2016-2017学年高一数学人教A版必修三练习:第二章 统计2.2.1 Word版含解析
- 格式:doc
- 大小:228.00 KB
- 文档页数:5
(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.对于样本频率分布折线图与总体密度曲线的关系,下列说法中正确的是()A.频率分布折线图与总体密度曲线无关B.频率分布折线图就是总体密度曲线C.样本容量很大的频率分布折线图就是总体密度曲线D.如果样本容量无限增大、分组的组距无限减小,那么频率分布折线图就会无限接近总体密度曲线解析:总体密度曲线通常是用样本频率分布估计出来的.而频率分布折线图在样本容量无限增大,分组的组距无限减小的情况下会无限接近于一条光滑曲线,这条光滑曲线就是总体密度曲线.答案: D2.下面是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图可知()A.甲运动员的成绩好于乙运动员B.乙运动员的成绩好于甲运动员C.甲、乙两名运动员的成绩没有明显的差异D.甲运动员的最低得分为0分解析:从茎叶图可以看出,甲运动员的成绩集中在大茎上的叶多,故成绩好.故选A.答案: A3.某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是( )A .45B .50C .55D .60解析: 设该班人数为n ,则20×(0.005+0.01)n =15,n =50,故选B. 答案: B4.观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在[2 700,3 000)内的频率为( )A .0.001B .0.1C .0.2D .0.3解析: 由频率分布直方图的意义可知,各小长方形的面积=组距×频率组距=频率,即各小长方形的面积等于相应各组的频率.在区间[2 700,3 000)内频率的取值为(3 000-2 700)×0.001=0.3.故选D.答案: D二、填空题(每小题5分,共15分)5.一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2 500,3 000)(元)月收入段应抽出________人.解析:由题意得在[2500,3000)(元)月收入段应抽出的人数为0.0005×500×100=25.答案:256.某省选拔运动员参加2015年的全运会,测得7名选手的身高(单位:cm)分布茎叶图如图所示,记录的平均身高为177 cm,其中有一名候选人的身高记录不清,其末位数为x,那么x的值为________.解析:依题意得180×2+1+170×5+3+x+8+9=177×7,x=8.答案:87.下面是某中学期末考试各分数段的考生人数分布表:则分数在[700,800)的人数为________人.解析:由于在分数段[400,500)内的频数是90,频率是0.075,则该中学共有考生900.075=1 200,则在分数段[600,700)内的频数是1 200×0.425=510,则分数在[700,800)内的频数,即人数为1 200-(5+90+499+510+8)=88.答案:88三、解答题(每小题10分,共20分)8.下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位:cm).(1)列出样本频率分布表;(2)画出频率分布直方图;(3)估计身高小于134 cm的人数占总人数的百分比.解析:(1)样本频率分布表如下:(2)其频率分布直方图如下:(3)由样本频率分布表可知身高小于134 cm 的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134 cm 的人数占总人数的19%.9.为了调查甲、乙两个交通站的车流量,随机选取了14天,统计每天上午8:00~12:00间各自的车流量(单位:百辆),得如图所示的统计图,试求:(1)甲、乙两个交通站的车流量的极差分别是多少? (2)甲交通站的车流量在[10,40]间的频率是多少? (3)甲、乙两个交通站哪个站更繁忙?并说明理由.解析: (1)甲交通站的车流量的极差为73-8=65(百辆),乙交通站的车流量的极差为71-5=66(百辆).(2)甲交通站的车流量在[10,40]间的频率为414=27.(3)甲交通站的车流量集中在茎叶图的下方,而乙交通站的车流量集中在茎叶图的上方,从数据的分布情况来看,甲交通站更繁忙.。
