金属塑性成形综述
- 格式:docx
- 大小:105.78 KB
- 文档页数:6
第3章金属材料的塑性成形概述3.1金属塑性成形基础3.2 常用的塑性成形方法3.3 少、无切削的塑性成形方法3.4 常用的塑性成形金属材料概述金属塑性成形是利用金属材料所具有的塑性,在外力作用下通过塑性变形,获得具有一定形状、尺寸和力学性能的零件或毛坯的加工方法。
由于外力多数情况下是以压力的形式出现的,因此也称为金属压力加工。
塑性成形的产品主要有原材料、毛坯和零件三大类。
金属塑性成形的基本生产方式有:轧制、拉拔、挤压、自由锻、模锻、板料冲压等。
塑性成形的特点及应用:(1)消除缺陷,改善组织,提高力学性能。
(2)材料的利用率高。
(3)较高的生产率。
如利用多工位冷镦工艺加工内角螺钉,比用棒料切削加工工效提高约400倍。
(4)零件精度较高。
应用先进的技术和设备,可实现少切削或无切削加工。
如精密锻造的伞齿轮可不经切削加工直接使用。
但该方法不能加工脆性材料和形状特别复杂或体积特别大的零件或毛坯。
塑性成形加工在机械制造、军工、航空、轻工、家用电器等行业得到了广泛应用。
例如,飞机上的塑性成形零件约占85%;汽车、拖拉机上的锻件占60%~80%。
3.1 金属塑性成形基础3.1.1 单晶体和多晶体的塑性变形3.1.2 金属的塑性变形3.1.3 塑性成形金属在加热时组织和性能的变化3.1.4 金属的塑性成形工艺基础3.1.1单晶体和多晶体的塑性变形1.单晶体的塑性变形金属塑性变形最常见的方式是滑移。
滑移是晶体在切应力的作用下,一部分沿一定的晶面(亦称滑移面)和晶向(也称滑移方向)相对于另一部分产生滑动。
晶体滑移变形示意图滑移的实质:是通过晶体中的位错线沿滑移面的移动来实现的。
位错运动引起的滑移变形原理图2.多晶体的塑性变形多晶体的塑性变形是以单晶体的塑性变形为基础的,但多晶体中的晶粒取向不同、晶界的存在,对塑性变形的阻力增加。
晶粒之间也要相互滑动和转动。
3.1.2 金属的塑性变形1.形变强化(亦称加工硬化)金属塑性变形时产生的强度和硬度增加,塑性和韧性下降的现象,称形变强化(亦称加工硬化)。
材料成型工艺基础:金属塑性成形1. 引言金属塑性成形是制造业中常见的一种材料成型工艺。
通过对金属材料施加力量,使其在一定的温度和应变条件下发生塑性变形,从而得到所需形状和尺寸的制品。
这种成形工艺广泛应用于汽车、航空航天、机械制造等领域。
本文将介绍金属塑性成形的基本概念、工艺流程以及常见的金属塑性成形方法。
2. 基本概念2.1 金属塑性成形的定义金属塑性成形是指将金属材料通过施加力量,在一定的温度和应变条件下,使其发生塑性变形,从而得到所需形状和尺寸的工艺过程。
2.2 塑性变形的基本概念塑性变形是指材料在一定的应力作用下,在超过其屈服点之后发生的可逆性变形。
在这种变形中,金属材料的原子结构会发生改变,从而改变了材料的形状和尺寸。
3. 工艺流程金属塑性成形的工艺流程主要包括以下几个步骤:3.1 原材料准备在金属塑性成形工艺中,首先需要准备好所需的金属原材料。
原材料的选择需要满足产品的要求,包括材料的强度、韧性、耐蚀性等。
3.2 材料加热在金属塑性成形之前,通常需要将金属材料进行加热。
加热可以使金属材料达到一定的塑性状态,更容易发生塑性变形。
加热的温度和时间需要根据不同的金属材料和成形要求进行调整。
3.3 成型工艺金属塑性成形的成型工艺包括以下几种常见方法:3.3.1 锻造锻造是一种利用压力将金属材料塑性变形成形的方法。
