初中数学人教版 幂的运算 人教版
- 格式:ppt
- 大小:334.50 KB
- 文档页数:17
人教版数学八年级上册15.2.3.1《整数指数幂》说课稿1一. 教材分析人教版数学八年级上册15.2.3.1《整数指数幂》是初中数学的重要内容,属于代数学的范畴。
本节课的主要内容是让学生理解整数指数幂的概念,掌握整数指数幂的运算性质及应用。
通过本节课的学习,为学生进一步学习分数指数幂、负整数指数幂以及指数函数等知识打下基础。
二. 学情分析八年级的学生已经学习了有理数的乘方,对幂的概念有了初步的认识。
但在理解和应用整数指数幂方面,学生还可能存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习需求,引导学生通过自主学习、合作交流等方式,逐步掌握整数指数幂的知识。
三. 说教学目标1.知识与技能目标:让学生理解整数指数幂的概念,掌握整数指数幂的运算性质及应用。
2.过程与方法目标:通过观察、分析、归纳等方法,让学生体会数学知识之间的联系,培养学生的逻辑思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。
四. 说教学重难点1.教学重点:整数指数幂的概念,整数指数幂的运算性质。
2.教学难点:整数指数幂的应用,以及与其他知识点的联系。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作法等,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、黑板、教具等,辅助教学,提高教学效果。
六. 说教学过程1.导入新课:通过复习有理数的乘方,引出整数指数幂的概念。
2.自主学习:让学生自主探究整数指数幂的运算性质,引导学生发现规律。
3.合作交流:学生分组讨论,分享学习心得,互相解答疑问。
4.教师讲解:针对学生的疑问和难点,进行讲解,梳理知识体系。
5.巩固练习:布置练习题,让学生及时巩固所学知识。
6.课堂小结:总结本节课的主要内容,强调重点知识。
7.拓展延伸:引导学生思考整数指数幂在实际生活中的应用,激发学生的学习兴趣。
七. 说板书设计板书设计要清晰、简洁,突出整数指数幂的概念和运算性质。
专题14.1幂的运算(3大知识点7类题型)(知识梳理与题型分类讲解)第一部分【知识点归纳与题型目录】【知识点1】同底数幂的乘法法则+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.【要点提示】(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即mnpm n pa a a a++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。
即m nm n aa a +=⋅(,m n 都是正整数).【知识点2】幂的乘方法则()=m n mn a a (其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.【要点提示】(1)公式的推广:(())=m n pmnpa a (0≠a ,,,m n p 均为正整数)(2)逆用公式:()()nmmnm n a aa ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.【知识点3】积的乘方法则()=⋅n n nab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.【要点提示】(1)公式的推广:()=⋅⋅nnnnabc a b c(n 为正整数).(2)逆用公式:()n n na b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭【知识点4】注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏.(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方.(5)灵活地双向应用运算性质,使运算更加方便、简洁.(6)带有负号的幂的运算,要养成先化简符号的习惯.【题型目录】【题型1】同底数幂的乘法运算及逆运算...........................................2;【题型2】幂的乘方运算及逆运算.................................................4;【题型3】积的乘方运算及逆运算.................................................7;【题型4】幂的混合运算.........................................................9;【题型5】幂的运算的应用.......................................................11;【题型6】直通中考.............................................................13;【题型7】拓展与延伸...........................................................14.第二部分【题型展示与方法点拨】【题型1】同底数幂的乘法运算及逆运算【例1】(23-24七年级上·河南周口·期中)在学习第一章有理数时,类比小学两个正数的运算法则学习了有理数的加减法、有理数的乘除法,在第二章整式的加减时,类比第一章有理数的学习过程学习了整式的加减,那么整式的乘法是否可以类比有理数的乘法进行学习呢?我们从特殊情况入手对两个同底数幂相乘进行探究.(1)探究根据乘方的意义填空,观察计算结果,你能发现什么规律①53( )222⨯=,②42( )a a a ⋅=,③( )555m n ⨯=,(2)规律( )m n a a a ⋅=(,m n 都是正整数).即__________________________.