(数学3必修)第二章 统计[综合训练B 组]一、选择题1 数据123,,,...,n a a a a 的方差为2σ,则数据1232,2,2,...,2n a a a a 的方差为( ) A 22σ B 2σ C 22σ D 24σ 2 某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2, ……,270;使用系统抽样时,将学生统一随机编号1,2, ……,270,并将整个编号依次分为10段 如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是( )A ②、③都不能为系统抽样B ②、④都不能为分层抽样C ①、④都可能为系统抽样D ①、③都可能为分层抽样3 一个容量为40的样本数据分组后组数与频数如下:[25,25 3),6;[25 3,256),4;[25 6,25 9),10;[25 9,26 2),8;[26 2,26 5),8;[26 5,26 8),4;则样本在[25,25 9)上的频率为( )A 203B 101C 21D 41 4 设有一个直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( )A y 平均增加1.5个单位B y 平均增加2个单位C y 平均减少1.5个单位D y 平均减少2个单位5 在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4 8.4 9.4 9.9 9.6 9.4 9.7 去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为 ( )A 9.4,0.484B 9.4,0.016C 9.5,0.04D 9.5,0.016二、填空题1 已知样本9,10,11,,x y 的平均数是10,则xy =2 一个容量为20的样本,已知某组的频率为0.25,则该组的频数为__________3 用随机数表法从100名学生(男生25人)中抽取20人进行评教,某男生被抽取的机率是___________________4 一个容量为20的样本数据,分组后组距与频数如下表: 组距 [)20,10 [)30,20 [)40,30 [)50,40 [)60,50 [)70,60 频数 2 3 4 5 4 2则样本在区间(),50-∞ 上的频率为__________________5 某单位有老年人28人,中年人54人,青年人81人,为调查身体健康状况,需要从中抽取一个容量为36的样本,用分层抽样方法应分别从老年人、中年人、青年人中各抽取 _________人、 人、 人三、解答题1 对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:问:甲、乙谁的平均成绩最好?谁的各门功课发展较平衡?2 某学校共有教师490人,其中不到40岁的有350人,40岁及以上的有140人 为了了解普通话在该校中的推广普及情况,用分层抽样的方法,从全体教师中抽取一个容量为70人的样本进行普通话水平测试,其中在不到40岁的教师中应抽取的人数为多少人?3 已知200辆汽车通过某一段公路时的时速的频率分布直方图如右图所示,求时速在[60,70]的汽车大约有多少辆?时速() 0 01 0 02 0 03 0 04 频率 组距 40 50 60 70 80数学3(必修)第二章 统计 [综合训练B 组]参考答案一、选择题 1 D 22222111111(),(22)4()4,n n n i i i i i i X X X X X X n n n σσ====--=⋅-=∑∑∑ 2 D ③的间隔为27,可为系统抽样;④的第一个数为30,不符合系统抽样,因为间隔为27,④的第一个数应该为127;分层抽样则要求初一年级应该抽取4人,号码在1108,所以④中的111不符合分层抽样3 C [25,25 9]包括[25,25 3],6;[25 3,25 6],4;[25 6,25 9],10;频数之和为20,频率为201402= 4 C 5 D 9.439.69.49.55X ⨯++==,2222111()(0.140.2)0.0165n X i i X X n σ==-=⨯+=∑ 二、填空题1 96 9101150,20x y x y ++++=+=,2211(10)(10)10x y ++-+-=, 22220()192,()220()192,96x y x y x y xy x y xy +-+=-+--+=-=-2 5 =频数频率样本容量 3 15 每个个体被抽取的机率都是2011005= 4 0.7 140.720= 5 61218,, 总人数为36363628548116328654128118163163163++=⨯≈⨯≈⨯≈,,,, 三、解答题1 解:74)7090708060(51=++++=甲x 73)7580706080(51=++++=乙x 104416461451222222=++++=)(甲s 5627313751222222=++++=)(乙s ∵ 22乙甲乙甲,s s x x >>∴ 甲的平均成绩较好,乙的各门功课发展较平衡2 解:而抽取的比例为701,4907=,在不到40岁的教师中应抽取的人数为1⨯=350507⨯=,3 解:在[60,70]的汽车的频率为0.04100.4⨯=在[60,70]的汽车有2000.480。