在锻造过程中,金属材料会经过压缩、拉伸、冷却等多个步骤,最终得到所需的形状。
3.3.2 拉伸拉伸是将金属材料放在拉伸机上,通过施加力量使其发生塑性变形的方法。
通过拉伸可以改变金属材料的形状和尺寸。
3.3.3 深冲深冲是将金属材料放在冲压机上,通过模具对材料进行冲压,使其发生塑性变形的方法。
通过调整模具的形状和尺寸,可以得到不同形状和尺寸的制品。
3.4 后处理在金属塑性成形完成之后,通常需要进行一些后处理工艺。
包括去除表面的氧化物、清洗、退火等。
后处理的目的是提高产品的表面质量和性能。
4. 常见的金属塑性成形方法4.1 冷镦成形冷镦成形是一种将金属材料通过冷镦机进行挤压、拉伸、弯曲等操作,使其发生塑性变形的方法。
2023-11-06•金属塑性成形概述•金属塑性成形工艺•金属塑性成形设备•金属塑性成形技术的发展趋势•金属塑性成形过程中的缺陷与质量控制目•金属塑性成形实例分析录01金属塑性成形概述金属塑性成形是一种使金属材料发生塑性变形,以获得所需形状、尺寸和性能的加工方法。
金属塑性成形广泛应用于机械制造、航空航天、汽车、电子等领域,是一种重要的材料加工技术。
金属塑性成形的定义金属塑性成形可以制造出复杂形状的零件,并且能够获得较高的精度和表面质量。
与切削加工相比,金属塑性成形具有更高的材料利用率和更低的能耗。
金属塑性成形过程中材料的变形是均匀的,因此可以避免应力集中和裂纹等缺陷。
金属塑性成形的特点03金属塑性成形的基本原理包括应力状态、屈服准则、塑性流动规律等。
金属塑性成形的基本原理01金属塑性成形的原理是基于金属的塑性变形规律,即在外力作用下,金属材料会发生形状和尺寸的变化。
02在金属塑性成形过程中,材料的变形受到应力状态、变形温度、变形速度等因素的影响。
02金属塑性成形工艺自由锻工艺自由锻是利用冲击力或静压力使金属坯料变形,并施加外力将其锻造成所需形状和尺寸的锻造方法。
定义特点流程应用自由锻具有较大的灵活性,可以生产形状各异的锻件,但生产效率较低,适用于单件或小批量生产。
自由锻的流程包括坯料准备、加热、变形和锻后冷却。
自由锻主要用于大型锻件和难变形材料的加工,如轴、轮毂、法兰等。
模锻工艺模锻是利用模具使金属坯料变形,并施加外力将其锻造成所需形状和尺寸的锻造方法。
定义模锻具有较高的生产效率,且能获得较为精确的形状和尺寸,但模具制造成本较高。
特点模锻的流程包括坯料准备、加热、放入模具、变形、锻后冷却和修整。
流程模锻广泛应用于中小型锻件的生产,如齿轮、轴套、法兰等。
应用板料冲压工艺板料冲压是利用冲压机将金属板料变形,并施加外力将其冲制成所需形状和尺寸的加工方法。
定义板料冲压具有较高的生产效率,且能获得较为精确的形状和尺寸,但模具对材料的厚度和硬度有一定要求。
金属的塑性成形原理的应用引言金属的塑性成形是一种广泛应用于工业生产中的加工方法。
通过施加外力,金属材料能够发生可逆形变,从而得到所需的形状和尺寸。
本文将介绍金属的塑性成形原理,并探讨其在工业领域中的应用。
塑性成形原理金属的塑性成形原理是基于金属的晶格结构和金属材料的塑性变形行为。
晶格结构是金属内部原子的排列方式,金属材料具有良好的塑性变形特性是因为其晶格结构存在一定的弹性空间,能够容纳变形所需的位错。
金属材料在进行塑性成形过程中,通过施加外力,使得晶格中的原子发生相对位移。
在边界和晶间空隙处产生位错,进而引起晶格结构的重新排列。
这种晶格中的位错和重新排列使得金属能够发生塑性变形。
塑性成形的应用1. 冷冲压冷冲压是利用金属材料的塑性变形特性,在常温下通过模具施加压力进行金属件的成形加工。
