg){while(1){// 等待信号量OSSemPend(sem, 0, &err);// 使用共享资源// 释放信号量OSSemPost(sem);}}在上述代码中,任务会在OSSemPend()函数处等待信号量。
参数sem表示待等待的信号量句柄,0表示最大等待时间,&err用于记录等待的结果。
五、信号量的释放操作信号量的释放操作是任务在使用完共享资源后进行的操作。
通过调用OSSemPost()函数来释放信号量,使其他任务可以继续访问该资源。
以下是一个示例代码,展示了任务如何进行信号量释放操作:void Task2(void *arg){while(1){// 使用共享资源// 释放信号量OSSemPost(sem);}}在上述代码中,任务会在OSSemPost()函数处释放信号量,以便其他任务可以继续访问该资源。
【操作系统】信号量机制信号量机制基本概念信号量:信号量(Semaphores)的数据结构由⼀个值value和⼀个进程链表指针L组成,信号量的值代表了资源的数⽬,链表指针链接了所有等待访问该资源的进程。
PV操作:通过对信号量S进⾏两个标准的原⼦操作(不可中断的操作)wait(S)和signa(S),可以实现进程的同步和互斥。
这两个操作⼜常被称为P、V操作,其定义如下: P(S):①将信号量S的值减1,即S.value=S.value-1; ②如果S.value≥0,则该进程继续执⾏;否则该进程置为等待状态,排⼊等待队列。
V(S):①将信号量S的值加1,即S.value=S.value+1; ②如果S.value>0,则该进程继续执⾏;否则释放S.L中第⼀个的等待进程。
说明:S.value代表可⽤的资源数⽬,当它的值⼤于0时,表⽰当前可⽤资源的数量;当它的值⼩于0时,其绝对值表⽰等待使⽤该资源的进程个数。
⼀次P操作意味着请求分配⼀个单位资源,因此S.value减1,当S.value<0时,表⽰已经没有可⽤资源,请求者必须等待别的进程释放该类资源,它才能运⾏下去。
⽽执⾏⼀次V操作意味着释放⼀个单位资源,因此S.value加1;若S≤0,表⽰有某些进程正在等待该资源,因此要唤醒⼀个等待状态的进程,使之运⾏下去。
利⽤信号量和PV操作实现进程互斥的⼀般模型是:信号量S⽤于互斥,S.value初值为1。
整型信号量 最初定义的信号量,信号量S就是⼀个于代表资源数⽬的整型量,该机制下⽆法实现“让权等待”的准则。
略(具体内容可参考《计算机操作系统》)。
记录型信号量 基本概念中描述的就是记录型信号量,信号量S的两个数据项可描述为:type semaphore=recordvalue:integer;L:list of process;end 相应地,wait(S)和signa(S)操作(即PV操作)可描述为:procedure wait(S)var S:semaphore;beginS.value:=S.value-1;if S.value<0 then block(S,L) /*将进程排⼊等待队列S.L中*/Endprocedure signal(S)var S:semaphore;beginS.value:=S.value+1;if S.value≤0 then wakeup(S,L); /*唤醒S.L上的第⼀个等待进程*/endAND型信号量上⾯的机制仅适⽤于各进程间只共享⼀个临界资源的情况,当进程需要⼏个共享资源时,容易出现死锁现象(原因详见书籍)。
线程同步和互斥概念在多线程编程中,线程同步和互斥是非常重要的概念。
线程同步指的是多个线程在执行过程中的协调和合作,以达到共同的目标。
而线程互斥则是指多个线程在访问共享资源时的互相排斥,以保证数据的一致性和正确性。
一、线程同步线程同步是指多个线程之间的协调和合作,以达到共同的目标。
在多线程编程中,线程同步可以通过各种机制来实现,例如锁、信号量、事件等。
1. 锁机制锁机制是最常见的线程同步机制之一。
锁机制可以保证在同一时间只有一个线程可以访问共享资源,其他线程需要等待锁的释放才能访问。
常见的锁有互斥锁、读写锁等。
例如,在一个多线程环境下,多个线程需要访问同一个全局变量,为了保证数据的一致性和正确性,可以使用互斥锁来实现线程同步。
2. 信号量机制信号量机制是另一种常见的线程同步机制。
信号量可以用来控制并发线程的数量,以达到线程同步的目的。
常见的信号量有二元信号量和计数信号量。
例如,在一个多线程环境下,多个线程需要访问同一个共享资源,为了保证数据的一致性和正确性,可以使用计数信号量来控制并发线程的数量。