2.2.1用样本的频率分布估计总体分布课时目标 1.理解用样本的频率分布估计总体分布的方法.2.会列频率分布表,画频率分布直方图、频率分布折线图、茎叶图.3.能够利用图形解决实际问题.1.用样本估计总体的两种情况(1)用样本的____________估计总体的分布.(2)用样本的____________估计总体的数字特征.2.数据分析的基本方法(1)借助于图形分析数据的一种基本方法是用图将它们画出来,此法可以达到两个目的,一是从数据中____________,二是利用图形________信息.(2)借助于表格分析数据的另一方法是用紧凑的________改变数据的排列方式,此法是通过改变数据的____________,为我们提供解释数据的新方式.3.频率分布直方图在频率分布直方图中,纵轴表示____________,数据落在各小组内的频率用________________来表示,各小长方形的面积的总和等于____.4.频率分布折线图和总体密度曲线(1)频率分布折线图连接频率分布直方图中各小长方形__________,就得到了频率分布折线图.(2)总体密度曲线随着样本容量的增加,作图时所分的____增加,组距减小,相应的频率分布折线图就会越来越接近于一条________,统计中称之为总体密度曲线,它反映了总体在各个范围内取值的百分比.5.茎叶图(1)适用范围:当样本数据较少时,用茎叶图表示数据的效果较好.(2)优点:它不但可以____________,而且可以__________,给数据的记录和表示都带来方便.(3)缺点:当样本数据______时,枝叶就会很长,茎叶图就显得不太方便.一、选择题1.下列说法不正确的是()A.频率分布直方图中每个小矩形的高就是该组的频率B.频率分布直方图中各个小矩形的面积之和等于1C.频率分布直方图中各个小矩形的宽一样大D.频率分布折线图是依次连接频率分布直方图的每个小矩形上端中点得到的A.0.13 B.0.39 C.0.52 D.0.643.100辆汽车通过某一段公路时的时速的频率分布直方图如下图所示,则时速在[60,70)的汽车大约有()A.30辆B.40辆C.60辆D.80辆4.如图是总体密度曲线,下列说法正确的是()A.组距越大,频率分布折线图越接近于它B.样本容量越小,频率分布折线图越接近于它C.阴影部分的面积代表总体在(a,b)内取值的百分比D.阴影部分的平均高度代表总体在(a,b)内取值的百分比5.一个容量为35的样本数据,分组后,组距与频数如下:[5,10),5个;[10,15),12个;[15,20),7个;[20,25),5个;[25,30),4个;[30,35),2个.则样本在区间[20,+∞)上的频率为()A.20% B.69%C.31% D.27%6.某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是()7.将容量为n的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n=________. 8.在如图所示的茎叶图中,甲、乙两组数据的中位数分别是________.9.在抽查产品的尺寸过程中,将其尺寸分成若干组,[a,b)是其中的一组,抽查出的个体在各组上的频率为m,该组上直方图的高为h,则|a-b|=________.三、解答题10.抽查100袋洗衣粉,测得它们的重量如下(单位:g):494498493505496492485483508511495494483485511493505488 501491493509509512484509510 495497498504498483510503497 502511497500493509510493491 497515503515518510514509499 493499509492505489494501509 498502500508491509509499495 493509496509505499486491492 496499508485498496495496505 499505496501510496487511501496(1)列出样本的频率分布表:(2)画出频率分布直方图,频率分布折线图;(3)估计重量在[494.5,506.5]g的频率以及重量不足500 g的频率.能力提升11.在某电脑杂志的一篇文章中,每个句子的字数如下:10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17在某报纸的一篇文章中,每个句子的字数如下:27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22(1)将这两组数据用茎叶图表示;(2)将这两组数据进行比较分析,你会得到什么结论?12.某市2010年4月1日-4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45.(1)完成频率分布表.(2)作出频率分布直方图.(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.答案:2.2.1用样本的频率分布估计总体分布知识梳理1.(1)频率分布(2)数字特征 2.(1)提取信息传递(2)表格构成形式 3.频率/组距小长方形的面积1 4.(1)上端的中点(2)组数光滑曲线5.(2)保留所有信息随时记录(3)较多作业设计1.A2.C[样本数据落在(10,40]上的频数为13+24+15=52,故其频率为52100=0.52.]3.B[时速在[60,70)的汽车的频率为:0.04×(70-60)=0.4,又因汽车的总辆数为100,所以时速在[60,70)的汽车大约有0.4×100=40(辆).]4.C5.C[由题意,样本中落在[20,+∞)上的频数为5+4+2=11,∴在区间[20,+∞)上的频率为1135≈0.31.]6.A[∵样本中产品净重小于100克的频率为(0.050+0.100)×2=0.3,频数为36,∴样本总数为360.3=120.