(文字表达)(3)应用①计算31m m a a +⋅;②把(2)x y +看成一个整体,计算23(2)(2)x y x y +⋅+.【答案】(1)①8;②6;③;m n +(2);m n +同底数幂相乘,底数不变,指数相加(3)①41m a +;②5(2)x y +【分析】本题考查了同底数幂的乘法公式的推导和应用.掌握同底数幂的乘法公式的计算公式是关键;(1)(2)(3)根据同底数幂相乘,底数不变,指数相加解答即可;解:(1)①853(35)2222+⨯==,②642(4+2)a a a a ⋅==,③555m n m n +⨯=,故答案为:8;6;;m n +(2)m n m n a a a +⋅=,即同底数幂相乘,底数不变,指数相加;故答案为:;m n +同底数幂相乘,底数不变,指数相加;(3)①1314m m m a a a ++⋅=;②253.(2)(2)(2)x y x y x y +=+⋅+【变式1】(23-24七年级下·全国·单元测试)计算3()()x y y x -⋅-=()A .4()x y -B .4()x y --C .4)y x -(D .4()x y +【答案】B【分析】本题考查了同底数幂的乘法法则,把()x y -看作一个整体,利用同底数幂的乘法法则即可求解.解题的关键是熟练的掌握同底数幂的乘法法则.解:334()()()()()x y y x x y x y x y -⋅-=--⋅-=--,故选:B .【变式2】(23-24七年级下·全国·单元测试)已知1222162x x ⋅⋅=,则x =.【答案】4【分析】本题主要考查了同底数幂的乘法运算,根据同底数幂相乘,底数不变指数相加,将1222162x x ⋅⋅=变形为:241222x +=,从而得出2412x +=,再求出x 的值即可.解:42421622222x x x x x +⋅=⋅⋅⋅=,∵1222162x x ⋅⋅=,∴241222x +=,∴2412x +=,解得:4x =.故答案为:4.【例2】(2024七年级下·全国·专题练习)(1)已知23x =,求32x +的值;(2)若21464a +=,求a 的值.【答案】(1)24;(2)1a =【分析】本题考查的是同底数幂的乘法运算的逆运算,熟记运算法则是解本题的关键;(1)由33222x x +=⨯,再代入数据计算即可;(2)由21344a +=,再建立方程求解即可.解:(1)∵23x =,∴332238242x x +=⨯=⨯=;(2)∵21464a +=,∴21344a +=,∴213a +=,解得1a =.【变式1】(23-24七年级下·江苏淮安·期中)已知23x =,26y =,则2x y +的值是()A .12B .18C .36D .54【答案】B【分析】本题考查了同底数幂的乘法的逆用,根据同底数幂的乘法法则进行变形即可求解,解题的关键是熟练掌握同底数幂的乘法法则.解:由8232261x y x y +=⨯=⨯=,故选:B .【变式2】(2024七年级上·上海·专题练习)已知4222112x x +-⋅=,则x 的值为.【答案】3【分析】本题主要考查同底数幂的乘法运算以及提取公因式法分解因式,熟练并正确掌握相关运算法则是解题的关键.解:∵4222112x x +-⋅=,∴()13221112x +⨯-=,故142162x +==,解得:3x =故答案为:3.【题型2】幂的乘方运算及逆运算【例3】(21-22七年级上·上海·期末)计算:()()()3254652x x x x x x ⎡⎤⋅-⋅+-⋅+-⎣⎦.【答案】12x 【分析】先计算幂的乘方和同底数幂的乘法,再合并同类项即可.解:()()()3254652x x x x x x ⎡⎤⋅-⋅+-⋅+-⎣⎦121212x x x =-++12x =.【点拨】本题考查了整式的运算法则,解题的关键是熟记幂的乘方,同底数幂的乘法,合并同类项的知识.【变式1】(2022·江苏镇江·中考真题)下列运算中,结果正确的是()A .224325a a a +=B .3332a a a -=C .235a a a ⋅=D .()325a a =【答案】C【分析】根据合并同类项法则,同底数幂的乘法法则,幂的乘方法则逐项计算即可判断选择.解:222325a a a +=,故A 计算错误,不符合题意;3332a a a -=-,故B 计算错误,不符合题意;235a a a ⋅=,故C 计算正确,符合题意;()326a a =,故D 计算错误,不符合题意.故选C .【点拨】本题考查合并同类项,同底数幂的乘法,幂的乘方.熟练掌握各运算法则是解题关键.【变式2】.若25 3 0x y +-=,则432⋅=x y .【答案】8【分析】根据已知条件可得2+5=3x y ,根据幂的乘方运算以及同底数幂的乘法进行计算即可求解.解:∵25 3 0x y +-=∴2+5=3x y ,∴432⋅=x y 2525322228x y x y +⨯===,故答案为:8.【点拨】本题考查了幂的乘方运算以及同底数幂的乘法,熟练掌握幂的运算法则是解题的关键.【例4】(2023八年级上·全国·专题练习)(1)若23m n a a ==,,求32m n a +的值;(2)若2639273x x ⨯⨯=,求x 的值.【答案】(1)72;(2)5【分析】(1)利用幂的乘方和同底数幂的乘法法则进行变形,再利用整体代入计算即可;(2)把2639273x x ⨯⨯=变形为1232633x x ++=,得到关于x 的方程,解方程即可得到答案;熟练掌握幂的乘方、同底数幂的乘法法则,并利用整体思想是解题的关键.解:(1)∵23m n a a ==,,∴32m na +32m na a =⋅()()32m na a =⋅3223=⨯89=⨯72=;(2)2639273x x ⨯⨯=,23263333x x=⨯⨯()(),23263333x x ⨯=⨯,1232633x x ++=,12326x x ++=,5x =.【变式1】已知553a =,444b =,335c =,则a 、b 、c 的大小关系为()A .c a b <<B .c b a<<C .a b c<<D .a c b<<【答案】A【分析】把a 、b 、c 三个数变成指数相同的幂,通过底数可得出a 、b 、c 的大小关系.