带隙基准源电路与版图设计.
- 格式:doc
- 大小:1.76 MB
- 文档页数:52
帯隙基准电路设计(东南大学集成电路学院)一.基准电压源概述基准电压源(Reference Voltage)是指在模拟电路或混合信号电路中用作电压基准的具有相对较高精度和稳定度的参考电压源,它是模拟和数字电路中的核心模块之一,在DC/DC,ADC,DAC以及DRAM等集成电路设计中有广泛的应用。
它的温度稳定性以及抗噪性能影响着整个电路系统的精度和性能。
模拟电路使用基准源,是为了得到与电源无关的偏置,或是为了得到与温度无关的偏置,其性能好坏直接影响电路的性能稳定。
在CMOS技术中基准产生的设计,着重于公认的“帯隙”技术,它可以实现高电源抑制比和低温度系数,因此成为目前各种基准电压源电路中性能最佳、应用最广泛的电路。
基于CMOS的帯隙基准电路的设计可以有多种电路结构实现。
常用的包括Banba和Leung结构带薪基准电压源电路。
在综合考虑各方面性能需求后,本文采用的是Banba结构进行设计,该结构具有功耗低、温度系数小、PSRR高的特点,最后使用Candence软件进行仿真调试。
二.帯隙基准电路原理与结构1.工作原理带隙基准电压源的设计原理是根据硅材料的带隙电压与电源电压和温度无关的特性,通过将两个具有相反温度系数的电压进行线性组合来得到零温度系数的电压。
用数学方法表示可以为:2211V V V REF αα+=,且02211=∂∂+∂∂TV T V αα。
1).负温度系数的实现 根据双极性晶体管的器件特性可知,双极型晶体管的基极-发射极电压BE V 具有负温度系数。
推导如下:对于一个双极性器件,其集电极电流)/(ex p T BE S C V V I I =,其中q kT V T /=,约为0.026V ,S I 为饱和电流。
根据集电极电流公式,得到:SC T BE I I V V ln= (2.1) 为了简化分析,假设C I 保持不变,这样: TI I V I I T V T V S S T S C T BE ∂∂-∂∂=∂∂ln (2.2) 根据半导体物理知识可知:kT E bT I gm S -=+ex p 4 (2.3)其中b 为比例系数,m ≈−3/2,Eg 为硅的带隙能量,约为1.12eV 。
带隙基准电路设计与仿真带隙基准电路是一种用于产生稳定电压参考的电路,它的工作原理是利用带隙参考电压源的稳定性,将其转换为稳定的输出电压。
在电子设备中,带隙基准电路被广泛应用于各种需要稳定参考电压的场合,如模拟电路中的比较器、放大器、ADC、DAC等。
1.确定设计指标和要求:首先需要确定带隙基准电路的设计指标和要求,包括输出电压的精度、波动、温漂等。
这些指标将直接影响到整个电路的设计和性能。
2.选择合适的带隙参考电压源:带隙参考电压源是带隙基准电路的核心部分,选择合适的电压源对于整个电路的性能至关重要。
常见的带隙参考电压源有基准二极管电压源、基准电流源和温度补偿电压源等。
3.设计和优化调整电路:调整电路用于校准输出电压,使其达到所需的精度,也可以用于调整输出电压的温度系数。
调整电路通常由运放、电阻网络和校准电压源等组成,通过合理选择和设计这些元件,可以优化整个电路的性能。
4.进行仿真和优化:在设计结束后,需要进行电路的仿真和优化。
通过仿真可以验证电路的性能,并进行参数调整和优化,以满足设计指标和要求。
5.制作原型并测试:在设计和仿真完成后,可以制作原型并进行测试。
测试结果将反馈给设计人员,并根据需要进行进一步的调整和优化。
设计带隙基准电路需要综合考虑电路的稳定性、精度、功耗和成本等因素。
在选择和设计电路元件时,可以采用一些常用的优化方法,如小信号模型分析、傅里叶级数分析、参数扫描等。
最后,需要注意的是,在设计带隙基准电路时,还应考虑一些特殊因素,如温度变化、噪声干扰、工作电流等影响电路性能的因素,并采取相应的补偿措施。
总之,带隙基准电路的设计与仿真是一个复杂的过程,需要综合考虑各种因素,通过合理的选择和设计来满足设计指标和要求。
一种低功耗多输出带隙电压基准源电路的设计一种低功耗多输出带隙电压基准源电路的设计是一种实现高精度电压基准源的方法。
在本文中,我们将分步骤阐述这种电路的设计过程及其主要特点。
步骤1:选择具有合适特性的带隙参考电压源为了实现高精度电压基准源,我们需要选择具有合适特性的带隙参考电压源。
这种电压源需要具有以下特点:1. 稳定性高:带隙参考电压源相对于温度和电源电压的变化非常稳定,可以在多种应用场景下提供稳定的参考电压。
2. 精度高:带隙参考电压源可以提供高精度的电压输出,能够满足对于电压精度要求较高的应用场景。
3. 低噪声:带隙参考电压源的噪声非常低,可以提供纯净的电压参考信号。
为了实现这种特性,我们可以选择亚微米CMOS工艺下的具有特殊结构的带隙参考电压源。
步骤2:设计低功耗的多输出电路在选择好合适的带隙参考电压源后,我们需要将其集成在一个低功耗多输出的电路中。