∵样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.75,∴样本中净重大于或等于98克并且小于104克的产品的个数为120×0.75=90.]7.60解析∵n·2+3+42+3+4+6+4+1=27,∴n=60.8.45,46解析由茎叶图及中位数的概念可知x甲中=45,x乙中=46.9.m h解析频率组距=h,故|a-b|=组距=频率h=mh.10.解 (1)在样本数据中,最大值是518,最小值是483,它们相差35,若取组距为4,由于354=834,要分9组,组数合适,于是决定取组距为4 g ,分9组,使分点比数据多一位小数,且把第一组起点稍微减小一点,得分组如下: [482.5,486.5),[486.5,490.5),…,[514.5,518.5). 分组 个数累计 频数 频率 累积频率 [482.5,486.5) 正 8 0.08 0.08 [486.5,490.5) 3 0.03 0.11 [490.5,494.5) 正正正 17 0.17 0.28 [494.5,498.5) 正正正正- 21 0.21 0.49 [498.5,502.5) 正正 14 0.14 0.63 [502.5,506.5) 正 9 0.09 0.72 [506.5,510.5) 正正正 19 0.19 0.91 [510.5,514.5) 正- 6 0.06 0.97 [514.5,518.5]3 0.03 1.00 合计100 1.00(3)重量在[494.5,506.5]g 的频率为:0.21+0.14+0.09=0.44. 设重量不足500 g 的频率为b ,根据频率分布表, b -0.49500-498.5≈0.63-0.48502.5-498.5,故b ≈0.55.因此重量不足500 g 的频率约为0.55.11.解 (1)(2)电脑杂志上每个句子的字数集中在10~30之间;而报纸上每个句子的字数集中在20~40之间.还可以看出电脑杂志上每个句子的平均字数比报纸上每个句子的平均字数要少.说明电脑杂志作为科普读物需要通俗易懂、简明. 12.解 (1)分组 频数 频率[41,51) 2 230[51,61) 1 130[61,71) 4 430[71,81) 6 630(2)(3)答对下述两条中的一条即可:①该市有一个月中空气污染指数有2天处于优的水平,占当月天数的115;有26天处于良的水平,占当月天数的1315;处于优或良的天数为28,占当月天数的1415.说明该市空气质量基本良好.②轻微污染有2天,占当月天数的115;污染指数在80以上的接近轻微污染的天数15,加上处于轻微污染的天数2,占当月天数的1730,超过50%;说明该市空气质量有待进一步改善.。
(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题分,共分).下面的抽样方法是简单随机抽样的是( ).在某年明信片销售活动中,规定每万张为一个开奖组,通过随机抽取的方式确定号码的后四位为的为三等奖.某车间包装一种产品,在自动包装的传送带上,每隔分钟抽一包产品,检验其质量是否合格.某学校分别从行政人员、教师、后勤人员中抽取人、人、人了解学校机构改革的意见.用抽签法从件产品中选取件进行质量检验解析:对每个选项逐条落实简单随机抽样的特点、不是简单随机抽样,因为抽取的个体间的间隔是固定的;不是简单随机抽样,因为总体的个体有明显的层次;是简单随机抽样.答案:.已知总体容量为,若用随机数表法抽取一个容量为的样本,下面对总体的编号正确的是( ),,…,,,…,,,…,,,…,解析:用随机数表法抽取样本时,样本的编号位数要一致,故选.答案:.从总数为的一批零件中抽取一个容量为的样本,若每个零件被抽取的可能性为,则为( )解析:∵每个个体被抽到机会相等,都是=,∴=.答案:.用简单随机抽样方法从含有个个体的总体中,抽取一个容量为的样本,其中某一个体“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( ),,,,解析:简单随机抽样中每个个体被抽取的机会均等,都为.答案:二、填空题(每小题分,共分).(·苏州高一期中)某中学高一年级有人,高二年级有人,高三年级有人,以每人被抽取的机会为,从该中学学生中用简单随机抽样的方法抽取一个样本,则样本容量为W.解析:=(++)×=.答案:.关于简单随机抽样,有下列说法:①它要求被抽取样本的总体的个数有限;②它是从总体中逐个地进行抽取;③它是一种不放回抽样;④它是一种等可能性抽样,每次从总体中抽取一个个体时,不仅各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.其中正确的有(请把你认为正确的所有序号都写上).解析:由随机抽样的特征可判断.答案:①②③④.假设要考察某公司生产的克袋装牛奶的质量是否达标,现从袋牛奶中抽取袋进行检验,利用随机数表抽取样本时,先将袋牛奶按,,…,进行编号,如果从随机数表第行第列的数开始向右读,请你依次写出最先检测的袋牛奶的编号W.(下面摘取了随机数表第行至第行)解析:找到第行第列的数开始向右读,第一个符合条件的是,第二个数大于,要舍去,第三个数也要舍去,第四个数符合题意,这样依次读出结果.答案:,,,,。