解:∵a =(35)11=24311,b =(44)11=25611,c =(53)11=12511,又∵125243256<<,∴c a b <<.故选:A .【点拨】本题考查了幂的乘方的逆运算,解答本题关键是掌握幂的乘方法则,把各数的指数变成相同.【变式2】(23-24八年级上·重庆九龙坡·阶段练习)已知433,33a b ==,则239a b ⨯=.【答案】16【分析】直接根据同底数幂的乘法以及幂的乘方运算法则进行计算即可得到答案.解:∵433,33a b==,∴()()()()222222243933333163a b a ba b ⎛⎫⨯=⨯=⨯=⨯= ⎪⎝⎭故答案为:16.【点拨】本题主要考查了同底数幂的乘法以及幂的乘方,熟练掌握运算法则是解答本题的关键.【题型3】积的乘方运算及逆运算25.【例5】(22-23八年级上·黑龙江哈尔滨·阶段练习)(1)()34222x x x ⋅-;(2)()()23332232x y x y +-【答案】(1)6x ;(2)66x y 【分析】(1)根据同底数幂乘法法则及幂的乘方计算法则计算,再合并同类项即可;(2)根据积的乘方计算法则去括号,再合并同类项即可.解:(1)()34222x x x ⋅-662x x =-6x =;(2)()()23332232x y x y +-666698x y x y =-66x y =.【点拨】此题考查了整式的计算,正确掌握同底数幂乘法法则及幂的乘方计算法则、积的乘方计算法则、合并同类项法则是解题的关键.【变式1】(2022·广东深圳·中考真题)下列运算正确的是()A .268a a a ⋅=B .()3326a a -=C .()22a b a b+=+D .235a b ab+=【答案】A【分析】分别根据同底数幂的乘法法则,积的乘方运算法则,单项式乘多项式及合并同类项的法则逐一判断即可.解:A 、268a a a ⋅=,计算正确,故此选项符合题意;B 、33(2)8a a -=-,原计算错误,故此选项不符合题意;C 、2()22a b a b +=+,原计算错误,故此选项不符合题意;D 、23a b +,不是同类项不能合并,原计算错误,故此选项不符合题意.故选:A .【点拨】本题考查了同底数幂的乘法,合并同类项以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.【变式2】(20-21七年级下·江苏扬州·期末)已知am =10,bm =2,则(ab )m =.【答案】20【分析】根据积的乘方计算法则解答.解:∵am =10,bm =2,∴(ab )m =10220m m a b ⋅=⨯=,故答案为:20.【点拨】此题考查积的乘方计算法则:积的乘方等于积中每个因式分别乘方,再把结果相乘,熟记法则是解题的关键.【例6】(2023九年级·全国·专题练习)用简便方法计算:(1)88552510.25(4)57⎛⎫⎛⎫-⨯⨯⨯- ⎪ ⎪⎝⎭⎝⎭;(2)()201720180.1258⨯-.【答案】(1)1-;(2)8-.【分析】(1)原式逆用积的乘方运算法则进行计算即可;(2)先将20188-变形为201788-⨯,再逆用积的乘方运算法则进行计算即可.解:(1)88552510.25(4)57⎛⎫⎛⎫-⨯⨯⨯- ⎪ ⎪⎝⎭⎝⎭8585715()()()(4)547=-⨯⨯⨯-8855751(4)574⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-⨯⨯⨯-⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦58751(4)574⎛⎫⎡⎤=-⨯⨯⨯- ⎪⎢⎥⎝⎭⎣⎦1(1)=⨯-1=-;(2)()201720180.1258⨯-()201720171888⎛⎫=⨯-⨯ ⎪⎝⎭()201720171888⎛⎫=⨯-⨯ ⎪⎝⎭20171888⎛⎫=-⨯⨯ ⎪⎝⎭18=-⨯8=-.【点拨】本题主要考查了积的乘方的逆运算,熟练掌握运算法则是解答本题的关键.【变式1】(22-23七年级下·河北沧州·期中)若n 为正整数.且24n a =,则()()223224nn a a -的值为()A .4B .16C .64D .192【答案】D【分析】根据积的乘方以及逆运算对式子进行化简求解即可.解:()()2232642444nnn na a a a -=-()()322232444444nna a =-=⨯-⨯()32444448192=⨯-=⨯=,故选D .【点拨】此题考查了幂的有关运算,解题的关键是熟练掌握幂的有关运算法则.同底数幂相乘(除),底数不变,指数相加(减);幂的乘方,底数不变,指数相乘;积的乘方,把每个因式分别乘方.【变式2】已知2232336x x x ++-⋅=,则x =.【答案】8.【分析】根据积的乘方和幂的乘方的逆运算,把等式变形,根据指数相同求解即可.解:2232336x x x ++-⋅=,根据积的乘方和幂的乘方,等式可变形为:223(23)(6)x x +-⨯=,即22666x x +-=,226x x +=-,解得,8x =故答案为:8.【点拨】本题考查了幂的运算的逆运算,解题关键是把等式恰当变形,依据底数相同,指数也相同列方程.【题型4】幂的混合运算【例7】(21-22八年级上·全国·课后作业)计算:(1)()()()2243224249()(2)--+-a a b a b ;(2)()()()22112()3------n n n nx x x x x .【答案】(1)8425a b ;(2)31n x -.【分析】(1)先计算幂的乘方,再计算同底数幂,最后合并同类项即可;(3)先计算幂的乘方,再计算同底数幂,最后合并同类项即可.解:(1)()()()2243224249()(2)--+-a a b a b ,=62484916a a b a b ⋅⋅+,=8484916a b a b +,=8425a b ;(2)()()()22112()3------n n n nx x x x x ,=()()21212()3n n n n xx x x x -----,=()2112123n n n n x x -+++--+,=313123n n x x ---+,=31n x -.