高考线性规划题型归纳
- 格式:docx
- 大小:190.43 KB
- 文档页数:6
线性规划——作图与求解一、基础知识(1)线性约束条件:关于变量,x y 的一次不等式(或方程)组(2)可行解:满足线性约束条件的解(),x y(3)可行域:所有可行解组成的集合(4)目标函数:关于,x y 的函数解析式(5)最优解:是目标函数取得最大值或最小值的可行解2、如何在直角坐标系中作出可行域:(1)先作出围成可行域的直线,利用“两点唯一确定一条直线”可选取直线上的两个特殊点(比如坐标轴上的点),以便快速做出直线(2)如何判断满足不等式的区域位于直线的哪一侧:一条曲线(或直线)将平面分成若干区域,则在同一区域的点,所满足不等式的不等号方向相同,所以可用特殊值法,利用特殊点判断其是否符合不等式,如果符合,则该特殊点所在区域均符合该不等式,具体来说有以下三种情况:① 竖直线x a =或水平线y b =:可通过点的横(纵)坐标直接进行判断 ② 一般直线()0y kx b kb =+≠:可代入()0,0点进行判断,若符合不等式,则原点所在区域即为不等式表示区域,否则则为另一半区域。
例如:不等式230x y -+≤,代入()0,0符合不等式,则230x y -+≤所表示区域为直线230x y -+=的右下方③ 过原点的直线()0y kx k =≠:无法代入()0,0,可代入坐标轴上的特殊点予以解决,或者利用象限进行判断。
例如:y x ≤:直线y x =穿过一、三象限,二、四象限分居直线两侧。
考虑第四象限的点0,0x y ><,所以必有y x ≤,所以第四象限所在区域含在y x ≤表示的区域之中。
(3)在作可行域时要注意边界是否能够取到:对于约束条件(),0F x y >(或(),0F x y <)边界不能取值时,在图像中边界用虚线表示;对于约束条件(),0F x y ≥(或(),0F x y ≤)边界能取值时,在图像中边界用实线表示3、利用数形结合寻求最优解的一般步骤(1)根据约束条件,在平面直角坐标系中作出可行域所代表的区域(2)确定目标函数z 在式子中的几何意义,常见的几何意义有:(设,a b 为常数)① 线性表达式——与纵截距相关:例如z ax by =+,则有a z y x b b =-+,从而z 的取值与动直线的纵截距相关,要注意b 的符号,若0b >,则z 的最大值与纵截距最大值相关;若0b <,则z 的最大值与纵截距最小值相关。
线性 规划常有题型及解 法 一、已知线性拘束条件,探究线性目标关系最值问题2x y 2例 1、设变量 x 、 y 知足拘束条件x y 1,则 z 2 x 3y 的最大值为。
x y 1分析:如图 1,画出可行域,得在直线 2x-y=2 与直线 x-y=-1 的交点 A(3,4) 处,目标函数 z最大值为 18评论:此题主要考察线性规划问题 , 由线性拘束条件画出可行域 , 而后求出目标函数的最大值 . ,是一道较为简单的送分题。
数形联合是数学思想的重要手段之一。
x 2习 题 1 、 若 x 、 y 满 足 约 束 条 件 y 2, 则 z=x+2y的取值范围是()x y2A 、 [2,6]B 、 [2,5]C 、 [3,6]D 、( 3,5]yBy =2解 : 如 图 , 作 出 可 行 域 , 作 直 线 l : x+2y = 0, 将2Axl 向 右 上 方 平 移 , 过 点 A ( 2,0)时,有最小值 O2x + y =2x=22,过点 B (2,2 )时,有最大值6,应选 A二、已知线性拘束条件,探究非线性目标关系最值问题x 1, 例 2、已知xy 1 0, 则 x 2y 2 的最小值是.2x y 2分析:如图 2,只需画出知足拘束条件的可行域,而x 2 y 2 表示可行域内一点到原点的距离的平方。
由图易知A (1,2) 是知足条件的最优解。
x 2 y 2 的最小值是为 5。
评论:此题属非线性规划最优解问题。
求解重点是在 发掘目标关系几何意义的前提下,作出可行域,追求最优解。
习 题 2 、 已 知 x 、 y 满 足 以 下 约 束 条 件图 22x y 2 0x 2 y4 0 , 则 z=x 2 +y 2 的 最 大 值 和 最 小 值 分 别 是 ()3xy3A 、 13,1B 、13, 2yAC 、 13,4D 、 13,255 5Ox解 : 如 图 ,作 出 可 行 域 ,x 2 +y 2 是 点 ( x , y )到 原 点x – 2y + 4 = 2x + y - 2= 00 的距离的平方,故最大值为点 A (2,3 )到原点的3x – y – 3 =距离的平方,即 |AO| 2 =13 ,最小值为原点到直线 2x + y - 2=0 的距离的平方,即为4,选 C 5练习 2、已知x,y 知足x 2 y50 ,则yx 1, y 0xx 2 y30的最大值为 ___________,最小值为 ____________.2,0三、设计线性规划,探究平面地区的面积问题例 3、在平面直角坐标系中,不等式组x y20x y20表示的平面地区的y0面积是() (A) 4 2 (B)4 (C) 2 2 (D)2x y 2 0分析:如图6,作出可行域,易知不等式组x y 2 0表示y 0的平面地区是一个三角形。