这种电路需要具有以下特点:1. 低功耗:这种电路需要设计为低功耗的,以便在便携式电子设备等需要长时间工作的场合中使用。
2. 多输出:这种电路需要提供多个电压输出,以满足不同应用需求。
3. 精度高:这种电路需要具有高精度的输出,以提供稳定可靠的参考电压信号。
为了实现这种特性,我们可以采用基于CMOS运算放大器的电路结构。
通过适当的电路调整和优化,可以实现低功耗、多输出、高精度的目标。
步骤3:验证电路性能并进行参数调整在设计完低功耗多输出带隙电压基准源电路后,需要进行实验验证并进行参数调整,以优化电路性能。
具体来说,需要进行以下工作:1. 电路性能测试:对电路进行性能测试,包括输出电压精度、温度稳定性、输入电压范围等方面的测试。
通过测试结果来调整电路设计参数,优化电路性能。
2. 参数调整:通过对电路设计参数的调整,对电路性能进行进一步优化。
调整的参数包括电路增益、偏置电压、输入电压范围等。
在完成以上工作后,即可实现设计一个低功耗多输出带隙电压基准源电路。
论文题目:带隙基准源电路与版图设计摘要基准电压源具有相对较高的精度和稳定度,它的温度稳定性以及抗噪性能影响着整个系统的精度和性能。
模拟电路使用基准源,或者是为了得到与电源无关的偏置,或者为了得到与温度无关的偏置,其性能好坏直接影响电路的性能稳定,可见基准源是子电路不可或缺的一部分,因此性能优良的基准源是一切电子系统设计最基本和最关键的要求之一,而集成电路版图是为了实现集成电路设计的输出。
本文的主要目的是用BiCMOS工艺设计出基准源电路的版图并对其进行验证。
本文首先介绍了基准电压源的背景发展趋势及研究意义,然后简单介绍了基准电压源电路的结构及工作原理。
接着主要介绍了版图的设计,验证工具及对设计的版图进行验证。
本设计采用40V的0.5u BiCMOS工艺库设计并绘制版图。
仿真结果表明,设计的基准电压源温度变化为-40℃~~85℃,输出电压为2.5V及1.25V。
最后对用Diva 验证工具对版图进行了DRC和LVS验证,并通过验证,表明本次设计的版图符合要求。
关键字:BiCMOS,基准电压源,温度系数,版图ISubject: Research and Layout Design Of Bandgap ReferenceSpecialty: MicroelectronicsName: Zhong Ting (Signature)____Instructor: Liu Shulin (Signature)____ABSTRACTThe reference voltage source with relatively high precision and stability, temperature stability and noise immunity affect the accuracy and performance of the entire system. Analog circuit using the reference source, or in order to get the bias has nothing to do with power, or in order to be independent of temperature, bias, and its performance directly affects the performance and stability of the circuit shows that the reference source is an integral part of the sub-circuit, excellent reference source is the design of all electronic systems the most basic and critical requirements of one of the IC layout in order to achieve the output of integrated circuit design. The main purpose of this paper is the territory of the reference circuit and BiCMOS process to be verified.This paper first introduces the background of the trends and significance of the reference voltage source, and then briefly introduced the structure and working principle of the voltage reference circuit. Then introduces the layout design and verification tools to verify the