【点拨】本题考查整式的幂指数运算,掌握幂的乘方,同底数幂的乘法,合并同类项是解题关键.【变式1】(20-21七年级下·甘肃兰州·阶段练习)下列各式计算正确的是()A .-3xy ·(-2xy )2=12x 3y 3B .4x 2·(-2x 3)2=16x 12C .(-a 2)·a 3=a 6D .2a 2b ·(-ab )2=2a 4b 3【答案】D【分析】根据幂的运算法则逐一计算,可得结果.解:A 、()2333212xy xy x y -⋅--=,故选项错误;B 、()22384216x x x ⋅-=,故选项错误;C 、()236a a a -⋅=-,故选项错误;D 、()224322a b ab a b ⋅-=,故选项正确;故选D .【点拨】本题考查了幂的混合运算,熟练掌握运算法则是解题的关键.【变式2】已知2,3x x a t ==,则24x =.(用含,a t 的代数式表示)【答案】3a t解:∵2x =a ,3x =t ,∴24x =(23×3)x =23x ×3x =(2x )3×3x =a 3t .故答案为a 3t .【题型5】幂的运算的应用【例8】(23-24八年级上·山西长治·阶段练习)我们知道,一般的数学公式、法则、定义可以正向运用,也可以逆向运用.对于“同底数幂的乘法”“幂的乘方”“积的乘方”这几个法则的逆向运用表现为m n m n a a a += ,()()n m mn m n a a a ==,()mm m a b ab =;(m ,n 为正整数).请运用这个思路和幂的运算法则解决下列问题:(1)已知552a =,443b =,334c =,请把a ,b ,c 用“<”连接起来:;(2)若2a x =,3b x =,求32a b x +的值;(3)计算:2001001011284⎛⎫⨯⨯ ⎪⎝⎭.【答案】(1)a c b <<;(2)72;(3)8.【分析】(1)根据逆用幂的乘方,化成指数相同的幂,再比较大小;(2)根据逆用同底数幂的乘法和逆用幂的乘方即可求解;(3)根据逆用同底数幂的乘法和逆用幂的乘方,化成指数相同的幂,再计算即可求解;本题主要考查了同底数幂的乘法、幂的乘方法则,掌握法则的逆用是解题的关键.(1)解:∵()11555112232a ===,()11444113381b ===,()11333114464c ===.又∵326481<<,∴a c b <<,故答案为:a c b <<;(2)解:32a bx +32a b x x =⋅,()()32a b x x =⋅,∵2a x =,3b x =,∴原式3223=⋅,89=⨯,72=;(3)解:2001001011284⎛⎫⨯⨯ ⎪⎝⎭()200210110031222⎡⎤⎛⎫=⨯⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,4001003031222⎛⎫=⨯⨯ ⎪⎝⎭,400403122⎛⎫=⨯ ⎪⎝⎭,40040031222⎛⎫=⨯⨯ ⎪⎝⎭,40031222⎛⎫=⨯⨯ ⎪⎝⎭,402312=⨯,8=.【变式1】(21-22八年级上·河南三门峡·期末)下列运算中,错误的个数是()(1)224a a a +=;(2)236a a a ⋅=;(3)2n n n a a a ⋅=;(4)()448a a a --⋅=A .1个B .2个C .3个D .4个【答案】D 【分析】利用同底数幂的乘法运算法则,合并同类项的法则对各式进行运算,即可得出结果.解:(1)22242a a a a ≠+=,故(1)错误;(2)2356a a a a ⋅≠=,故(2)错误;(3)22n n n n a a a a ⋅≠=,故(3)错误;(4)()4488a a a a ---⋅≠=,故(4)错误,综上所述,错误的个数为4个,故选:D .【点拨】本题主要考查同底数幂的乘法运算法则、合并同类项运算等知识,解题的关键是对相应的运算法【变式2】(20-21九年级下·湖南永州·期中)将边长为1的正方形纸片按如图所示方法进行对折,记第1次对折后得到的图形面积为S 1,第2次对折后得到的图形面积为S 2,…,第n 次对折后得到的图形面积为S n ,请根据图2化简,12320202021S S S S S +++++= .【答案】202111()2-【分析】先具体计算出S 1,S 2,S 3,S 4的值,得出面积规律,表示S 2021,再设12320202021S S S S S S =+++++ ①,两边都乘以12,得到42320212022111111((()()+()222222S =++++ ②,利用①−②,求解S ,从而可得答案.解:∵42320211234202111111111,(,(),(),(242821622S S S S S ======== 设S =42320211234202111111()()((22222S S S S S +++++=+++++ ①12320202021111111222222S S S S S S ∴=+++++ 4232021202211111(()()()+()22222=++++ ②①-②得,2022111()222S ∴=-202111()2S ∴=-故答案为:202111()2-.【点拨】本题考查的是图形的面积规律的探究,有理数的乘方运算的灵活应用,同底数幂的乘法与除法的应用,方程思想的应用,正方形的性质,掌握以上知识是解题的关键.第三部分【中考链接与拓展延伸】【题型6】直通中考【例9】(2024·河北·中考真题)若a ,b 是正整数,且满足8282222222a b a a a b b b ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯ 个相加个相乘,则a 与b 的关系正确的是()A .38a b +=B .38a b =C .83a b +=D .38a b=+【分析】本题考查了同底数幂的乘法,幂的乘方的运算的应用,熟练掌握知识点是解题的关键.由题意得:()8822a b ⨯=,利用同底数幂的乘法,幂的乘方化简即可.