高考数学线性规划题型总结文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]线性规划常见题型及解法 一、已知线性约束条件,探求线性目标关系最值问题例1、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。
解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1的交点A(3,4)处,目标函数z 最大值为18点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。
数形结合是数学思想的重要手段之一。
习题1、若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y 的取值范围是 ( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选A二、已知线性约束条件,探求非线性目标关系最值问题例2、已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值是 .22x y +解析:如图2,只要画出满足约束条件的可行域,而表示可行域内一点到原点的距离的平方。
由图易知A (1,2)是满足条件的最优解。
22x y +的最小值是为5。
点评:本题属非线性规划最优解问题。
求解关键是在挖掘目标关系几何意义的前提下,作出可行域,寻求最优解。
习题2、已知x 、y 满足以下约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x 2+y 2的最大值和最小值分别是( ) A 、13,1 B 、13,2C 、13,45D 、13,25图2x y O22 x=2y =2 x + y =2BA2x + y - 2= 0x – 2y + 4 = 0 3x – y – 3 = 0OyxA解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为45,选C 练习2、已知x ,y 满足⎪⎩⎪⎨⎧≥-+≥≥≤-+0320,1052y x y x y x ,则x y 的最大值为___________,最小值为____________. 2,0三、设计线性规划,探求平面区域的面积问题例3、在平面直角坐标系中,不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域的面积是()(A)42 (B)4 (C) 22 (D)2 解析:如图6,作出可行域,易知不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域是一个三角形。
高考数学线性规划常见题型与解法线性规划问题是高考的重点,也是常考题型,属于中等偏简单题,易得分,高考中要求会从实际问题中建立一格二元线性规划的模型,使实际问题得到解决。
现就常见题型与解决方法总结如下: 一、求线性目标函数的最值;例题:(2012年广东文5)已知变量,x y 满足条件1110x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则2z x y =+的最小值为 A.3 .1 C5 6解析:利用线性规划知识求解。
可行域如图阴影所示,先画出直线01:2l y x =-,平移直线0l ,当直线过点A 时,2z x y =+的值最小,得110,x x y =-⎧⎨--=⎩12,x y =-⎧⎨=-⎩min (1,2),12(2)5A z ∴--∴=-+⨯-=- 探究提高:本题主要考查线性规划求最值,同时考查学生的作图能力,数形结合思想与运算求解能力,难度适中。
二、求目标函数的取值范围;例题:(2012山东文6)设变量,x y 满足约束条件2224,41x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是解析:作出不等式组表示的区域,如图阴影部分所示,作直线30x y -=,并向上、向下平移,由图可得,当直线过点C 时,目标函数取得最大值,当直线过点A 是,目标函数取得最小值,由210,(2,0)240x y A x y ++=⎧⎨+-=⎩得;由4101,(,3)2402x y x y -+=⎧⎨+-=⎩得B 探究提高:本题设计有新意,作出可行域,寻求最优解条条件,取得目标函数的最大(小)值,进一步确定取值范围 三、求约束条件中参数的取值;例题:(2012福建文10)若直线2x y =上存在点(,)x y 满足条件-30-2-30,x y x y x m +≥⎧⎪≤⎨⎪≥⎩则实数m 的最大值为( )解析:在同一直角坐标系中函数2x y =的图像与30230x y x y +-≤⎧⎨--≤⎩,所表示的平面区域图阴影部分所示。