冷冲压具有成形速度快、精度高、零件强度高等优点。
在汽车制造、电子设备制造等领域中广泛应用。
在冷冲压过程中,金属材料受到模具的压力作用,发生塑性变形并形成所需的形状。
常见的冷冲压制品包括汽车车身件、家电外壳等。
2. 热冲压热冲压是在较高温度下进行的金属成形加工方法。
通过加热金属材料,使其变得更加塑性,从而能够更容易地形成复杂的形状。
热冲压常用于制造高精度的金属零件,例如航空发动机叶片、涡轮叶片等。
热冲压具有高精度、高强度、高密度等优点,能够满足对零件质量和性能要求较高的应用场景。
3. 金属拉伸金属拉伸是将金属材料置于拉伸机械中,通过施加拉力使其产生塑性变形,从而改变其形状和尺寸。
金属拉伸常用于制造金属线材、拉伸板和拉伸管等。
金属拉伸可以改变金属材料的机械性能,如提高其强度、硬度等。
在制造电线、电缆等产品时,金属拉伸被广泛应用。
4. 金属轧制金属轧制是将金属坯料放置在轧机中,通过连续轧制过程使其产生塑性变形,从而形成所需的形状和尺寸。
金属轧制常用于制造钢材、铝材等产品。
金属轧制具有高加工效率、较低的能耗等优点,广泛应用于建筑、汽车制造、船舶制造等领域。
金属塑性成形:在外力作用下金属材料通过塑性变形,获得具有一定形状、尺寸和力学性能的零件或毛坯的加工方法。
金属塑性成形在工业生产中称为压力加工,分为:自由锻、模锻、板料冲压、挤压、拉拔、轧制等。
塑性成形性能:用来衡量压力加工工艺性好坏的主要工艺性能指标,称为金属的塑性成形性能。
金属的塑性成形性好,表明该金属适用于压力加工。
衡量金属的塑性成形性,常从金属材料的塑性和变形抗力两个方面来考虑,材料的塑性越好,变形抗力越小,则材料的塑性成形性越好,越适合压力加工。
在实际生产中,往往优先考虑材料的塑性。
影响金属塑性变形的内在因素(一)化学成分纯金属的塑性成形性较合金的好。
钢的含碳量对钢的塑性成形性影响很大,对于碳质量分数小于0.15%的低碳钢,主要以铁素体为主(含珠光体量很少),其塑性较好。
随着碳质量分数的增加,钢中的珠光体量也逐渐增多,甚至出现硬而脆的网状渗碳体,使钢的塑性下降,塑性成形性也越来越差。
合金元素会形成合金碳化物,形成硬化相,使钢的塑性变形抗力增大,塑性下降,通常合金元素含量越高,钢的塑性成形性能也越差。
杂质元素磷会使钢出现冷脆性,硫使钢出现热脆性,降低钢的塑性成形性能。
(二)金属组织纯金属及单相固溶体的合金塑性成形性能较好;钢中有碳化物和多相组织时,塑性成形性能变差;具有均匀细小等轴晶粒的金属,其塑性成形性能比晶粒粗大的柱状晶粒好;网状二次渗碳体,钢的塑性将大大下降。
三、影响金属塑性变形的加工条件(一)变形温度温度升高,塑性提高,塑性成形性能得到改善。
变形温度升高到再结晶温度以上时,加工硬化不断被再结晶软化消除,金属的塑性成形性能进一步提高。
过热:加热温度过高,会使晶粒急剧长大,导致金属塑性减小,塑性成形性能下降,这种现象称为“过热”。
过烧:如果加热温度接近熔点,会使晶界氧化甚至熔化,导致金属的塑性变形能力完全消失,这种现象称为“过烧”,坯料如果过烧将报废。
(二)变形速度变形速度:单位时间内变形程度的大小。
金属板材塑性成形的极限分析一、金属板材塑性成形的基本概念与重要性金属板材塑性成形是一种利用金属材料的塑性变形能力,通过外力作用使其发生形状变化的加工技术。
这种技术广泛应用于汽车、航空航天、家电制造等多个领域,对于提高材料利用率、降低成本、提升产品性能具有重要意义。
1.1 金属板材塑性成形的基本定义塑性成形是指在一定的温度和压力条件下,金属板材在塑性状态下发生形变,最终形成所需形状和尺寸的过程。