解:由题意得:()8822a b ⨯=,∴38222a b ⨯=,∴38a b +=,故选:A .【例10】(2024·山东烟台·中考真题)下列运算结果为6a 的是()A .23a a ⋅B .122a a ÷C .33a a +D .()32a 【答案】D【分析】本题考查了同底数幂的乘法,同底数幂的除法,合并同类项,幂的乘方,解题的关键是熟练掌握以上运算法则;根据同底数幂的乘法同底数幂的除法,合并同类项,幂的乘方,运算法则计算即可解:A .23235a a a a +⋅==,故选项不符合题意;B .12212210a a a a -÷==,故选项不符合题意;C .3332a a a +=,故选项不符合题意;D .()32236a a a ⨯==,故选项符合题意;故选:D .【题型7】拓展延伸【例11】(2024·河北·中考真题)“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示13223⨯,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是()A .“20”左边的数是16B .“20”右边的“□”表示5C .运算结果小于6000D .运算结果可以表示为41001025a +【答案】D 【分析】本题考查了整式的加法运算,整式的乘法运算,理解题意,正确的逻辑推理时解决本题的关键.设一个三位数与一个两位数分别为10010x y z ++和10m n +,则20,5,2,mz nz ny nx a ====,即4=m n ,可确定1,2n y ==时,则4,5,m z x a ===,由题意可判断A 、B 选项,根据题意可得运算结果可以表示为:()1000411002541001025a a a +++=+,故可判断C 、D 选项.解:设一个三位数与一个两位数分别为10010x y z ++和10m n+如图:则由题意得:20,5,2,mz nz ny nx a ====,∴4mz nz=,即4=m n ,∴当2,1n y ==时, 2.5z =不是正整数,不符合题意,故舍;当1,2n y ==时,则4,5,m z x a ===,如图:,∴A 、“20”左边的数是248⨯=,故本选项不符合题意;B 、“20”右边的“□”表示4,故本选项不符合题意;∴a 上面的数应为4a ,如图:∴运算结果可以表示为:()1000411002541001025a a a +++=+,∴D 选项符合题意,当2a =时,计算的结果大于6000,故C 选项不符合题意,故选:D .【例12】(19-20七年级下·江苏南京·期中)观察等式(2a ﹣1)a +2=1,其中a 的取值可能是()A .﹣2B .1或﹣2C .0或1D .1或﹣2或0【答案】D 【分析】存在3种情况:一种是指数为0,底数不为0;第二种是底数为1,指数为任意值;第三种是底数为-1,指数为偶数,分别求解可得.解:情况一:指数为0,底数不为0即:a +2=0,2a -1≠0解得:a =-2情况二:底数为1,指数为任意值即:2a -1=1解得:a =1情况三:底数为-1,指数为偶数即:2a -1=-1,解得a =0代入a +2=2,为偶数,成立故答案为:D【点拨】本题考查0指数和底数为±1的指数的特点,本题底数为-1的情况容易遗漏,需要关注.。
人教版八年级(上)数学幂的乘方CONTENTS•幂的基本概念和性质•幂的乘方运算•幂的乘方在生活中的应用•典型例题解析与练习•幂的乘方与其他知识点的联系•课堂小结与拓展延伸幂的基本概念和性质01幂的定义与表示方法幂的定义幂是指乘方运算的结果,表示一个数自乘若干次所得到的数。
一般形式为a^n,其中a是底数,n是指数。
幂的表示方法在数学中,幂可以用不同的方式表示。
常见的表示方法有:a^n、aⁿ、a^n等。
其中,a是底数,n是指数。
同底数幂相除时,指数相减。
即a^m / a^n =a^(m-n)。
幂的乘方时,指数相乘。
即(a^m)^n = a^(m*n)。
同底数幂相乘时,指数相加。
即a^m * a^n =a^(m+n)。
积的乘方等于乘方的积。
即(ab)^n = a^n * b^n。
同底数幂的乘法同底数幂的除法幂的乘方积的乘方幂的运算规则零指数幂负整数指数幂分数指数幂幂的运算法则幂的性质负整数指数幂表示的是该数的倒数的正整数次幂。
即a^(-n) =1/a^n (a≠0)。
分数指数幂表示的是开方和乘方的复合运算。
即a^(m/n) =√n(a^m)(n 为正整数,且a>0)。
在进行幂的运算时,应遵循先乘方、后乘除、最后加减的运算顺序;同级运算从左到右依次进行;有括号时先算括号里面的。
任何非零数的0次幂都等于1。
即a^0 = 1(a≠0)。
幂的乘方运算02同底数幂的乘法乘法公式当底数相同时,指数相加。
即a^m ×a^n = a^(m+n)。
推导过程通过具体数值代入和运算验证公式的正确性。
应用举例计算表达式如2^3 ×2^4,运用同底数幂的乘法公式得出结果。
(a^m)^n = a^(m×n)。
即幂的乘方时,指数相乘。
通过数学归纳法或具体数值代入验证法则的正确性。
计算表达式如(3^2)^3,运用幂的乘方法则得出结果。
乘方法则推导过程应用举例幂的乘方法则积的乘方与幂的乘方综合应用综合应用公式(ab)^n = a^n ×b^n 和(a^m)^n =a^(m×n)。
【例5.1】计算(1)(
)(
)
1232322
32
+-+--+a a a a a a a (2) ()122323
2-+⎪⎭
⎫ ⎝⎛-x x x
变式:计算:(1)2ab (5ab 2+3a 2b ) (2)(3
2ab 2
-2ab )·
2
1ab
【例5.2】求值:)2()2()1()43(5322--+---x x x x x x x ,其中,2-=x .
变式:计算:1/3x n
y ·(3/4x 2
-1/2xy -2/3y -1/2x 2
y),其中x=1,y=2
【知识点6】多项式乘以多项式
多项式乘法法则:
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.