高一数学必修3第二章统计测试题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高一数学必修3第二章统计测试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高一数学必修3第二章统计测试题及答案(word版可编辑修改)的全部内容。
数学必修3 第二章 统计 测试题班级 姓名 学号 成绩第Ⅰ卷(选择题,共60分)一选择题:(本题共12小题,每小题5分,共60分)1。
对于随机抽样,个体被抽到的机会是 ( )A .相等B .不相等C .不确定D .与抽取的次数有关2。
用随机数表法从100名学生(男生25人)中抽取20人进行评教,某男生被抽取的机率是 ( )A .1001B .251C .51D .41 3.从N 个编号中抽取n 个号码入样,若采用系统抽样方法进行抽取,则分段间隔应为 ( )A .n N B .n C .⎥⎦⎤⎢⎣⎡n N D.1+⎥⎦⎤⎢⎣⎡n N 4. 有50件产品编号从1到50,现在从中抽取5件检验,用系统抽样确定所抽取的编号为 ( )A .5,10,15,20,25B .5,15,20,35,40C .5,11,17,23,29D .10,20,30,40,505.一个容量为20的样本数据,分组后组距与频数如下表:则样本在区间(-∞,50)上的频率为()A.0。
5 B.0.25 C.0。
6 D.0.76.用样本频率分布估计总体频率分布的过程中,下列说法正确的是 ( )A.总体容量越大,估计越精确 B.总体容量越小,估计越精确C.样本容量越大,估计越精确 D.样本容量越小,估计越精确7.对于两个变量之间的相关系数,下列说法中正确的是 ( )A.|r|越大,相关程度越大B.|r|()∈,0,|r|越大,相关程度越小,|r|越小,相关程度越大+∞C.|r|≤1且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小 D.以上说法都不对8.若样本x1+1,x2+1,…,x n+1的平均数为10,方差为2,则对于样本x1+2,x2+2,…,x n+2,下列结论正确的是( )A.平均数为10,方差为2 B.平均数为11,方差为3C.平均数为11,方差为2 D.平均数为14,方差为45发子弹,命中环数如下9.甲,乙两人在相同条件下练习射击,每人打则两人射击成绩的稳定程度是 ( )A .甲比乙稳定B .乙比甲稳定C .甲、乙的稳定程度相同D .无法进行比较10.已知一组数据为0,—1,x,15,4,6,且这组数据的中位数为5,则数据的众数为 ( )A .5B .6C .4D .5.511.在统计中,样本的方差可以近似地反映总体的( )A .平均状态B .分布规律C .波动大小D .最大值和最小值12.线性回归方程 a bx y += 必经过点 ( )A .(0,0)B .)0,(xC .),0(yD .),(y x二填空题:(本题共4小题,每小题5分,共20分)13.条形图用 来表示各取值的频率,直方图用 来表示频率.14.若数据x 1,x 2,x 3,…,x n 的平均数为x ,方差为S 2,则3x 1+5,3x 2+5,…,3x n +5的平均数和方差为 , 。
2.2.2 用样本的数字特征估计总体的数字特征课时目标 1.会求样本的众数、中位数、平均数、标准差、方差.2.理解用样本的数字特征来估计总体数字特征的方法.3.会应用相关知识解决简单的统计实际问题.1.众数、中位数、平均数(1)众数的定义:一组数据中重复出现次数________的数称为这组数的众数.(2)中位数的定义及求法把一组数据按从小到大的顺序排列,把处于最______位置的那个数称为这组数据的中位数.①当数据个数为奇数时,中位数是按从小到大顺序排列的__________那个数.②当数据个数为偶数时,中位数为排列的最中间的两个数的________.(3)平均数①平均数的定义:如果有n个数x1,x2,…,x n,那么x=____________,叫做这n个数的平均数.②平均数的分类:总体平均数:________所有个体的平均数叫总体平均数.样本平均数:________所有个体的平均数叫样本平均数.2.标准差、方差(1)标准差的求法:标准差是样本数据到平均数的一种平均距离,一般用s表示.s=________________________________________________________________________.(2)方差的求法:标准差的平方s2叫做方差.s2=________________________________________________________________________.一、选择题1.下列说法正确的是( )A.在两组数据中,平均值较大的一组方差较大B.平均数反映数据的集中趋势,方差则反映数据离平均值的波动大小C.方差的求法是求出各个数据与平均值的差的平方后再求和D.