design of the territory.This design uses a 40V 0.5u BiCMOS process database design and draw the layout.The simulation results show that the design of voltage reference temperature of -40 ° C ~ ~ 85 ° C, the output voltage of 2.5V and 1.25V. Finally, the Diva verification tool on the territory of the DRC and LVS verification, and validated, show that the territory of the design meet the requirements.Keywords: BiCMOS,band gap , temperature coefficient, layoutII目录1 绪论 (1)1.1 背景介绍及发展趋势 (1)1.2 研究意义 (3)1.3 本文主要工作 (4)2 基准电压源电路设计 (5)2.1 基准电压源的分类及特点 (5)2.2 基准电压源的温度特性 (7)V (7)2.2.1 负温度系数项BE2.2.2 正温度系数电压 (7)2.3 基本原理 (8)2.3.1 与温度无关的电路 (8)2.3.2.与电源无关的偏置电路 (8)2.4 基准电压源电路设计 (9)2.4.1 基本原理 (9)2.4.2 运放的设计 (10)2.4.3 带隙核心电路设计 (14)2.5 仿真分析 (15)3 版图设计 (19)3.1 版图设计的基础 (19)3.1.1 集成电路版图设计与掩膜版、制造工艺的关系 (19)3.1.2 版图设计的设计规则 (20)3.1.3 版图通用设计步骤 (23)3.2工艺介绍 (24)3.2.1 常见工艺简介 (24)III3.2.2 BiCMOS工艺 (26)3.3 带隙基准电路的版图设计 (28)3.3.1 版图的分层及连接 (28)3.3.2 版图设计环境介绍 (29)3.3.3 器件及总体版图 (30)4 版图验证 (39)4.1 版图验证概述 (39)4.2 验证工具介绍 (39)4.2.1 Cadence概述 (39)4.2.2 Diva使用介绍 (40)4.3 版图的DRC验证 (44)4.4 版图的LVS验证 (44)5总结 (46)致谢 (48)参考文献 (49)IV1 绪论1.1 背景介绍及发展趋势基准源是模拟与数字系统中的核心模块之一,它被广泛应用于动态存储(DRAM)、闪存(flash memory)以及其他模拟器件中。
带隙电压基准源的设计与分析摘要介绍了基准源的发展和基本工作原理以及目前较常用的带隙基准源电路结构。
设计了一种基于Banba结构的基准源电路,重点对自启动电路及放大电路部分进行了分析,得到并分析了输出电压与温度的关系。
文中对带隙电压基准源的设计与分析,可以为电压基准源相关的设计人员提供参考。
可以为串联型稳压电路、A/D和D/A转化器提供基准电压,也是大多数传感器的稳压供电电源或激励源。
基准源广泛应用于各种模拟集成电路、数模混合信号集成电路和系统集成芯片中,其精度和稳定性直接决定整个系统的精度。
在模/数转换器(ADC)、数/模转换器(DAC)、动态存储器(DRAM)等集成电路设计中,低温度系数、高电源抑制比(PSRR)的基准源设计十分关键。
在集成电路工艺发展早期,基准源主要采用齐纳基准源实现,如图1(a)所示。
它利用了齐纳二极管被反向击穿时两端的电压。
由于半导体表面的沾污等封装原因,齐纳二极管噪声严重且不稳定。
之后人们把齐纳结移动到表面以下,支撑掩埋型齐纳基准源,噪声和稳定性有较大改观,如图1(b)所示。
其缺点:首先齐纳二极管正常工作电压在6~8 V,不能应用于低电压电路;并且高精度的齐纳二极管对工艺要求严格、造价相对较高。
1971年,Widlar首次提出带隙基准结构。
它利用VBE的正温度系数和△VBE的负温度系数特性,两者相加可得零温度系数。
相比齐纳基准源,Widlar型带隙基准源具有更低的输出电压,更小的噪声,更好的稳定性。
接下来的1973年和1974年,Kujik和Brokaw分别提出了改进带隙基准结构。
新的结构中将运算放大器用于电压钳位,提高了基准输出电压的精度。
以上经典结构奠定了带隙基准理论的基础。
文中介绍带隙基准源的基本原理及其基本结构,设计了一种基于Banba结构的带隙基准源,相对于Banba结构,增加了自启动电路模块及放大电路模块,使其可以自动进入正常工作状态并增加其稳定性。
1 带隙基准源工作原理由于带隙电压基准源能够实现高电源抑制比和低温度系数,是目前各种基准电压源电路中性能最佳的基准源电路。