如计算(2x-1)(-x+3),2x 看成公式中的a ;-1看成公式中的b ;-x 看成公式中的m ;3看成公式中的n . 运用法则(2x-1) 中的每一项分别去乘(-x+3) 中的每一项,计算可得:-2x 2
+6x+x-3 . 注意:(1)解题书写和格式的规范性;
(2)注意总结不同类型题目的解题方法、步骤和结果;
(3)注意各项的符号,并要注意做到不重复、不遗漏
【例6.1】计算:(1)(x+y)(x 2-xy+y 2) (2)(2x+y)(x-y)
变式1:计算:(1)(x+2)(x-2)(x 2
+4); (2)(1-2x+4x 2
)(1+2x); (3)(3x+2)(3x-2)(9x 2
+4)。
人教版数学八年级上册14.1.2《幂的乘方》教案2一. 教材分析《幂的乘方》是人教版数学八年级上册第14章第1节的一部分,本节内容是在学生已经掌握了有理数的乘方、幂的定义等知识的基础上进行授课的。
本节课主要让学生学习幂的乘方,即同底数幂相乘,以及积的乘方,即幂与幂相乘。
这两个概念在数学中是非常重要的,它们不仅在初中数学中占有重要的地位,而且在中考和高中数学学习中也是经常出现的。
二. 学情分析学生在学习本节课之前,已经学习了有理数的乘方,对幂的概念有了一定的了解。
但是,对于幂的乘方和积的乘方这两个概念,学生可能还比较陌生,需要通过实例和练习来进一步理解和掌握。
此外,学生可能对于幂的运算规则和性质还不够熟悉,这也是需要在教学中加以引导和巩固的。
三. 教学目标1.让学生理解幂的乘方的概念,掌握幂的乘方的运算规则。
2.让学生理解积的乘方的概念,掌握积的乘方的运算规则。
3.培养学生的运算能力,提高学生的数学思维能力。
四. 教学重难点1.幂的乘方的概念和运算规则。
2.积的乘方的概念和运算规则。
3.幂的运算规则和性质的运用。
五. 教学方法采用问题驱动法、实例教学法、分组讨论法等教学方法,引导学生通过自主学习、合作学习、探究学习,从而理解和掌握幂的乘方和积的乘方的概念和运算规则。
六. 教学准备1.PPT课件2.教学案例和练习题3.黑板和粉笔七. 教学过程1.导入(5分钟)通过复习有理数的乘方,引导学生回顾幂的概念,为新课的学习做好铺垫。
2.呈现(15分钟)利用PPT课件,呈现幂的乘方和积的乘方的定义和运算规则,让学生初步感知这两个概念。
3.操练(15分钟)让学生分组讨论,通过实例来理解和掌握幂的乘方和积的乘方的运算规则,同时引导学生总结幂的运算规则和性质。
4.巩固(10分钟)进行一些幂的运算练习,让学生在实践中进一步巩固幂的乘方和积的乘方的概念和运算规则。
5.拓展(10分钟)引导学生思考幂的乘方和积的乘方在实际问题中的应用,让学生感受数学与生活的联系。
幂的运算一、情境联想导入印度有个国王,为了奖赏一个发明了国际象棋的术士,就把术士召进宫来,国王问他有什么要求,术士说:“只请国王在这棋盘的第一个格子里赏给我1•粒小麦,第二个格子里给2粒,第三个格子里给4粒,以后每个格里所给小麦的粒数都是前一个格子的2倍,一直放到第64格,所有这些小麦就是我要的奖赏.”国王一听,•这点小麦算什么,就满口答案.经过计算,国王傻了眼,原来这些小麦全国要几百年才年生产出来,根本无法赏给这个术士.问题1:你能把小麦的粒数用式子表示出来吗?问题2:264有多大?你能想象264有多大吗?二、思维起点落实1.同底数幂相________,底数________,指数________.即a m·a n=_____(m,n为正整数).2.幂的乘方,底数_______,指数______,即(a m)n=______(m,n为正整数).3.积的乘方等于积中每一个因式分别_______,再把所得的幂________,即(ab)n=_______(n为正整数).4.同底数的幂相除,底数不变,指数_________.用式子表示为a m÷a n=______(a≠,m、n都是正整数,且m>n).三、重点难点突破重点1、同底数幂的乘法同底数幂是指底数相同的幂,如:24与25,(-3)4与(-3)2,(a2b)2与(a2b)3,(x+y)2与(•x+y)3等,幂的底数可以是任意有理数,也可以是单项式或多项式;当底数互为相反数时,要先转化为同底数;三个或三个以上同底数幂相乘时,也具有这一性质.2、幂的乘方幂的乘方是指几个相同的幂相乘,如(a2)3是指3个a2相乘,读作a的2次幂的三次方,(a m)n是指n个a m相乘,读作a的m次幂的n次方;幂的乘方运算,是转化为指数的乘法运算(底数不变),而同底数幂的乘法,是转化为指数的加法运算(底数不变).3、积的乘方积的乘方是指底数是乘积形式的乘方,如(ab)2,(ab)m等三个或三个以上的因式乘方也具有这一性质,即(abc)n=a n b n c n.4、同底数幂的除法(1)明确使用范围:幂的底数相同,且幂与幂之间是相除关系;(2)掌握使用方法:底数不变,指数相减;当两个幂的指数相同时,其商为1;(3)底数a可以是数、字母,也可以是复杂的单项式和多项式;(4)三个或三个以上的同底数幂相除也具有这一性质,即a m÷a n÷a p=a m-n-p;(5)性质可逆用,即a m-n=a m÷a n=a m+1÷a n+1=…(6)法则后面的条件“a≠0,m、n都是正整数,且m>n”是这个法则的一部分,•不要漏掉.难点幂的运算性质的正确运用,注意幂的运算性质是在乘法中的应用在幂的运算中,底数可以为具体的数字,也可以是字母,还可以是整式,同时还要掌握和运用以下结论,互为相反数的偶次幂相等,互为相反数的奇次幂仍是互为相反数,有时需要对原式进行适当的变形,才能转化为同底数幂的乘法.四、思维能力拓展能力点幂的运算性质的逆用案例1(1)(313)10·(310)10=______;(2)若10x=2,10y=3,则102x+3y=_________.分析:(1)如果单独算(313)10·(310)10后再相乘麻烦,但考虑313=103,与310互为倒数,积为1,•能用积的乘方逆运算:即a n b n=(ab)n.(2)102x+3y可以利用同底数幂乘法逆运算:a m+n=a m·a n,则102x+3y=102x·103y=(10x)2·(10y)3即可求.