2014-2015学年第一学期期末质量检测九年级数学试卷附答案
- 格式:doc
- 大小:337.50 KB
- 文档页数:12
2014-2015学年度熊家岩初级中学九年级数学期末考试复习卷(A)考试范围:九上全册;考试时间:120分钟;命题人:冯仁桥姓名:___________班级:___________考号:___________得分:___________第I卷(选择题)一、选择题(本大题共12个小题,每小题3分,共36分。
在每小题给出的四个选项中,恰有一项是符合要求的。
请将正确答案填写在答题卡相应位置。
)1.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件.如果全组有x名学生,则根据题意列出的方程是()A.(1)182x x+=B.(1)182x x-=C.2(1)182x x+=D.(1)1822x x-=⨯2.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.某种商品零售价经过两次降价后的价格为降价前的81%,则平均每次降价()A.10% B.19% C.9.5% D.20%4.已知二次函数y=2x2-9x-34,当自变量x取两个不同的值x1,x2时,函数值相等,则当自变量x取x1+x2时的函数值应当与()A.x=1时的函数值相等B.x=0时的函数值相等C.x=41的函数值相等D.x=49的函数值相等5.若二次函数)2(2-++=mmxmxy的图象经过原点,则m的值为()A.0或2 B.0 C.2 D.无法确定6.已知抛物线与x轴交于点A,B,与y轴交于点C,则能使△ABC 为等腰三角形的抛物线的条数是()。
A.2 B.3 C.4 D.57.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开旅行箱的概率是()A、61B、91C、101D、218.一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为估计白球数,小刚向其中放入8个黑球摇匀后,从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球200次,其中44次摸到黑球,你估计盒中大约有白球()A.20个B.28个C.36个D.无法估计9.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.30° B.60° C.90° D.150°()3y k x1xk⎛⎫=+ ⎪⎝⎭-10.如图,AB 是⊙O 的直径,点D 、E 是半圆的三等分点,AE ,BD 的延长线交于点C 。
1.在4-,0,2-,1这四个数中,最小的数是( )A.4-B.2-C.0D.1 2.计算()234x -的结果是( )A.616x -B.516xC.64x -D.616x 3.如图,直线AB //CD ,直线EF 分别交直线AB 、CD 于 点E 、F ,EG 平分∠AEF 交CD 于点G ,若∠1=36°, 则∠2的大小是( )A.72°B.67°C.70°D.68°4.在函数1-=x y 中,自变量x 的取值范围是( )A.1>xB.1≠xC.1≤xD.1≥x 5.若点A (2-,m )在正比例函数x y 21-=的图像上,则m 的值是( ) A.41 B.41- C.1 D.1- 6.如图,AB 与⊙O 相切于点A ,AC 为⊙O 的直径,点D 在圆上,且满足∠BAD =40°,则 ∠ACD 的大小是( )A.50°B.45°C.40°D.42°7.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,AC =8,BD =6,点E 为AB 中点,连 接OE ,则OE 的长是( ) A.5 B.512 C.4 D.25 8.重庆一中初三年级某班10名同学的一次体考成绩如下表,则下列说法错误的是( )3题图xy12题图① ② ③A.这10名同学的平均成绩为45.5B.这10名同学成绩的中位数是45C.这10名同学成绩的众数为50D.这10名同学成绩的极差为2 9.分式方程0112=--x x 的解是( ) A.2-=x B.2=x C.32=x D.1=x 10.