带隙基准电压的设计王旭 113163一、设计指标VDD=3V~6V Vref =1.27V PPM<20ppm/℃二、电路原理图三、原理分析1、核心思想:利用PTA T 电压和双极性晶体管发射结电压的不同的温度特性,获取一个与温度及电源电压无关的基准电压。
2、详细机理分析带隙电压基准的基本原理:=∂+∂⋅-+V V βα0V V T ++∂⎛⎫> ⎪∂⎝⎭0V V T --∂⎛⎫< ⎪∂⎝⎭αβ∑REF V V αβ+-=⋅+⋅基准电压表达式 : 双极型晶体管,其集电极电流(IC )与基极-发射极电压(VBE )关系为: 其中, 利用此公式推导得出VBE 电压的温度系数为其中, 是硅的带隙能量。
当 时这个温度系数本身就与温度有关。
正温度系数的产生机理:如果两个同样的晶体管(IS1= IS2= IS ,IS 为双极型晶体管饱和电流)偏置的集电极电流分别为nI0和I0,并忽略它们的基极电流,那么它们基极-发射极电压差值为因此,VBE 的差值就表现出正温度系数这个温度系数与温度本身、集电极电流都无关。
利用上面的正,负温度系数的电压,可以设计一个零温度系数的基准电压,有以下关系:因为因此令, 只要满足上式 ,便可得到零温度系数的VREF 。
故有:结合以上基本原理,现返回到最初选择的拓扑图,分别采用电流镜接法,M3、M4使得I1与I2电流相等,而M1与M2的电流镜接法又使得X 与Y 点的电位相等。
因而有: R In n12TI V VEB 2-VEB 1VR1===REF VV Vαβ+-=⋅+⋅exp()C S BE T I I V V =T VkT q =(4)BE T g BE V m V E q V T T -+-∂=∂ 1.12g E eV =1.5m ≈-750BE V mV ≈300T K =1.5BE V T mV C ∂∂≈-︒12BE BE BE V V V ∆=-0012ln ln ln T T T s s nI I V V V n I I =-=ln 0BE V kn T q ∂∆=>∂(ln )REF BE T VV V n αβ=⨯+⨯1.5/BE V T mV C ∂∂≈-︒0.087/T V T mV C ∂∂≈︒1α=(ln )(0.087/) 1.5/n mV C mV Cβ⨯︒=︒(ln )17.2n β⨯≈nV R R V V T BE REF ln 123+=当 时 V VT026.0=可推得 REF V =1.197V3、调试分析采用管子的宽长比如下图暂且设置电阻R1=26K ,R2=230K ,晶体管1并联为7,晶体管2、3均设置为1. 初次运行结果如下图750BEV mV ≈300T K =由此可见随着温度的升高,参考电压在减小,说明正温度系数过小,应该正大电阻R2、R1的比值,进一步调试,将R2的值设为变量,扫描从230K到460K的最佳图形,运行得到下图:由上图可知在R2=460K的时候参考电压变化较小,进一步缩小R2扫描范围,从400K到460K仿真得到下图:经过PPM计算得到如下图的结果PPM值已接近指标要求,但是输出电压高于指标要求,进一步分析发现,为减小输出电压,应减小M8管的宽长比,提高其过驱动电压,为此经过反复调试,最终确定M8管的W=1.1um,L=625nm,进一步调整R2扫描范围从520K到540K,仿真结果如下:经过计算PPM值得到如下结果:由图可见PPM值在R2=525K时PPM值最小为18.28,为进一步得到最佳结果,采用优化处理,优化处理后仿真得到如下结果:由上图可知在R2=524.8K时,得到最佳PPM值为18.02,基本符合指标要求。
带隙基准电路本⽂为⼤家介绍⼀个cmos⽆运放带隙基准源电路。
常规的带隙基准电路图1所⽰是两种常规的带隙基准电路,两者都是通过箝制A,B点电压相等,产⽣PTAT电流,再通过电阻R2将该电流转变为电压,与晶体管的VEB相加,得到基准电压。
两者不同点是图1(A)所⽰电路使⽤运算放⼤器,图1(B)所⽰电路使⽤电流镜,使A,B电压相等。
运放带隙基准的性能受运算放⼤器的失调电压、电源抑制⽐、增益等的严重影响。
虽然可以通过仔细设计运算放⼤器得到很好的性能,但是运算放⼤器不仅引⼊了新的噪声和功耗,⽽且还增加了设计难度。
电流镜带隙基准电路虽然没有使⽤运算放⼤器,但是因为沟道调制效应等原因,也会造成基准源精度的降低。
带隙基准电路_cmos⽆运放带隙基准源图1两种常规的带隙基准电路cmos⽆运放带隙基准源本⽂在图1(B)常规电流镜带隙基准电路的基础上,提出⼀种新型带隙基准电路,如图2所⽰。
图2 新型带隙基准电压源启动电路因为带隙电路中存在简并偏置点,当电源上电时,有可能出现所有⽀路都传输零电流的情况,使整个电路不能正常⼯作。
因此,需要启动电路让电路在上电时摆脱简并偏置点。
图2电路中的M9~M14和Q5组成启动电路。
刚接通电源时,节点⑥为低电平。
M9导通,给节点⑥充电。
当节点⑥电压升到⼀定⾼度时,整个带隙基准电路开始正常⼯作,同时导致(6)式成⽴,从⽽在电路正常⼯作时M9处于截⽌状态。
启动电路不再对电路产⽣影响,完成电路的启动。