3. 事件机制事件机制是一种高级的线程同步机制,可以用来实现线程之间的通信和协调。
事件机制通常包括事件对象、事件等待和事件通知等。
例如,在一个多线程环境下,多个线程需要协调完成一项任务,可以使用事件机制来实现线程同步。
二、线程互斥线程互斥是指多个线程在访问共享资源时的互相排斥,以保证数据的一致性和正确性。
在多线程编程中,线程互斥可以通过各种机制来实现,例如锁、信号量、事件等。
1. 锁机制锁机制可以用来实现线程互斥。
在同一时间只有一个线程可以获得锁,其他线程需要等待锁的释放才能访问共享资源。
例如,在一个多线程环境下,多个线程需要访问同一个全局变量,为了保证数据的一致性和正确性,可以使用互斥锁来实现线程互斥。
2. 信号量机制信号量机制也可以用来实现线程互斥。
通过设置信号量的初始值为1,可以保证只有一个线程可以访问共享资源。
PV操作在软考中的深入探讨1. 基本概念PV操作是用于进程同步的两种基本操作。
P操作通常表示为一个进程需要一个资源,而V操作表示释放一个资源。
这两种操作通常用于实现进程间的同步和互斥。
2. PV操作原理PV操作基于信号量机制。
信号量是一个整数值,通常用于表示资源的数量。
P操作会尝试获取资源,减少信号量的值;而V操作会释放资源,增加信号量的值。
如果P操作不能立即获得资源(即信号量为0),则该进程会被阻塞或等待,直到资源可用。
3. PV操作在进程同步中的应用PV操作在进程同步中有着广泛的应用。
例如,在生产者-消费者问题中,生产者用于生成数据,消费者用于消费数据。
通过PV操作,可以确保生产者在没有数据被消费之前不会继续生产,同时确保消费者在没有数据可供消费时不会继续消费。
4. PV操作和互斥量互斥量是一种特殊的信号量,其值只能为0和1。
当一个进程获得互斥量时,其他任何进程都无法获得该互斥量,直到第一个进程释放它。
这使得互斥量可以用于保护某些临界区域,以实现互斥访问。
PV操作和互斥量通常一起使用,以实现更复杂的同步问题。
5. PV操作的编程实现在大多数编程语言中,PV操作可以通过系统调用或库函数实现。
例如,在UNIX系统中,可以使用semop函数进行PV操作。
在实现PV操作时,需要注意避免死锁和饥饿等问题。
6. PV操作的复杂度分析PV操作的复杂度取决于所使用的算法和数据结构。
在一些算法中,例如二叉堆或斐波那契堆,PV操作的平均时间复杂度可以达到O(1)。
然而,在最坏的情况下,PV操作的复杂度可能会达到O(n),其中n是信号量的值。
7. PV操作与信号量信号量是一种同步机制,用于控制多个进程对共享资源的访问。
PV操作是信号量机制中的基本操作,通过它们可以实现对共享资源的互斥访问和同步。
信号量通常用于保护临界区、实现进程间的同步和互斥等。
8. PV操作与死锁预防死锁是操作系统中的一个重要问题,它发生在两个或多个进程无限期地等待对方释放资源的情况。
case -1:perror("fork()");exit(0);case 0:do_child_loop(sem_set_id,FILE_NAME);exit(0);default:break;}}for(i = 0;i<10;i++){int child_status;wait(&child_status);}printf("main is done");fflush(stdout);return 0;}运行结果:二、共享主存段机制共享主存段为进程提供了直接通过主存进行通信的有效手段,不像消息缓存机制那样需要系统提供缓存,也不像pipe机制那样需要事先建立一个特殊文件,而是有通信双方直接访问某些共享虚拟存储器空间。
在系统V中,系统管理一组共享主存段控制块。
通信进程在使用共享主存段以前,首先提出申请,系统为止分配存储空间并返回共享主存段标识号。
一个共享段建立后,进程把它被附加到自己的虚拟存储空间中。
一个进程可以附加多个共享主存段。
一个主存段一旦被附加到进程的虚拟机空间后,对它的访问以其他虚拟机的访问完全相同。
但为了保证共享主存段数据完整性,通信的进程之间要互斥的进行访问。
当通信进程不再需要该共享主存段时,可使用命令将其与进程分离,从而使其进程的虚空间删除。
为了理解进程通过共享主存段的通信过程,下面举例,一个是进程向共享段写信息的例子:一个是进行从共享段读信息的例子。