上周周末,小江进行了一次“惊心动魄”的自行车之旅,小江匀速行驶一段路程后,发 现了一处“世外桃源”,便停车享受美景,当小江准备拿手机拍照留影时,发现手机掉 了,于是小江沿原路原速返回,在路途中幸运地找到了手机(停车捡手机的时间忽略不 计),再掉头沿原计划路线以比原速大的速度行驶,则小江离出发点的距离s 与时间t 的 函数关系的大致图象是( )11.如图,下列一束束“鲜花”都是由一定数量形状相同且边长为1的菱形按照一定规律组 成,其中第①个图形含边长为1的菱形3个,第②个图形含边长为1的菱形6个,第③ 个图形含边长为1的菱形10个,... ...,按此规律,则第⑦个图形中含边长为1的菱形的 个数为( )A.36B.38C.34D.28 12.如图,∆ABC 是等腰直角三角形,∠ACB=90°,点A 在 反比例函数xy 4-=的图像上,点B 、C 都在反比例函数 xy 2-=的图像上,AB //x 轴,则点A 的坐标为( ) A.(32,332-) B.(3,334-) C.(334,3-) D.(332,32-)二、填空题 (本大题6个小题,每小题4分,共24分)在每小题中,请将你认为正确的答成绩(分) 39 42 44 45 4850 人数 1 2 1 2 1 3案填在答题卡相应位置的横线上. 13.实数2015-的相反数是 .14.新年第一天,我市大约有13000名市民涌上仙女山、金佛山、巫溪红池坝的滑雪场玩雪. 将13000这个数字用科学记数法表示是 .15.如图,在□ABCD 中,点E 是AD 的中点,连接CE 、BD 相交于点F ,则∆DEF 的周长 与∆BCF 的周长之比=∆∆F D EF :BC C C .16.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,AO =AD =2,以A 为圆心,AO 为半径作弧,则图中阴影部分的面积为 . 17.从-1,0,1,2,3这五个数中,随机抽取一个数记为m ,则使关于x 的不等式组122x mx m+⎧⎨-⎩≤≤有解,并且使函数()2212+++-=m mx x m y 与x 轴有交点的概率为 .18.如图,在ABC ∆中,2AB =3AC ,AD 为∆BAC 的角平分线,点H 在线段AC 上,且CH=2AH ,E 为BC 延长线上的一点,连接EH 并延长交AD 于点G ,使EG=ED ,过点E 作 EF ⊥AD 于点F ,则FG AG := . 三、解答题 (本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算 过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.计算:() 45tan 22731221322--⎪⎭⎫ ⎝⎛-+-⨯-+--π20.今年四月份将举行体考,重庆一中为了解初三学生目前体育训练成果,于1月16日举行 了体育模拟考试,现从参加了考试的同学中随机抽取了50名了解他们的跳绳成绩,并根 据成绩等级(优:20分;良:18-19分;中:小于18分)绘制出如下两幅不完整的统计 图.(1)请补全条形统计图;(2)在此次考试中,被抽取的获优秀成绩的有3人来自同一班级,这3人中有2男1女,该班班主任为让班上其他同学在练习跳绳的过程中效果更好,现打算从这3人中随机抽取2人到前排示范,请用画树状图或列表的方法求出所选同学是一男一女的概率.四、解答题 (本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算 过程或推理步骤,请将解答书写在答题卡中对应的位置上.16题图成绩扇形统计图成绩条形统计图 15题图 18题图l21.先化简,再求值:34433922+++÷⎪⎭⎫ ⎝⎛-+++x x x x x x ,其中x 是方程374=+x 的解.22.如图,在笔直的公路l 上有一检查站A ,在观测点B 的南偏西53°方向,且与观测点B 的距离为7.5千米.一辆自行车从位于点B 南偏西 76°方向的点C 处,沿公路自西向东行驶, 2小时后到达检查站A .(1)求观测点B 与公路l 的距离;(2)求自行车行驶的平均速度. (参考数据:252476sin ≈,25676cos ≈ ,476tan ≈,5453s ≈ in ,5353cos ≈ ,3453tan ≈ )23.