这一过程涉及到材料的力学行为、变形机理以及加工工艺等多个方面。
1.2 金属板材塑性成形的重要性金属板材塑性成形技术是现代制造业的基石之一。
它不仅能够提高材料的成形精度和生产效率,还能有效降低生产成本,满足现代工业对高性能、轻量化产品的需求。
二、金属板材塑性成形的关键技术与工艺金属板材塑性成形包含多种关键技术与工艺,这些技术与工艺直接影响成形质量、生产效率和成本。
2.1 金属板材的塑性变形机理金属板材的塑性变形机理是塑性成形的基础。
它涉及到材料内部的微观结构变化,如位错运动、晶粒变形等。
了解这些机理有助于优化成形工艺,提高成形质量。
2.2 塑性成形的主要工艺方法塑性成形的主要工艺方法包括轧制、拉伸、冲压、弯曲等。
每种方法都有其特定的应用场景和优势,选择合适的工艺方法对于保证成形效果至关重要。
2.3 塑性成形过程中的缺陷控制在塑性成形过程中,可能会出现裂纹、起皱、回弹等缺陷。
有效的缺陷控制技术可以显著提高成形件的质量和可靠性。
2.4 塑性成形工艺的数值模拟随着计算机技术的发展,数值模拟已成为塑性成形工艺设计的重要工具。
通过模拟可以预测成形过程中的应力、应变分布,优化工艺参数。
三、金属板材塑性成形的极限分析与应用极限分析是研究金属板材在塑性成形过程中达到极限状态的条件和行为,对于提高成形工艺的安全性和可靠性具有重要意义。
3.1 极限分析的理论基础极限分析的理论基础包括材料力学、塑性力学和断裂力学等。
这些理论为分析金属板材在成形过程中的应力、应变状态提供了科学依据。
金属塑性成形
摘要:金属塑性成形技术是机械冶金、汽车拖拉机、电工仪表、宇航军工、五金日用品等制造业最基本,最古老,亦是极重要的加工手段之一。
文章主要对塑性成形的基本方法、主要研究内容,发展趋势做了综合介绍。
一、引言
塑性成形技术具有高产、优质、低耗等显著特点,已成为当今先进制造技术的重要发展方向。
据国际生产技术协会预测,21世纪,机械制造工业零件粗加工的75%和精加工的50%都采用塑性成形的方式实现。
【1】
在现代制造技术中,人们广泛的利用金属材料生产各种零件和产品。
金属加工方法多种多样,包括成型、切削等。
金属塑性成形是其中一种重要的加工方法,是利用金属在外力作用下产生的塑性变形来获得具有一定形状、尺寸和力学性能的原材料、毛坯或零件的生产方法,因此也称为金属塑性加工或金属压力加工。
图1 传统金属塑性成形工艺
二、金属塑性成形的主要形式
金属塑性成形工艺的种类有很多,包括轧制、挤压、拉拔、锻造和冲压等基本工艺类型。
随着技术的发展,也有很多新的成型方式出现,它们具备精密、高效、节能、节材、清洁等优点,得到广泛关注。
2.1 体积成型
金属体积成型是指对金属块料、棒料或厚板在高温或室温下进行成形加工的方法,主要分为热态金属体积成型和冷温态金属体积成型。
热态金属变形过程可分为热锻、轧制、挤压、拉拔、辗压等工艺技术;冷温态变形过程可分为冷锻、冷精轧、冷挤压、冷拔、冷辗扩等工艺。
2.2 板材成型
所谓板材成型是指用板材、薄壁管、薄型材等作为原材料进行塑性加工的成形方法。
在忽略板厚的变化时,可视为平面变形问题来处理,板材成型可分为:冲裁、弯曲、拉延、胀形、翻边、扩孔、辊压等工艺技术。
2.3 粉末态金属成形
随着制粉技术的发展,其应用领域不断扩展,对于复杂形状的机械零件来说,它具有高效、精密成形的特点,但成本较高,机械性能不如整体金属材料。
粉末态金属成形的工艺过程为制粉、造型、压实、烧结、精锻。