答案:(1)(313)10·(310)10=(103·310)10=1;(2)102x+3y=102x·103y=(10x)2·(10y)3=22·33=4×27=108.拓展延伸:像这类题目灵活逆用幂的运算性质,即a m+n=a m·a n,a mn=(a m)n或a mn=(a n)m(m、n•为正整数),a n b n=(ab)n(n为正整数).综合点利用幂的运算比较数的大小案例2 比较3555,4444,5333的大小.分析:此题直接计算很困难,但我们知道当x>0,y>0,且x n>y n时,有x>y,又三个数为幂的形式,可以考虑化为同指数的,逆用幂的运算性质.答案:∵3555=3111×5=(35)111=243111,4444=4111×4=(44)111=256111,5333=5111×3=(53)111=125111,根据正整数指数幂的意义有:256111>243111>125111,∴4444>3555>5333.方法提炼:化成同指数是解决这类题的关键.五、针对训练1.计算:(1)-a2·a3=_________;(2)a8·a2·a=________(3)(-a)2·a4=____. 2.计算:(1)(ab2)3·ab2;(2)(x-y)3·(x-y)2;(3)(a-b)2·(b-a)3.3.计算:(a2)3·(a3)2.4.计算:(-x4)3+(-x2)6.5.计算:3(a-b)5(a-b)-[(a-b)3]2.6.计算:-(3a2b)4.7.计算:(-a b2)2.8.计算:(12ab3)3.9.计算:(1)a8÷a2;(2)(-a)8÷(-a)5;(3)(ab)5÷(ab)3;(4)x12÷(-x)4;(5)(a-b)6÷(b-a)3;(6)(x-y)10÷(y-x)5÷(x-y);(7)(x5)2÷[(x4)2÷(x2)3].10.下列四个式子中,结果为10的有()①106+106②(210×510)2③(2×5×105)×106④(103)4A.①②B.③④C.②③D.①④11.计算:(1)9(x-y)3[-9(x-y)m+5](y-x)2;(2)(x-y)(y-x)4(x-y)m+n+1(y-x)3;(3)(x-2y)2(2y-x)3(3x-6y)4.12.计算(23)2006·(1.5)2005·(-1)2004的结果是()A.23B.-23C.32D.-3213.计算:(1)0.599×2100;(2)(-14)7×164.14.(1)已知4x=23x-1,求x值;(2)已知22x+3-22x+1=192,求x值.15.22006______42004;3666______6333.(填“>”或“<”)16.若a=255,b=344,c=433,比较a、b、c的大小.17.已知a、b、c都是正数,且a2=2,b3=3,c5=5,试比较a、b、c的大小.答案:【情境联想导入】问题1:1+2+4+23+24+ (263)问题:64个2相乘,也等于8个256相乘.【思维起点落实】1.乘不变相加a m+n2.不变相乘a mn3.乘方相乘a n b n4.相减a m-n【针对训练】1.解:(1)-a2·a3=-a2+3=-a5;(2)a8·a2·a=a8+2+1=a11;(3)(-a)2·a4=a2·a4=a2+4=a6.点拨:第(1)题中-a2与(-a)2不同,-a2的底数为a,而(-a)2的底数为-a,且(-a)2=a2;第(2)题中第三个因式a的指数是“1”而不是“0”;第(3)题中(-a)2与a4的底数不同,•应先转化为同底数,即(-a)2=a2.2.解:(1)(ab2)3·(ab)2=(ab2)3+1=(ab2)4=a4b8;(2)(x-y)3·(x-y)2=(x-y)3+2=(x-y)5;(3)(a-b)2·(b-a)3=(b-a)2·(b-a)3=(b-a)5.3.(a2)3·(a3)2=a6·a6=a12.4.(-x4)3+(-x2)6=-(x4)3+(x2)6=-x12+x12=0.5.3(a-b)5(a-b)-[(a-b)3]2=3(a-b)6-(a-b)6=2(a-b)6.点拨:第(1)题,确定好运算顺序,先算幂的乘方,再计算同底数幂的乘法;第(2)•题,负数的偶次幂为正,奇次幂为负,幂的乘方之后合并同类项;第(3)题,遵循先乘方,再乘除,后加减的顺序计算.6.解:-(3a2b)4=-34(a2)4b4=-81a8b4.点拨:运用积的乘方法则时,应特别注意观察底数含有几个因式,•每个因式都分别乘方,注意系数及系数的符号,此题中的4次幂对它前面的“-”号不起作用.7.解:(-a b2)2=a2b4.8.解:(12ab3)3=(12)3a3(b3)3=18a3b9.9.解:(1)a8÷a2=a8-2=a6;(2)(-a)8÷(-a)5=(-a)8-5=(-a)3=-a3;(3)(ab)5÷(ab)3=(ab)5-3=(ab)2=a2b2;(4)x12÷(-x)4=x12÷x4=x12-4=x8;(5)(a-b)6÷(b-a)3=(a-b)6÷[-(a-b)3]=-[(a-b)6÷(a-b)3]=-(a-b)3;(6)(x-y)10÷(y-x)5÷(x-y)=(x-y)10÷[-(x-y)5]÷(x-y)=-(x-y)10-5-1=-(x-y)4;(7)(x5)2÷[(x4)2÷(x2)3]=x10÷(x8÷x6)=x10÷x2=x8.点拨:(1)、(2)、(3)直接按同底数幂除法法则计算;(4)、(5)、(6)底数互为相反数,应化为同底数,再应用法则,一般地有:当n为偶数时,(-a)n=a n;当n为奇数时,(-a)n=-a n.(7)是一个混合运算,应先算乘方.10.B11.解:(1)原式=9(x-y)3[-9(x-y)m+5]·(x-y)2=9×(-9)·(x-y)3·(x-y)m+5·(x-y)2=-81(x-y)10+m;(2)原式=(x-y)·(x-y)4·(x-y)m+n+1·[-(x-y)3]=-(x-y)1+4+m+n+1+3=-(x-y)m+n+9;(3)原式=(x-2y)2·[-(x-2y)3] ·[3(x-2y)]4=-(x-2y)2·(x-2y)3·34·(x-2y)4=-34(x-2y)2·(x-2y)3·(x-2y)4=-81(x-2y)9.