重庆一中后勤部门每年都要更新一定数量的书桌和椅子.已知2012年采购的书桌价格为 120元/张,椅子价格为40元/张,总支出费用34000元;2013年采购的书桌价格上涨为 130元/张,椅子价格保持不变,且采购的书桌和椅子的数量与2012年分别相同,总支出 费用比2012年多2000元.(1)求2012年采购的书桌和椅子分别是多少张?(2)与2012年相比,2014年书桌的价格上涨了%a (其中500<<a ),椅子的价格上涨了%10,但采购的书桌的数量减少了%21a ,椅子的数量减少了50张,且2014 年学校桌子和椅子的总支出费用为34720元,求a 的值.24. 如图,在□ABCD 中,CE ⊥AD 于点E ,且CB=CE ,点F 为CD 边上的一点,CB=CF, 连接BF 交CE 于点G.(1)若60=∠D ,CF =32,求C G 的长; (2)求证:AB=ED+CG五、解答题:(本大题2个小题,每小题各12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.如图,抛物线223y x x =--与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于C 点,点D 是抛物线的顶点. (1)求B 、C 、D 三点的坐标;(2)连接BC,BD,CD ,若点P 为抛物线上一动点,设点P 的横坐标为m ,当PBC BCD S S ∆∆=时,求m 的值(点P 不与点D 重合);(3) 连接AC ,将∆AOC 沿x 轴正方向平移,设移动距离为a ,当点A 和点B 重合时,停止运动,设运动过程中∆AOC 与∆OBC重叠部分的面积为S ,请直接写出S 与a 之间的函数关系式,并写出相应自变量a 的取值范围.26.如图(1),抛物线)0(52≠++=a bx ax y 与x 轴交于A 、B 两点,与y 轴交于点C , 直线AC 的解析式为5+=x y ,抛物线的对称轴与x 轴交于点E ,点D (2-,3-)在 对称轴上.(1)求此抛物线的解析式;备用图 备用图(2)如图(1),若点M 是线段OE 上一点(点M 不与点O 、E 重合),过点M 作MN ⊥x 轴,交抛物线于点N ,记点N 关于抛物线对称轴的对称点为点F ,点P 是线段MN上一点,且满足MN =4MP ,连接FN 、FP ,作QP ⊥PF 交x 轴于点Q ,且满足PF =PQ , 求点Q 的坐标;(3)如图(2),过点B 作BK ⊥x 轴交直线AC 于点K ,连接DK 、AD ,点H 是DK 的中点,点G 是线段AK 上任意一点,将∆DGH 沿GH 边翻折得GH D '∆,求当KG 为何值时,GH D '∆与KGH ∆重叠部分的面积是∆DGK 面积的41.数 学 试 卷(答案)一、 选择题:备用图图(1)图(2)二.填空题 题号13 1415 答案 2015 4103.1⨯1:2 题号 161718答案 332-π 52 7:4三.解答题20.解:(1)…………………………………………………… 2分 (2)将男生分别标记为21,A A ,女生标记为1B一1A2A 1B1A()21,A A()11,B A 2A ()12,A A()12,B A1B()11,A B()21,A B……………………………………………………………………………… 5分3264(==一男一女)P …………………………… ……………………… 7分 二lH22.解:(1) 过点B 作l ⊥BH 交l 于点H ………………………………1分 在中在ABH Rt ∆km BH AB AB BH ABH 5.45.753cos =∴===∠, ………………4分(2)在中H A Rt B ∆, km AH AB AB AH BH 65.7,54A sin =∴===∠∴………………………6分 在中在BCH Rt ∆ km CH BH BH CH CBH 185.414tan =∴===∠∴, …………………8分 hkm kmAH CH CA /621212=∴=-=∴速度为: ………………………10分 答:观测点B 与公路l 的距离是4.5km ,自行车行驶的平均速度是6h km /. 23.