2.4半固态金属材料成形
70年代开发研究的新技术,原金属材料作过特殊前处理,当材料加热到一定温度时可使30%的金属材料处于融溶状态,其余70%的金属材料呈均匀细颗粒组织的固态。
在此状态加压变形,其流动性特好,可成形结构形状特别复杂的零件,而变形杭力很小。
2.5 复合成形技术
现代的科学越来越相互交叉、渗透,出现许多边缘学科、交叉学科一样,材料成形技术也逐渐突破原有铸、锻、焊、粉末冶金等技术相互独立的格局,相互融合、渗透,产生了种类繁多的“复合成形技术”。
【2】金属塑性的复合成型技术主要有两个方面
(1)各种成形工艺的组合优化达到优化工艺和产品的目的。
(2)铸、锻、焊、热处理等不同加工方法的组合。
三、金属塑性成形技术主要研究内容
由于压力加工中,少、无切屑的特点和精密加工技术的发展,使金属塑性成型理论的研究受到日益广泛的重视而进入工程应用的前列.一般认为,研究金属塑性科学的历史开始于Tresa在1864年提出的屈服准则,至今不过100多年,而
首次将塑性理论应用于金属加工则是VonKarman在1925年对金属薄带轧制时应力分布的研究【3】,至今才五十多年,因此,可以说这一理论是“古老的工艺,年轻的学科”.回顾发展,金属塑性研究的范围很广,主要集中于以下几个方面。
3.1 塑性变形的金属学、力学基础研究
对塑性变形的金属学、力学基础研究是改善金属塑性加工的基础,研究主要关注于以下几个方面【4】:
(l)微观变形机理的研究、塑性变形动力学的研究以及晶间变形、滑移的机理的研究;
(2)应力状态对变形行为的影响;
(3)变形材料冶金过程组织状态的影响;
(4)变形工艺的影响,比如变形速度、变形温度、变形压力等因素的影响;
(5)变形过程中摩擦条件的影响。
3.2 金属变形过程(宏观)的模拟技术
随着计算机的发展, CAD、CAE软件的广泛使用,传统的“经验法”、“试模法”逐渐被计算机模拟所代替。
【5】对金属变形过程(宏观)的模拟技术的研究主要有两个方面:物理模拟技术的研究和变形过程的数值模拟技术的研究:(l)物理模拟技术:包括模拟材料、模拟方法、模拟相似理论、模拟过程的数据采集技术及模拟结果的误差分析技术的研究;
(2)变形过程的数值模拟技术:包括塑性变形的数学模型的建立(刚塑性、粘塑性、弹塑性等),计算数学(FEM)技巧,三维网络自动划分及畸变处理技术,数据处理及误差分析技术,软件的工程化及商品化。
3.3 金属超塑性成形技术
超塑性是指在特定的条件下,即在低的应变速率(ε=10-2~10-4s-1),一定的变形温度(约为热力学熔化温度的一半)和稳定而细小的晶粒度(0.5~5μm)的条件下,某些金属或合金呈现低强度和大伸长率的一种特性。
对金属超塑性成形技术的研究主要关注于超塑性新材料,超塑性材料的前处理技术,金属超塑性变形机制,超塑性变形力学,超塑性成形工艺模具及亚超塑性高效成形技术等方面。
【6】
3.4精锻成型技术
精锻成形技术即近净成形技术或净成形技术,是指零件成形后,仅需要少量加工或不再加工,就可以用作机械构件的成形技术,即制造接近零件形状的工件毛坯。
【7】对精锻成型技术的研究主要分为两类:热精锻技术、冷温精锻技术的研究。
(1)热精锻成型技术:研究少无氧化加热技术、工艺模拟及优化技术,新工艺技术(多向锻造、闭寨锻造、半固态成形、液态模锻、径向锻造及粉末锻造技术等),特种合金的等温锻造技术,锻件后处理技术及提高模具寿命,润滑等配套技术,成套生产线设计技术。
(2)冷温精锻锻成形技术:研究金属冷温精锻材料的前处理工艺,工艺模具优化设计技术,润滑技术,提高模具寿命技术、质量控制技术,成套生产线设计技术。