线性规划专题一、命题规律讲解1、 求线性(非线性)目标函数最值题2、 求可行域的面积题3、 求目标函数中参数取值范围题4、 求约束条件中参数取值范围题5、 利用线性规划解答应用题一、线性约束条件下线性函数的最值问题线性约束条件下线性函数的最值问题即简单线性规划问题,它的线性约束条件是一个二元一次不等式组,目标函数是一个二元一次函数,可行域就是线性约束条件中不等式所对应的方程所表示的直线所围成的区域,区域内的各点的点坐标(),x y 即简单线性规划的可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即简单线性规划的最优解。
例1 已知4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩,2z x y =+,求z 的最大值和最小值例2已知,x y 满足124126x y x y x y +=⎧⎪+≥⎨⎪-≥-⎩,求z=5x y -的最大值和最小值二、非线性约束条件下线性函数的最值问题高中数学中的最值问题很多可以转化为非线性约束条件下线性函数的最值问题。
它们的约束条件是一个二元不等式组,目标函数是一个二元一次函数,可行域是直线或曲线所围成的图形(或一条曲线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即最优解。
例3 已知,x y 满足,224x y +=,求32x y +的最大值和最小值例4 求函数4y x x=+[]()1,5x ∈的最大值和最小值。
三、线性约束条件下非线性函数的最值问题这类问题也是高中数学中常见的问题,它也可以用线性规划的思想来进行解决。
它的约束条件是一个二元一次不等式组,目标函数是一个二元函数,可行域是直线所围成的图形(或一条线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即最优解。
例5 已知实数,x y 满足不等式组10101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩,求22448x y x y +--+的最小值。
高中数学线性规划练习题及讲解线性规划是高中数学中的一个重要概念,它涉及到资源的最优分配问题。
以下是一些线性规划的练习题,以及对这些题目的简要讲解。
### 练习题1:资源分配问题某工厂生产两种产品A和B,每生产一件产品A需要3小时的机器时间和2小时的人工时间,每生产一件产品B需要2小时的机器时间和4小时的人工时间。
工厂每天有机器时间100小时和人工时间80小时。
如果产品A的利润是每件50元,产品B的利润是每件80元,工厂应该如何安排生产以获得最大利润?### 解题思路:1. 首先,确定目标函数,即利润最大化。
设生产产品A的数量为x,产品B的数量为y。
2. 目标函数为:\( P = 50x + 80y \)。
3. 根据资源限制,列出约束条件:- 机器时间:\( 3x + 2y \leq 100 \)- 人工时间:\( 2x + 4y \leq 80 \)- 非负条件:\( x \geq 0, y \geq 0 \)4. 画出可行域,找到可行域的顶点。
5. 计算每个顶点的目标函数值,选择最大的一个。
### 练习题2:成本最小化问题一家公司需要生产两种产品,产品1和产品2。
产品1的原材料成本是每单位10元,产品2的原材料成本是每单位15元。
公司每月有原材料预算3000元。
如果公司希望生产的产品总价值达到最大,应该如何分配生产?### 解题思路:1. 设产品1生产x单位,产品2生产y单位。
2. 目标函数为产品总价值最大化,但题目要求成本最小化,所以实际上是求成本最小化条件下的产品组合。
3. 约束条件为原材料成本:\( 10x + 15y \leq 3000 \)4. 非负条件:\( x \geq 0, y \geq 0 \)5. 画出可行域,找到顶点。
6. 根据实际情况,可能需要考虑产品1和产品2的市场价格,以确定最大价值。