解:(1)设2012年采购的书桌为x 张,椅子为y 张. ⎩⎨⎧=+=+36000401303400040120y x y x 解得⎩⎨⎧==250200y x ………… …………4分(2)()()34720)50250%10140%211200%1120=-++⎪⎭⎫⎝⎛-+(a a …7分 令t a =%,则原方程可化简为:0425252=+-t t解得=1a 0.2 ,=2a 0.8 (舍) ………………………9分 答:2013年采购书桌和椅子分别是200张和250张. ………………10分 24.解:(1) 四边形ABCD 是平行四边形 ∴AD//BCCE ⊥AD∴ECB CED ∠==∠9090,60=∠=∠DEC D∴ 120,30D =∠=∠CF EC BBC=CF 30=∠∴GBC在Rt ∆BCG 中,90=∠GCB∴tan 3233GCBC GC GBC ===∠ ∴GC=2 ……………4分(2)延长EC 到点H ,使得ED =CH ,连接BH ……………5分CGED DC GH BH GBH GBH CF BC CDBH DCE HBC BC EC HCB DEC HCDE DCE HBC +=∴=∴∠=∠∴∠+∠=∠∠+∠=∠∠=∠∴==∠=∠∴∆≅∆∴⎪⎩⎪⎨⎧=∠=∠=∆∆4534,1252,31 中和在…………………………………………………………………10分(2)设b kx y BC +=:将代入得:)3,0(),0,3(-C B⎩⎨⎧-==∴⎩⎨⎧=-+=31330b k b b k 3-=∴x y ,过点D 作y //DE 轴,交BC 于点E 21-=∴==E E D y x x3=+=∴∆∆∆CD E BED BCD S S S ……………4分过点P 作y //PQ 轴,交直线BC 于点Q)3,(),32,(2---m m Q m m m P 设①当P 是BC 下方抛物线上一点时,329232=+-=+=∴∆∆∆m m S S S PQC PBQ PCB 2)(121=-=∴m m ,舍…………………………………………………… ……………6分②32923)30(2C =-=-=><∆∆∆m m S S S m m BC P PQB PQ PBC 或上方抛物线上一点时是当 2173,217321-=+=m m 解得 ……………8分综上:=m 22173,2173,-+ (3)⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤<+-≤<+-=)43(6383)31(2381)10(3813222a a a a a a a a S ……………12分 25.解:(2)PF QP FN QM ⊥⊥⊥,MN MN ,∴ 9062=∠=∠, 90539031=∠+∠=∠+∠,51∠=∠∴又PQ F =P ,PNF MP ∆≅∆∴Q NF MP NP ==∴,MQ ………4分 设)0,(M m (02<<-m ),则54)54,(N 22+--=+--m m MN m m m , )54,4(F 2+----∴m m m ,42)4(+=---=m m m FND 'D ' 图(1) 图(2) 备用图)42(4542+=+--∴m m m ,解得:)(111舍或-=-=m m )0,7(643)0,1(,8MN -∴===∴-=∴Q MN NP MQ M ,, …………7分 (3))0,1(,15,0542B x x x x ∴=-==+--或得令)6,1(K ∴ [][]103)3(6)2(1DK 22=--+--=①若翻折后,点D '在直线GK 上方,记H D '与GK 交于点L ,连接K D ' D GH GHK DGK GHL 212141'∆∆∆∆===∴S S S S ,即KHL G L D G HL ∆'∆∆==S S S L D HL LK '==∴,GL ,是平行四边形四边形GHK D '∴, 102321D ==='=∴KD KH G D G ,又3,6BK ====AE DE BA AED ABK ∆∆∴和都是等腰直角三角形,23AD =904545DAG =+=∠∴,由勾股定理得:223AG 22=-=AD DG 22922326KG =-=-=∴AG KA ……………9分。
杭州市上城区2014-2015学年一学期期末考试九年级数学试卷考生须知1.本科目试卷分试题卷和答题卷两部分。
考试时间100分钟。
2.答题前,考生务必用黑色水笔或签字笔填写学校、班级、姓名、座位号、考号。