在记录两个人射击环数的两组数据中,方差大的表示射击水平高2.已知10名工人生产同一零件,生产的件数分别是16,18,15,11,16,18,18,17,15,13,设其平均数为a,中位数为b,众数为c,则有( )A.a>b>c B.a>c>bC.c>a>b D.c>b>a3.甲、乙两位同学都参加了由学校举办的篮球比赛,他们都参加了全部的7场比赛,平均得分均为16分,标准差分别为5.09和3.72,则甲、乙两同学在这次篮球比赛活动中,发挥得更稳定的是( )A.甲B.乙C.甲、乙相同D.不能确定4.一组数据的方差为s2,将这组数据中的每个数据都扩大3倍,所得到的一组数据的方差是( )A.13s2B.s2C.3s2D.9s25.如图是2010年某校举行的元旦诗歌朗诵比赛中,七位评委为某位选手打出分数的茎叶统计图,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别为( )A.84,4.84 B.84,1.6C.85,1.6 D.85,0.46.如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为x A和x B,样本标准差分别为s A和s B则( )A.x A>x B,s A>s BB.x A<x B,s A>s BC.x A>x B,s A<s BD.x A<x B,s A<s B题号 1 2 3 4 5 6答案7.已知样本9,10,11,x,y的平均数是10,方差是4,则xy=________.8.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):甲10 8 9 9 9乙10 10 7 9 9如果甲、乙两人只能有9.若a1,a2,…,a20,这20个数据的平均数为x,方差为0.20,则数据a1,a2,…,a20,x这21个数据的方差为________.三、解答题10.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:(1)请填写表:平均数方差中位数命中9环及9环以上的次数甲乙(2)①从平均数和方差相结合看(分析谁的成绩更稳定);②从平均数和中位数相结合看(分析谁的成绩好些);③从平均数和命中9环及9环以上的次数相结合看(分析谁的成绩好些);④从折线图上两人射击命中环数的走势看(分析谁更有潜力).能力提升11总经理大厨二厨采购员杂工服务员会计3 000元450元350元400元320元320元410元(2)计算出的平均工资能反映一般工作人员一周的收入水平吗?(3)去掉总经理的工资后,再计算剩余人员的平均工资,这能代表一般工作人员一周的收入水平吗?12.统计量平均成绩标准差组别第一组90 6第二组80 41.平均数、众数、中位数都是描述数据的集中趋势的,其中平均数是最重要的量.众数体现了样本数据的最大集中点,但它对其他数据信息的忽视使得无法客观地反映总体特征;中位数是样本数据所占频率的等分线,它不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也成为缺点,因为这些极端值有时是不能忽视的.由于平均数与每一个样本的数据有关,所以任何一个样本数据的改变都会引起平均数的改变,这是众数、中位数不具有的性质.也正因为这个原因,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息.但平均数受数据中的极端值的影响较大,使平均数在估计总体时可靠性降低.2.在频率分布直方图中,中位数左边和右边的直方图的面积应该相等.3.极差、方差、标准差是描述数据的离散程度的,即各数据与其平均数的离散程度.标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小.答案:2.2.2 用样本的数字特征估计总体的数字特征知识梳理1.(1)最多 (2)中间 ①中间位置的 ②平均数 (3)①x 1+x 2+…+x n n ②总体中 样本中 2.(1)1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2] (2)1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]作业设计1.B [A 中平均值和方差是数据的两个特征,不存在这种关系;C 中求和后还需取平均数;D 中方差越大,射击越不平稳,水平越低.]2.D [由题意a =110(16+18+15+11+16+18+18+17+15+13)=15710=15.7, 中位数为16,众数为18,即b =16,c =18,∴c>b>a.]3.B [方差或标准差越小,数据的离散程度越小,表明发挥得越稳定.∵5.09>3.72,故选B .]4.D [s 20=1n [9x 21+9x 22+…+9x 2n -n(3x )2]=9·1n(x 21+x 22+…+x 2n -n x 2)=9·s 2(s 20为新数据的方差).]5.C [由题意x =15(84+84+86+84+87)=85. s 2=15[(84-85)2+(84-85)2+(86-85)2+(84-85)2+(87-85)2]=15(1+1+1+1+4)=85=1.6.] 