### 练习题3:运输问题一个农场有三种作物A、B和C,需要运输到三个市场X、Y和Z。
高中必修5线性规划简单的线性规划问题一、知识梳理1. 目标函数:P =2x + y是一个含有两个变量x和y的函数,称为目标函数.2. 可行域:约束条件所表示的平面区域称为可行域•3. 整点:坐标为整数的点叫做整点.4. 线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题•只含有两个变量的简单线性规划问题可用图解法来解决.5. 整数线性规划:要求量取整数的线性规划称为整数线性规划.二、疑难知识导析1. 对于不含边界的区域,要将边界画成虚线.2. 确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.若直线不过原点,通常选择原点代入检验.3. 平移直线y=—k x +P时,直线必须经过可行域.4. 对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点.5. 简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.积储知识:2* (2015•马軼山一模)设变壘X, y满足约束条件I < F则z=x-3y的罠小值(扎-2 S. ~4C+ -5 D. -8rj-v>03. (2015 -Lil东)已知筈,y满足约朿条件\ x-y<2,若沪立+y的最犬値为4,则沪][炖A B3 Ei 2 C* ~ 2 D«—314x-H5j>S4* 东)若变重壯y炳足釣束条件3 l<x<J ,则沪睑+刘的最"卜信为()乱年 C. 6 D.A. 42xp 三 IDx-2y<l4f 则克苧的最大值育()百x+j-4<01 H!lz-^2x+y 的最大值是( )绘1内・一1B ・一2C+ -5D ・1(C, 12D . ia。
1.(12安徽卷文7).若222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则目标函数z x y =-的取值范围是----------------------2.(重庆卷文7)设变量,x y 满足约束条件0,0,220,x x y x y ≥⎧⎪-≥⎨⎪--≤⎩则32z x y =-的最大值为---------3.(07安徽卷文8).设,x y 满足24,1,22,x y x y x y +≥⎧⎪-≥⎨⎪-≤⎩则z x y =+,Z 最大值-------最小值-----------4.(13河北).设x ,y 满足约束条件360200,0x y x y x ⎧⎪⎨⎪⎩--≤-+≥y ≥y ≥,若目标函数z =ax +by (a >0,b>0)的最大值为12,则2a +3b的最小值为 --------- 5..(安徽卷文8)设x,y 满足约束条件260,260,0,x y x y y +-≥⎧⎪+-≤⎨⎪≥⎩则目标函数z=x+y 的最大值是------6..(福建卷文5)设x,y R ∈,且x 1x-2y+30y x ≥⎧⎪≥⎨⎪≥⎩,则z=x+2y 的最小值等于-------------------7..(全国Ⅰ卷理)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为------8..(全国Ⅰ新卷文11)已知 ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在四边形ABCD 的内部,则z=2x-5y 的取值范围是-----------------------------------9..(全国Ⅱ卷理)若变量,x y 满足约束条件1,,325x y x x y -⎧⎪⎨⎪+⎩≥≥≤,则2z x y =+的最大值为---------10.(山东卷理10)设变量x 、y 满足约束条件2,5100,80,x y o x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩,则目标函数z =3x -4y 的最大值-------------,最小值--------------11.(上海卷文15)满足线性约束条件23,23,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数z x y =+的最大值是---------12.(天津卷)设变量x ,y 满足约束条件3,1,1,x y x y y +≤⎧⎪-≥-⎨⎪≥⎩则目标函数z=4x+2y 的最大值为---------13(浙江卷)若实数x ,y 满足不等式组330,230,10,x y x y x my +-≥⎧⎪--≤⎨⎪-+≥⎩且x y +的最大值为9,则实数m =-----14.(浙江卷文7)若实数x,y 满足不等式组合33021010x y x y x y +-≥⎧⎪-+≤⎨⎪-+≥⎩,则x+y 的最大值为------15.(重庆卷理4)设变量x ,y 满足约束条件01030y x y x y ≥⎧⎪-+≥⎨⎪+-≤⎩,则z=2x+y 的最大值为---------16.(西藏高考)设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值-----------17.(西藏高考)若变量,x y 满足约束条件329,69,x y x y ≤+≤⎧⎨≤-≤⎩则2z x y =+的最小值为---------- 18. 设,x y 满足约束条件:,013x y x y x y ≥⎧⎪-≥-⎨⎪+≤⎩;则2z x y =-的取值范围为--------------------------------19. 已知a >0,x ,y 满足约束条件 ⎪⎩⎪⎨⎧-≥≤+≥)3(31x a y y x x ,若z=2x+y 的最小值为1,则a=------20. (2008年广东理4)若变量x y ,满足24025000x y x y x y ⎧+⎪+⎪⎨⎪⎪⎩,,,,≤≤≥≥则32z x y =+的最大值是-----------21. (2009安徽卷文)不等式组 所表示的平面区域的面积等于---------------。