3.6 回转成形技术
金属回转成形是指在成形过程中,或工件回转或工具回转或两者都回转的成形机械零件及其毛坯的金属塑性加工工艺【8】。
对金属回转成形的研究主要涉及辊锻、楔横轧、旋转锻造,旋压、摆辗、辗扩等成形方法的优化工艺,模具设计和制造技术。
3.7 板料冲压技术
板料冲压是指利用冲模在压力机上使板料分离或变形,从而获得冲压件的加工方法。
板料冲压的坯料厚度一般小于4mm,通常在常温下冲压,故又称为冷冲压,简称冲压。
板料厚度超过8~10mm时,才用热冲压。
对板料冲压的研究主要涉及各种新材料、复合材料的冲压成形加工工艺技术,冲压成形的模拟技术,虚拟试模技术,回弹预报技术,模具设计制造技术,配套技术,板材成形过程中的失稳机理研究。
3.8 金属的特种成形技术
对金属的特种成形技术研究有很多,比如对高速冲击成形,放电成形、喷射成形、无模拉拔及热应力变形等新工艺的研究。
四、金属塑性成型技术的发展趋势
目前金属塑性成形技术主要朝着轻量化、整体化、微型化、超大构件、柔性成形等几个方面发展:
(1轻量化成形是“精密成形”或“净成形”发展的新阶段,所成零件不仅要求接近零件形状、余量小或精度高,直接成型出具有轻量化特征的结构。
(2)整体化成形是将若干分别成形在连接的构件成形为一个整体化结构。
整体化成形不仅解决了连接可靠性差的问题,而且是减重的的一个重要途径。
该技术的最大难点是需要大吨位成形力、模块尺寸大,迫切发展省力成形技术。
(3)微成形是指加工的零件至少两个方向的尺寸小于1mm,适合大批量、低成本的制造微零件。
由于尺效应、摩擦机制和晶粒尺度的影响,并非传统塑性成形的简单缩小,需要进一步研究其机理和关键技术。
(4)超大构件成形是通过先进技术利用相对小的设备或模具加工出较大的构件,解决了构件尺寸或吨位超过现有制造设备能力的问题。
由于这类零件尺寸大或重量大、批量小、运输困难等问题,根据不同的结构特点采用不同的技术途径。
(5)柔性成形是适应多品种、小批量零件加工的需要。
采用多点实现模具轮廓不变、数控增量加载、无模成形是柔性成形的重要途径。
在薄板成形的基础上,向中厚板和复杂板型面件成形发展。
五、总结
金属塑性成形技术是机械冶金、汽车拖拉机、电工仪表、宇航军工、五金日用品等制造业最基本,最古老,亦是极重要的加工手段之一。
文章主要对塑性成形的基本方法、主要研究内容、发展趋势做了综合介绍。
结合近代科技,金属成形技术正向轻量化、整体化、微型化、超大构件、柔性成形几个方面发展,仍然有很大的研究空间。
References:
【1】洪慎章.塑性成形技术的现状及发展趋势.Die and Mould Technology ,2003(01):54-56.
【2】王冬,王利民,李永志.金属的复合成形技术及其发展.铸造技术,2008,(03):411-415.
【3】von Karman,Math Mech,5,135(1925).
【4】皮华春,韩静涛,薛永栋.金属塑性成形的晶体塑性学有限元模拟研究进展 [J].机械工程学报,2006,(03).
【5】吴丽平,刘建雄,刘新胜,肖正明.基于塑性变形有限元模拟的模具结构优化.锻压技术,2006,(02):55-57.
【6】王春荣.几种金属材料超塑性研究的综述[J].金属成型工艺,2009,(2):47-55. 【7】胡亚民.精锻成形技术60年的发展与进步.金属加工,2010,(15):1-5.
【8】郭长武.金属回转成形技术.钢铁,1993,(10):73-78.。