6.B [样本A 数据均小于或等于10,样本B 数据均大于或等于10,故x A <x B , 又样本B 波动范围较小,故s A >s B .]7.91解析 由题意得8.甲解析 x 甲=9,2S 甲=0.4,x 乙=9,2S 乙=1.2,故甲的成绩较稳定,选甲. 9.0.19解析 这21个数的平均数仍为20,从而方差为121×[20×0.2+(20-20)2]≈0.19. 10.解 由折线图,知甲射击10次中靶环数分别为:9,5,7,8,7,6,8,6,7,7.将它们由小到大重排为:5,6,6,7,7,7,7,8,8,9.乙射击10次中靶环数分别为:2,4,6,8,7,7,8,9,9,10.也将它们由小到大重排为:2,4,6,7,7,8,8,9,9,10.(1)x 甲=110×(5+6×2+7×4+8×2+9)=7010=7(环), x 乙=110×(2+4+6+7×2+8×2+9×2+10)=7010=7(环),s 2甲=110×[(5-7)2+(6-7)2×2+(7-7)2×4+(8-7)2×2+(9-7)2] =110×(4+2+0+2+4) =1.2,s 2乙=110×[(2-7)2+(4-7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2]=110×(25+9+1+0+2+8+9) =5.4.(2)2S 甲<2S 乙,∴甲成绩比乙稳定.②∵平均数相同,甲的中位数<乙的中位数,∴乙的成绩比甲好些.③∵平均数相同,命中9环及9环以上的次数甲比乙少,∴乙成绩比甲好些.④甲成绩在平均数上下波动;而乙处于上升势头,从第四次以后就没有比甲少的情况发生,乙较有潜力.11.解 (1)平均工资即为该组数据的平均数x =17×(3 000+450+350+400+320+320+410) =17×5 250=750(元). (2)由于总经理的工资明显偏高,所以该值为极端值,因此由(1)所得的平均工资不能反映一般工作人员一周的收入水平.(3)除去总经理的工资后,其他工作人员的平均工资为:x ′=16×(450+350+400+320+320+410)=16×2 250=375(元).这个平均工资能代表一般工作人员一周的收入水平.12.解设第一组20名学生的成绩为x i(i=1,2,…,20),第二组20名学生的成绩为y i(i=1,2,…,20),依题意有:x=120(x1+x2+…+x20)=90,y=120(y1+y2+…+y20)=80,故全班平均成绩为:140(x1+x2+…+x20+y1+y2+…+y20)=140(90×20+80×20)=85;又设第一组学生成绩的标准差为s1,第二组学生成绩的标准差为s2,则s21=120(x21+x22+…+x220-20x2),s22=120(y21+y22+…+y220-20y2)(此处,x=90,y=80),又设全班40名学生的标准差为s,平均成绩为z(z=85),故有s2=140(x21+x22+…+x220+y21+y22+…+y220-40z2)=140(20s21+20x2+20s22+20y2-40z2)=12(62+42+902+802-2×852)=51.s=51.所以全班同学的平均成绩为85分,标准差为51.。
用样本的频率分布估计总体分布课时目标.理解用样本的频率分布估计总体分布的方法.会列频率分布表,画频率分布直方图、频率分布折线图、茎叶图.能够利用图形解决实际问题..用样本估计总体的两种情况()用样本的估计总体的分布.()用样本的估计总体的数字特征..数据分析的基本方法()借助于图形分析数据的一种基本方法是用图将它们画出来,此法可以达到两个目的,一是从数据中,二是利用图形信息.()借助于表格分析数据的另一方法是用紧凑的改变数据的排列方式,此法是通过改变数据的,为我们提供解释数据的新方式..频率分布直方图在频率分布直方图中,纵轴表示,数据落在各小组内的频率用来表示,各小长方形的面积的总和等于..频率分布折线图和总体密度曲线()频率分布折线图连接频率分布直方图中各小长方形,就得到了频率分布折线图.()总体密度曲线随着样本容量的增加,作图时所分的增加,组距减小,相应的频率分布折线图就会越来越接近于一条,统计中称之为总体密度曲线,它反映了总体在各个范围内取值的百分比..茎叶图()适用范围:当样本数据较少时,用茎叶图表示数据的效果较好.()优点:它不但可以,而且可以,给数据的记录和表示都带来方便.()缺点:当样本数据时,枝叶就会很长,茎叶图就显得不太方便.一、选择题.下列说法不正确的是().频率分布直方图中每个小矩形的高就是该组的频率.频率分布直方图中各个小矩形的面积之和等于.频率分布直方图中各个小矩形的宽一样大.频率分布折线图是依次连接频率分布直方图的每个小矩形上端中点得到的.一个容量为的样本,其数据的分组与各组的频数如下:组别(] (] (] (] (] (] (]频数则样本数据落在(]上的频率为().....辆汽车通过某一段公路时的时速的频率分布直方图如下图所示,则时速在[)的汽车大约有().辆.辆.辆.辆.如图是总体密度曲线,下列说法正确的是().组距越大,频率分布折线图越接近于它.样本容量越小,频率分布折线图越接近于它。
(本栏目内容,在学生用书中以独立形式分册装订!)