点拨:底数为(x-y)和(y-x)的幂相乘,很显然要转化为同底数幂乘法进行运算.•要注意x-y=-(y-x),(x-y)2=(y-x)2,(y-x)3=-(x-y)3.12.A13.(1)0.599×2100=(12)99×299×2=2·(12×2)99=2;(2)(-14)7×164=(-14)7×(42)4=(-14)7×48=(-14×4)7×4=-4.14.(1)∵4x=(22)x=22x,∴22x=23x-1,∴2x=3x-1,∴x=1.(2)∵22x+3-22x+1=22x·23-22x·2=22x(23-2)=22x·6.∴22x·6=192,22x=32,∴2x=5,∴x=52.15.< >16.解:a=255=(25)11=3211;b=344=(34)11=8111;c=433=(43)11=6411.又∵81>64>32,∴b>c>a.点拨:逆用幂的运算性质,先将各数化成同指数幂,•然后通过底数的大小来确定幂的大小.17.∵a2=2,∴(a2)3=23.即a6=8.∵b3=3,∴(b3)2=32,即b6=9,∴a<b.∵a2=2,∴(a2)5=25,即a10=32,c5=5,∴(c5)2=52,即c10=25,∴c<a,∴c<a<b.。
初中数学人教版八年级上册实用资料幂的运算及整体代入(讲义)➢课前预习1.默写下面的法则、公式幂的运算法则:(1)同底数幂相乘,_________,_________.即__________.(2)同底数幂相除,_________,_________.即__________.(3)幂的乘方,___________,_________.即___________.(4)积的乘方等于___________.即_____________.a0=_______(_________);a-p=______=______(___________________).2.整体代入的思考方向①___________________,考虑整体代入;②化简___________,对比确定________;③_______________,化简.3.若代数式2a b238++的值为________.a b+的值是12,则代数式246➢知识点睛1.整体思想:整体思想就是通过研究问题的整体形式、结构、特征,从而对问题进行整体处理的解题思想.如:整体代入、整体加减、整体代换、整体补形等.2. 幂的运算法则逆用①观察已知及所求,对比确定____________之间的关系;②根据幂的运算法则对已知或所求进行等价变形,使之成为___________________________. 3. 降幂法整体代入①对比已知及所求,将已知中___________________当作整体; ②对所求进行变形,找到整体,进行代入; ③降幂化简,重复上述过程,直至最简.➢ 精讲精练1. 若35m =,32n =,则2313m n +-=____________.2. 已知34x =,32y =,求2927x y x y --+的值.3. 已知742521052m n ⋅⋅=⋅,则m +n =____________.4. 已知212448x x ++=,则x =__________.5. 已知129372n n +-=,求n 的值.6. 数5553,4444,3335的大小关系是( )A .5553<4444<3335B .4444<5553<3335C .3335<4444<5553D .3335<5553<4444 7. 若3181a =,4127b =,619c =,则a ,b ,c 的大小关系为( )A .a b c >>B .a c b >>C .c b a >>D .b c a >>8. 数10012与7513的大小关系是( ) A .10012<7513 B .10012>7513C .100751123=D .无法确定9. 若20152a b -=,20162c d +=,则()()b c a d +--的值为_____.10. 已知1998a b c +=+=+,求代数式222()()()b a c b c a -+-+-的值.11. 已知0a b c ++=,求()()()a b b c c a abc ++++的值.12. 若220x x +-=,则3222016x x x +-+=___________.13. 若322a a +=-,则6422884a a a ++-=________.14. 若221x x -=,则4324431x x x x -+--=___________.15. 已知331x x -=,求432912372016x x x x +--+的值.【参考答案】 ➢ 课前预习1. 默写下面的法则、公式幂的运算法则:(1)同底数幂相乘,底数不变,指数相加.即m n m n a a a +⋅=. (2)同底数幂相除,底数不变,指数相减.即m n m n a a a -÷=. (3)幂的乘方,底数不变,指数相乘.即()m n mn a a =.(4)积的乘方等于乘方的积.即()n n nab a b=.a0=1(a≠0);a-p=1pa=1()pa(a≠0,p是正整数).2.整体代入的思考方向①求值困难,考虑整体代入;②化简已知及所求,对比确定整体;③整体代入,化简.3.若代数式246a b+的值是12,则代数式2238a b++的值为14.➢知识点睛1.幂的运算法则逆用①观察已知及所求,对比确定幂的底数与指数之间的关系;②根据幂的运算法则对已知或所求进行等价变形,使之成为同底数或同指数的幂.2.降幂法整体代入①对比已知及所求,将已知中最高次项或含字母的项当作整体;②对所求进行变形,找到整体,进行代入;③降幂化简,重复上述过程,直至最简.➢精讲精练1.200 32.723. 54. 25. 16. D7. A8. B9.2015210.22211.012.2 01813.414.115.2 020。