带隙基准电路_cmos⽆运放带隙基准源基准电压产⽣电路图2中,M1,M2,M5,M6宽长⽐的⽐例为2∶1∶1∶2。
M3,M4,M7宽长⽐的⽐例为2∶1∶2。
Q1,Q3~Q5是⼀样的三极管,Q2是与Q1⼀样的16个三极管的并联。
M1~M5,Q1,Q2形成PTAT电流产⽣电路。
M5还起反馈作⽤。
M6,M7,Q3⽀路为M3,M4提供偏置电压,同时起负反馈作⽤,使节点①电压等于节点②电压。
Q1和Q3是⼀样的三极管,M7和M3的栅极相连,使V⑤=V③。
带隙基准参数设计基准源核心电路参数设计首先,考虑两个三极管发射极面积之比N的选取。
由上述公式可知:N值越大,则R2/R3的比例就越小,从而可以减小电阻的版图面积。
但是N值越大,也会导致三极管的静态电流增大。
折中选取N=8,这样版图可以采用中心对称布局,有利于减少匹配误差。
假设选取的工艺下的三极管的电流大于1uA时,V BE的输出曲线较为平滑。
从节省功耗的角度,假定流过三极管集电极的电流为1uA。
由上述公式可知,当N=8、IR3=1uA、T=300K时,计算得:考虑到R1和R2的数值数倍于R3,则电阻值太大,消耗版图面积太大。
因此,作为折中,选取R3为10K,电流值为5uA左右。
确定了以上参数后,考虑一阶补偿时R2的取值。
对上述公式在T0处求导可得:令上式为零,即进行一阶补偿,可得:化简得:代入参数,V G0=1.205V,查图可知V EB1在5uA的偏执电流下约为716mV,300K温度下V T0=26mV,r=3.2,a=1(三极管的偏置电流为PTA T),N=8,计算得:为了产生600mV的输出电压,需要调整R4的值。
由上式可以推出:在T=300K条件下代入各值,求得R4=48.5K。
考虑到各个电阻阻值偏大,故将各电阻设为高阻多晶型。
然而,高阻多晶虽然有很高的方阻,但是工艺稳定性不太好,故后期的Trimming 工序是必不可少的。
最后,确定电流镜的尺寸。
采用适当偏小的宽长比,可以提高电流镜的过驱动电压,进而可以减小电流镜阈值电压失配所带来的影响。
另外,沟道长度调制效应也是一个重要影响因素,考虑到低压应用不能使用Cascode结构,可以增大器件的栅长来减小沟道长度调制效应的影响。
但是过大的沟道长度会导致版图的面积的增加,需要在性能和版图面积之间做出折中。
经过计算与迭代仿真,选取M1、M2和M3的宽长比为10um/1um。
注意电流镜的版图设计中需采用中心对称布局以减小误差。
综上,通过理论分析,确定带隙核心电路的器件参数为:运算放大器设计运放的性能对带隙的性能有着直接的影响。
一种低功耗多输出带隙电压基准源电路的设计低功耗多输出带隙电压基准源电路是一种用于提供稳定、准确的参考电压的电路。
它通常由一个基准电源、一个带隙电压参考电路和多个输出电压源组成。
设计一个低功耗多输出带隙电压基准源电路,需要以下步骤:
2.设计带隙电压参考电路:带隙电压参考电路是产生稳定的参考电压的关键部分。
它通常由一个基准电流源、一个带隙电压比较电路和一个负反馈放大器组成。
a.基准电流源:基准电流源是一个恒流源,它提供稳定的恒定电流,用于带隙电压比较电路。
b.带隙电压比较电路:带隙电压比较电路是一个精确的比较器,用于产生一个与基准电压成比例的电压。
c.负反馈放大器:负反馈放大器用于将带隙电压比较电路的输出电压放大并修正,使其达到精确和稳定的参考电压。
3.设计多个输出电压源:多个输出电压源是该电路的关键部分,它可以同时提供多个不同电压的输出。
a.选择适当的分压电阻:采用分压电阻可以将参考电压分成多个不同的电压。
选择适当的分压电阻可以确保输出电压的准确性和稳定性。
b.使用稳压电路:为了确保输出电压的稳定性,可以使用稳压电路,例如稳压二极管或者稳压器件。
4.进行仿真和测试:设计完成后,进行电路仿真和测试。
通过仿真和测试,可以验证电路的性能和输出电压的准确性和稳定性。
通过以上步骤,可以设计出一种低功耗多输出带隙电压基准源电路。
这种电路可以稳定地提供多个不同的输出电压,具有较低的功耗和较高的精度。
这种电路广泛应用于各种需要稳定和准确参考电压的场合,例如模拟电路、传感器电路等。
一、研究现状总结分析1.题目:带隙基准电压源设计2.小组成员:3.所选课题电路系统的研究现状总结和分析基准源是模拟和混合信号集成电路的重要组成部分,它广泛的用于电源管理芯片、温度传感器、数据转换器(包括模数转换器ADC和数模转换器DAC)、电压稳压器和存储器中。
作为整个电路或者系统的“基准”,其性能直接影响整个电路或者系统的性能。
基准源应该具有良好的抗干扰能力,如:在整个工作温度内,受温度变化影响很小;在一定的电源电压变化范围内的变化很小;受工艺影响较小等。
事实上,由于大多数工艺参数都是随着温度变化的,所以如果-一个基准是与温度无关的,那么通常它也是与工艺无关的。
所以,一般而言基准源最重要的两个参数指标即温度特性和电源抑制特性。