代码如下:四、实验过程与分析一、信号量机制在第一个例子的程序中创建了5个并发子进程,互斥地对文件进行写操作,将自己的进程号写到文件中去,信号量的初值为1,当地一个进程执行update_file函数时首先将信号量值-1,(相当于P操作)致使其它进程等待无法操作文件,直到其结束后,将其值变为1后(相当于V操作),其它进程并发竞争对文件的写操作,并将自己的pid 写入文件中。
在linux中信号量机制的执行既步骤如下所示:(1)信号量的定义:struct semaphore {spinlock_t lock;unsigned int count;struct list_head wait_list;};在linux中,信号量用上述结构体表示,我们可以通过该结构体定义一个信号量。
第1篇一、实验目的1. 理解进程通信的概念和原理;2. 掌握进程通信的常用机制和方法;3. 能够使用进程通信机制实现进程间的数据交换和同步;4. 增强对操作系统进程管理模块的理解。
二、实验环境1. 操作系统:Linux2. 编程语言:C3. 开发环境:GCC三、实验内容1. 进程间通信的管道机制2. 进程间通信的信号量机制3. 进程间通信的共享内存机制4. 进程间通信的消息队列机制四、实验步骤1. 管道机制(1)创建管道:使用pipe()函数创建管道,将管道文件描述符存储在两个变量中,分别用于读和写。
(2)创建进程:使用fork()函数创建子进程,实现父子进程间的通信。
(3)管道读写:在父进程中,使用read()函数读取子进程写入的数据;在子进程中,使用write()函数将数据写入管道。
(4)关闭管道:在管道读写结束后,关闭对应的管道文件描述符。
2. 信号量机制(1)创建信号量:使用sem_open()函数创建信号量,并初始化为1。
(2)获取信号量:使用sem_wait()函数获取信号量,实现进程同步。
(3)释放信号量:使用sem_post()函数释放信号量,实现进程同步。
(4)关闭信号量:使用sem_close()函数关闭信号量。
3. 共享内存机制(1)创建共享内存:使用mmap()函数创建共享内存区域,并初始化数据。
(2)映射共享内存:在父进程和子进程中,使用mmap()函数映射共享内存区域。
(3)读写共享内存:在父进程和子进程中,通过指针访问共享内存区域,实现数据交换。
(4)解除映射:在管道读写结束后,使用munmap()函数解除映射。
4. 消息队列机制(1)创建消息队列:使用msgget()函数创建消息队列,并初始化消息队列属性。
(2)发送消息:使用msgsnd()函数向消息队列发送消息。
(3)接收消息:使用msgrcv()函数从消息队列接收消息。
(4)删除消息队列:使用msgctl()函数删除消息队列。
C语言技术中的信号量和读写锁操作详解在多线程编程中,保证线程安全性是一个重要的问题。
为了解决线程之间的资源竞争和互斥访问,C语言提供了信号量和读写锁这两种机制。
本文将详细介绍这两种技术的原理和使用方法。
一、信号量信号量是一种用于线程同步和互斥的机制。
它可以用来控制对共享资源的访问。
在C语言中,我们可以使用信号量来解决多个线程同时访问共享资源的问题。
信号量的原理是基于计数器的。
当一个线程想要访问共享资源时,它首先需要检查信号量的值。
如果信号量大于0,表示资源可用,线程可以继续执行并将信号量的值减1。
如果信号量等于0,表示资源不可用,线程需要等待,直到有其他线程释放资源并将信号量的值加1。
在C语言中,我们可以使用`sem_init`函数初始化一个信号量,使用`sem_wait`函数等待资源,使用`sem_post`函数释放资源。
例如:```c#include <stdio.h>#include <pthread.h>#include <semaphore.h>sem_t semaphore;void* thread_func(void* arg) {sem_wait(&semaphore);// 访问共享资源sem_post(&semaphore);return NULL;}int main() {sem_init(&semaphore, 0, 1);pthread_t tid1, tid2;pthread_create(&tid1, NULL, thread_func, NULL);pthread_create(&tid2, NULL, thread_func, NULL);pthread_join(tid1, NULL);pthread_join(tid2, NULL);sem_destroy(&semaphore);return 0;}```在上面的例子中,我们创建了一个信号量,并将其初始化为1,表示共享资源可用。