高考线性规划题型归纳 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】线性规划常见题型及解法一、已知线性约束条件,探求线性目标关系最值问题例1、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。
解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1的交点A(3,4)处,目标函数z 最大值为18点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。
数形结合是数学思想的重要手段之一。
习题1、若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y 的取值范围是( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选A二、已知线性约束条件,探求非线性目标关系最值问题例2、已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值是 .解析:如图2,只要画出满足约束条件的可行域,而22x y +表示可行域内一点到原点的距离的平方。
由图易知A (1,2)是满足条件的最优解。
22x y +的最小值是为5。
点评:本题属非线性规划最优解问题。
求解关键是在挖掘目标关系几何意义的前提下,作出可行域,寻求最优解。
习题2、已知x 、y 满足以下约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩ ,则z=x 2+y 2的最大值和最小值分别是( ) A 、13,1 B 、13,2图2x y O2 2 x=2y =2 x + y =2BAC 、13,45D 、13,255解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为45,选C练习2、已知x ,y 满足⎪⎩⎪⎨⎧≥-+≥≥≤-+0320,1052y x y x y x ,则x y 的最大值为___________,最小值为____________.2,0三、设计线性规划,探求平面区域的面积问题例3、在平面直角坐标系中,不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域的面积是()(A)42 (B)4 (C) 22 (D)2解析:如图6,作出可行域,易知不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域是一个三角形。
容易求三角形的三个顶点坐标为A(0,2),B(2,0),C(-2,0).于是三角形的面积为:11||||42 4.22S BC AO =⋅=⨯⨯=从而选B。
点评:有关平面区域的面积问题,首先作出可行域,探求平面区域图形的性质;其次利用面积公式整体或部分求解是关键。
习题3、不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为( )A 、4B 、1C 、5D 、无穷大解:如图,作出可行域,△ABC 的面积即为所求,由梯形OMBC 的面积减去梯形OMAC 的面积即可,选B四、已知平面区域,逆向考查约束条件。
例4、已知双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是()2x + y – 6= 0 = 5x +y – 3 = 0Oyx A BC M y =2(A)0003x y x y x -≥⎧⎪+≥⎨⎪≤≤⎩ (B)0003x y x y x -≥⎧⎪+≤⎨⎪≤≤⎩ (C) 0003x y x y x -≤⎧⎪+≤⎨⎪≤≤⎩ (D) 0003x y x y x -≤⎧⎪+≥⎨⎪≤≤⎩解析:双曲线224x y -=的两条渐近线方程为y x =±,与直线3x =围成一个三角形区域(如图4所示)时有0003x y x y x -≥⎧⎪+≥⎨⎪≤≤⎩。
点评:本题考查双曲线的渐近线方程以及线性规划问题。
验证法或排除法是最效的方法。