随着集成电路规模的不断扩大,电路的结构和功能也日趋复杂,片上系统(SoC)必将成为大势所趋,而将如此多的电路模块集成到一起,对基准源的抗干扰能力提出了更加苛刻的要求。
与此同时,集成电路的特征尺寸伴随着工艺的进步越来越小,相应的电源电压也越来越低,然而,阈值电压的降低却滞后于电源电压的降低,因此对基准源的设计提出了更大的挑战。
不仅如此,越来越多的高精度数据转换器的广泛使用,无疑也大大提高了基准源的设计难度。
综上所述,随着电路规模、精度的提高和尺寸的减小,对基准源的设计提出了越来越大的挑战。
因此,研究在深亚微米条件下的高性能基准源电路具有十分重要的意义。
1.低温度系数的带隙基准源低温度系数的基准源在高精度系统中具有广泛应用,如:高精度的模数转换器、数模转换器和线性稳压器等。
一般只采用一阶温度补偿策略的基准源能达到20-50ppm/C""l,要进一步降低温度系数,就必须采用高阶温度补偿策略。
可通过分段线性补偿的方法,它将基准源的工作温度分为若干个子区间,对每个区间分别进行补偿,从而在整个工作温度内获得较低的温度系数。
曲率补偿的方法是通过在基准源输出电压上叠加一个温度的指数函数,从而实现高阶补偿的目的。
带隙基准电压源电路设计英文回答:Bandgap Voltage Reference Circuit Design.Bandgap voltage reference circuits are a critical component in many electronic systems, providing a stableand accurate voltage reference against which other circuits can be calibrated. They are particularly useful in applications where low power consumption, a wide operating temperature range, and high accuracy are required.The design of a bandgap voltage reference circuit typically involves the following steps:Choosing a suitable bandgap voltage: The bandgap voltage is the voltage difference between the base and emitter of a bipolar junction transistor (BJT) operating in the forward-active region. It is typically around 1.2 V at room temperature and has a positive temperature coefficient,meaning that it increases with increasing temperature.Designing a temperature-compensated circuit: The temperature dependence of the bandgap voltage can be compensated by using a combination of BJTs, resistors, and capacitors. The goal is to create a circuit that has a constant output voltage over a wide temperature range.Adding additional features: Depending on the specific application, additional features such as low-power operation, low noise, or voltage trimming may be required. These features can be implemented using additionalcircuitry or by carefully choosing the components used in the design.中文回答:带隙基准电压源电路设计。
论文题目:带隙基准源电路与版图设计摘要基准电压源具有相对较高的精度和稳定度,它的温度稳定性以及抗噪性能影响着整个系统的精度和性能。
模拟电路使用基准源,或者是为了得到与电源无关的偏置,或者为了得到与温度无关的偏置,其性能好坏直接影响电路的性能稳定,可见基准源是子电路不可或缺的一部分,因此性能优良的基准源是一切电子系统设计最基本和最关键的要求之一,而集成电路版图是为了实现集成电路设计的输出。
本文的主要目的是用BiCMOS工艺设计出基准源电路的版图并对其进行验证。