一、选择题(每小题5分,共20分)
1.对于样本频率分布折线图与总体密度曲线的关系,下列说法中正确的是()
A.频率分布折线图与总体密度曲线无关
B.频率分布折线图就是总体密度曲线
C.样本容量很大的频率分布折线图就是总体密度曲线
D.如果样本容量无限增大、分组的组距无限减小,那么频率分布折线图就会无限接近总体密度曲线
解析:总体密度曲线通常是用样本频率分布估计出来的.而频率分布折线图在样本容量无限增大,分组的组距无限减小的情况下会无限接近于一条光滑曲线,这条光滑曲线就是总体密度曲线.
答案: D
2.下面是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图可知()
A.甲运动员的成绩好于乙运动员
B.乙运动员的成绩好于甲运动员
C.甲、乙两名运动员的成绩没有明显的差异
D.甲运动员的最低得分为0分
解析:从茎叶图可以看出,甲运动员的成绩集中在大茎上的叶多,故成绩好.故选A.
答案: A
3.某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是( )
A .45
B .50
C .55
D .60
解析: 设该班人数为n ,则20×(0.005+0.01)n =15,n =50,故选B. 答案: B
4.观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在[2 700,3 000)内的频率为( )
A .0.001
B .0.1
C .0.2
D .0.3
解析: 由频率分布直方图的意义可知,各小长方形的面积=组距×频率组距=频率,即各
小长方形的面积等于相应各组的频率.在区间[2 700,3 000)内频率的取值为(3 000-2 700)×0.001=0.3.故选D.
答案: D
二、填空题(每小题5分,共15分)
5.一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2 500,3 000)(元)月收入段应抽出________人.
解析:由题意得在[2500,3000)(元)月收入段应抽出的人数为0.0005×500×100=25.
答案:25
6.某省选拔运动员参加2015年的全运会,测得7名选手的身高(单位:cm)分布茎叶图如图所示,记录的平均身高为177 cm,其中有一名候选人的身高记录不清,其末位数为x,那么x的值为________.
解析:依题意得
180×2+1+170×5+3+x+8+9=177×7,x=8.
答案:8
7.下面是某中学期末考试各分数段的考生人数分布表:
则分数在[700,800)的人数为________人.
解析:由于在分数段[400,500)内的频数是90,频率是0.075,则该中学共有考生90
0.075=1 200,则在分数段[600,700)内的频数是1 200×0.425=510,则分数在[700,800)内的频数,即人数为1 200-(5+90+499+510+8)=88.
答案:88
三、解答题(每小题10分,共20分)
8.下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位:cm).
(1)列出样本频率分布表;
(2)画出频率分布直方图;
(3)估计身高小于134 cm的人数占总人数的百分比.
解析:(1)样本频率分布表如下:
(2)其频率分布直方图如下:
(3)由样本频率分布表可知身高小于134 cm 的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134 cm 的人数占总人数的19%.
9.为了调查甲、乙两个交通站的车流量,随机选取了14天,统计每天上午8:00~12:00间各自的车流量(单位:百辆),得如图所示的统计图,试求:
(1)甲、乙两个交通站的车流量的极差分别是多少? (2)甲交通站的车流量在[10,40]间的频率是多少? (3)甲、乙两个交通站哪个站更繁忙?并说明理由.
解析: (1)甲交通站的车流量的极差为73-8=65(百辆),乙交通站的车流量的极差为71-5=66(百辆).
(2)甲交通站的车流量在[10,40]间的频率为414=2
7
.
(3)甲交通站的车流量集中在茎叶图的下方,而乙交通站的车流量集中在茎叶图的上方,从数据的分布情况来看,甲交通站更繁忙.。