习题4、如图所示,表示阴影部分的二元一次不等式组是 ( )A .232600y x y x ≥-⎧⎪-+>⎨⎪<⎩B .232600y x y x >-⎧⎪-+≥⎨⎪≤⎩C .232600y x y x >-⎧⎪-+>⎨⎪≤⎩D .232600y x y x >-⎧⎪-+<⎨⎪<⎩C五、约束条件设计参数形式,考查目标函数最值范围问题。
例5、在约束条件024x y y x s y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下,当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是()A.[6,15]B. [7,15]C. [6,8]D. [7,8]解析:画出可行域如图3所示,当34s ≤<时, 目标函数32z x y =+在(4,24)B s s --处取得最大值, 即max 3(4)2(24)4[7,8)z s s s =-+-=+∈;当45s ≤≤时, 目标函数32z x y =+在点(0,4)E 处取得最大值,即max 30248z =⨯+⨯=,故[7,8]z ∈,从而选D;点评:本题设计有新意,作出可行域,寻求最优解条件,然后转化为目标函数Z 关于S 的函数关系是求解的关键。
六、求约束条件中参数的取值范围例6、已知|2x -y +m|<3表示的平面区域包含点(0,0)和(-1,1),则m 的取值范围是 ( )A 、(-3,6)B 、(0,6)C 、(0,3)D 、(-3,3)解:|2x -y +m|<3等价于230230x y m x y m -++>⎧⎨-+-<⎩CO2x – y = 0 y2x – y + 3 = 0由右图可知3330m m +>⎧⎨-<⎩ ,故0<m <3,选C习题6、不等式3|2|<++m y x 表示的平面区域包含点)0,0(和点),1,1(-则m 的取值范围是 ( )A .32<<-mB .60<<mC .63<<-mD .30<<mA七、已知最优解成立条件,探求目标函数参数范围问题。
例7、已知变量x ,y 满足约束条件1422x y x y ≤+≤⎧⎨-≤-≤⎩。
若目标函数z ax y =+(其中0a >)仅在点(3,1)处取得最大值,则a 的取值范围为 。
解析:如图5作出可行域,由z ax y y ax z =+⇒=-+其表示为斜率为a -,纵截距为z的平行直线系, 要使目标函数z ax y =+(其中0a >)仅在点(3,1)处取得最大值。
则直线y ax z =-+过A点且在直线4,3x y x +==(不含界线)之间。
即1 1.a a -<-⇒>则a 的取值范围为(1,)+∞。
点评:本题通过作出可行域,在挖掘a z -与的几何意义的条件下,借助用数形结合利用各直线间的斜率变化关系,建立满足题设条件的a 的不等式组即可求解。
求解本题需要较强的基本功,同时对几何动态问题的能力要求较高。
习题7、已知x 、y 满足以下约束条件5503x y x y x +≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a 的值为 ( )A 、-3B 、3C 、-1D 、1解:如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选D八、研究线性规划中的整点最优解问题x + y = 5x – y + 5 = 0O yx x=3例8、某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件⎪⎩⎪⎨⎧≤≥+-≥-.112,932,22115x y x y x 则1010z x y =+的最大值是(A)80(B) 85 (C) 90 (D)95解析:如图7,作出可行域,由101010zz x y y x =+⇒=-+,它表示为斜率为1-,纵截距为10z的平行直线系,要使1010z x y =+最得最大值。
当直线1010z x y =+通过119(,)22A z 取得最大值。
因为,x y N ∈,故A点不是最优整数解。
于是考虑可行域内A点附近整点B(5,4),C(4,4),经检验直线经过B点时,max 90.Z =点评:在解决简单线性规划中的最优整数解时,可在去掉限制条件求得的最优解的基础上,调整优解法,通过分类讨论获得最优整数解。
九、求可行域中整点个数例9、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( )A 、9个B 、10个C 、13个D 、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0)x y x y x y x y x y x y x y xy+≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选C习题9、不等式3<+y x 表示的平面区域内的整点个数为( )A . 13个B . 10个C . 14个D . 17个 AxyO。