本文首先介绍了基准电压源的背景发展趋势及研究意义,然后简单介绍了基准电压源电路的结构及工作原理。
接着主要介绍了版图的设计,验证工具及对设计的版图进行验证。
本设计采用40V的0.5u BiCMOS工艺库设计并绘制版图。
仿真结果表明,设计的基准电压源温度变化为-40℃~~85℃,输出电压为2.5V及1.25V。
最后对用Diva 验证工具对版图进行了DRC和LVS验证,并通过验证,表明本次设计的版图符合要求。
关键字:BiCMOS,基准电压源,温度系数,版图ISubject: Research and Layout Design Of Bandgap ReferenceSpecialty: MicroelectronicsName: Zhong Ting (Signature)____Instructor: Liu Shulin (Signature)____ABSTRACTThe reference voltage source with relatively high precision and stability, temperature stability and noise immunity affect the accuracy and performance of the entire system. Analog circuit using the reference source, or in order to get the bias has nothing to do with power, or in order to be independent of temperature, bias, and its performance directly affects the performance and stability of the circuit shows that the reference source is an integral part of the sub-circuit, excellent reference source is the design of all electronic systems the most basic and critical requirements of one of the IC layout in order to achieve the output of integrated circuit design. The main purpose of this paper is the territory of the reference circuit and BiCMOS process to be verified.This paper first introduces the background of the trends and significance of the reference voltage source, and then briefly introduced the structure and working principle of the voltage reference circuit. Then introduces the layout design and verification tools to verify the design of the territory.This design uses a 40V 0.5u BiCMOS process database design and draw the layout.The simulation results show that the design of voltage reference temperature of -40 ° C ~ ~ 85 ° C, the output voltage of 2.5V and 1.25V. Finally, the Diva verification tool on the territory of the DRC and LVS verification, and validated, show that the territory of the design meet the requirements.Keywords: BiCMOS,band gap , temperature coefficient, layoutII目录1 绪论 (1)1.1 背景介绍及发展趋势 (1)1.2 研究意义 (3)1.3 本文主要工作 (4)2 基准电压源电路设计 (5)2.1 基准电压源的分类及特点 (5)2.2 基准电压源的温度特性 (7)2.2.1 负温度系数项V (7)BE2.2.2 正温度系数电压 (7)2.3 基本原理 (8)2.3.1 与温度无关的电路 (8)2.3.2.与电源无关的偏置电路 (8)2.4 基准电压源电路设计 (9)2.4.1 基本原理 (9)2.4.2 运放的设计 (10)2.4.3 带隙核心电路设计 (14)2.5 仿真分析 (15)3 版图设计 (19)3.1 版图设计的基础 (19)3.1.1 集成电路版图设计与掩膜版、制造工艺的关系 (19)3.1.2 版图设计的设计规则 (20)3.1.3 版图通用设计步骤 (23)3.2工艺介绍 (24)3.2.1 常见工艺简介 (24)III3.2.2 BiCMOS工艺 (26)3.3 带隙基准电路的版图设计 (28)3.3.1 版图的分层及连接 (28)3.3.2 版图设计环境介绍 (29)3.3.3 器件及总体版图 (30)4 版图验证 (39)4.1 版图验证概述 (39)4.2 验证工具介绍 (39)4.2.1 Cadence概述 (39)4.2.2 Diva使用介绍 (40)4.3 版图的DRC验证 (44)4.4 版图的LVS验证 (44)5总结 (46)致谢 (48)参考文献 (49)IV1 绪论1.1 背景介绍及发展趋势基准源是模拟与数字系统中的核心模块之一,它被广泛应用于动态存储(DRAM)、闪存(flash memory)以及其他模拟器件中。
其实现方式有电压基准和电流基准。
基准电压源是模数转换器(ADC)、数模转换器(DAC)、线性稳压器和开关稳压器、温度传感器、充电电池保护芯片和通信电路等电路中不可缺少的部分,基准电流源主要作为高性能运算放大器等器件或电路的偏置,也可用于LVDS驱动器和Viterbi解码器。
基准源需要有稳定的工艺、电压和温度系数,并且不需要随着制造工艺的改变而改变。
带隙基准参考源通常是模拟和混合信号处理系统中重要的组成模块,它用来提供高稳定的参考电平和参考电压,对系统的性能起着至关重要的作用。
传统的带隙基准电路利用双极型晶体管的基极—发射极电压V m的负温度系数和不同电流密度下两个双极型晶体管基极—发射极电压的差值的正温度系数相互补偿,使输出电压达到很低的温度漂移。
但实际设计电路中由于运放的失调电压对V m的影响,V m与温度的非线性关系,使传统的带隙基准电路在温度系数、功耗、PSRR等方面无法达到现今集成电路设计的要求。
随着现代如今,带隙基准源在AD/DA、电源芯片、锁相环、高精度的电压表、电流表、欧姆表等领域有着很广泛的应用。
微电子技术和通信技术的发展,集成电路已进入超深亚微米时代,它的发展继续以高速、高集成度、低功耗为目标。
在发展的同时,集成电路逐渐与其它学科和技术相结合,形成新的方向,新的学科或专业,不断改变着传统专业分工的格局,使得SOC系统(System on Chip)越来越复杂。
这对模拟电路基本模块的电压、功耗、精度和速度等, 提出了更高的要求。
传统的带隙基准源电路结构渐渐难以适应设计需求。
近几年,国内外学者都对传统带隙基准源进行了改进,主要集中降低温度系数,提高了PSRR以及使其能工作在低电源电压下,展现出低功耗、低噪声、低温漂、高精度等特性。
国内外对CMOS工艺带隙基准电压源做了大量的研究,最新的技术进展主要体现在以下几个方面。
(1)低温度系数低温度系数的电压基准源对于高分辨率的DAC和ADC尤其重要。
对于一阶补偿的带隙基准源,温度系数通常可以做到10.60ppm/。
C。
为了进一步降低带隙基准的温度系数必须做高阶补偿。
目前出现的高阶补偿技术包括利用MOS管亚阈区v~I特性的补偿的带隙基准电路、利用电阻的温度特性的曲率校正方法、指数曲率补偿方法、温度分段补偿方法等。
(2)低电压工作的电压基准源随着深亚微米集成电路技术的不断发展,集成电路的电源电压越来越低。
带隙基准电压在1.2V左右,所以一般的带隙基准源的工作电压至少在1.2V以上。
采用特殊电路结构的带隙基准源可以工作在1V左右。
采用这些电路结构后主要的工作电压限制通常来自于运放的工作电压,并最终受限于MOS管的阈值电压。
(3)高电源纹波抑制比随着射频集成电路和数字电路的发展以及带基准源在高频电路应用中的推广,电源抑制比成为了基准源在高频及数模混合电路中的一个重要衡量标准。
在数模混合集成电路中,数字电路的噪声可能对模拟电路产生不利的影响。
因此,在混合电路中电压基准源应该在较宽的范围内具有良好的电源电压抑制比性能。
(4)低功耗低功耗是衡量电路性能好坏的指标之一。
作为集成电路的一个基本单元电路,低功耗也一直是基准电压研究发展的一个方向。
集成电路制造工艺主要有双极工艺、CMOS工艺和BiCMOS工艺。
用双极型工艺可以制造出速度高、驱动能力强、模拟精度高的器件,但双极型器件在功耗和集成度方面却无法满足系统集成的要求:而CMOS工艺可以制造出功耗高、集成度高和抗干扰能力强的CMOS器件,但其速度低、驱动能力差,在既要求高集成度又要求高速的领域中也无能为力。
BiCMOS工艺是把双极型器件和CMOS器件同时制作在同一芯片上,它综合了双极器件高跨导、强负载驱动能力和CMOS器件高集成度、低功耗的优点,使其互相取长补短,发挥各自的优点,它给高速、高集成度、高性能的LSI及VLSI的发展开辟了一条新的道路。