3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应。
4.考试结束后,只需上交答题卷。
试题卷一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分) 1.下列事件中,属于必然事件的是( )A. 在1个标准大气压下,水加热到100℃沸腾B. 掷一枚硬币,正面朝下C. 一个三角形三个内角的和小于180°D. 某运动员跳高的成绩是20.3米 2.在平面直角坐标系中,若⊙ O 是以原点为圆心,2为半径的圆,则点M (1,1)在( ) A. ⊙ O 内 B. ⊙ O 外 C. ⊙ O 上 D. 不能确定 3.已知二次函数的图象(-3≤x ≤0)如图所示.关于该函数在所给自变量取值范围内,下列说法正确的是( ) A .有最大值1,无最小值 B .有最大值1,有最小值0 C .有最大值1,有最小值-3D .有最大值0,有最小值-34.已知圆心角为120°的扇形的面积为12π,则扇形的弧长为 ( )A. 2B. 4C. 2πD. 4π5.如图,线段AB 两个端点的坐标分别为A (4,4),B (6,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的21后得到线段CD ,则端点D 的坐标为( )A.(2,2)B.(2,1)C.(3,2)D.(3,1) 6.水库堤坝的横断面是梯形(如图).测得斜坡AB 长为60米,斜坡AB 的坡比为1:2,则此堤坝横断面的高为( )A. 30米B. 330米C. 512米D. 524米(第3题)(第5题)(第6题)7.如图,△ABC 中,CE 交AB 于点D ,∠A =∠E ,AD :DB =2:3,AB =10,ED =5,则DC 的长等于( ) A.524 B.56 C .310 C .2158.投一个普通骰子,有下述说法:①朝上一面的点数是奇数;②朝上一面的点数是整数;③朝上一面的点数是3的倍数;④朝上一面的点数是5的倍数.将上述事件按可能性大小,从小到大排列为( ) A. ①②③④ B. ④③①② C. ④①③② D. ②①③④9. “二次函数y =ax 2+bx +c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx +c =0有两个不相等的实数根.”请根据对这句话的理解,解决下面问题:若m ,n (m <n )是关于x 的方程2-(x ﹣a )(x ﹣b )=0的两根,且a <b ,则a ,b ,m ,n 的大小关系是( )A. a <m <n <bB. a <m <b <nC. m <a <b <nD. m <a <n <b 10.如图,矩形ABCD 的外接圆O 与水平地面相切于点A ,圆O 的半径为4,且︵ BC =2︵AB .若在没有滑动的情况下,将圆O 向右滚动,使得O 点向右移动了98π,则此时与地面相切的弧为( ) A. B. C. D.二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.11.在比例尺为1:100 000的地图上,量得甲、乙两地的距离是20cm,则两地的实际距离为 km. 12.如图为一座拱桥的示意图,当水面宽AB 为12m 时,桥 洞顶部离水面4m ,已知桥洞的拱形是抛物线,以水平 方向为x 轴,建立平面直角坐标系,若选取点B 为坐标 原点时的抛物线解析式是4)6(912++-=x y ,则选取 点A 为坐标原点时的抛物线解析式是 . 13.已知α是锐角,且31sin =α,则αtan = . 14.一个密码箱的密码,每个数位上的数都是从0到9的自然数. 若要使不知道密码的人一次就拨对密码的概率小于20151,则 密码的位数至少需要 位.15.如图,在平面直角坐标系中,⊙P 的圆心坐标是(4,a ) (a >4),半径为4,函数y =x 的图象被⊙P 截得的弦AB 的 长为152,则a 的值是 .(第7题)(第10题)(第12题)(第15题)BCCDDAAB16.二次函数y =x 2+bx +c 与直线y =x 的图象如图所示,有以下结 论:① b 2-4c >0;②3b +c +6=0;③当x 2+bx +c >1时, x <1; ④当x 2+bx +c >x 89时,x >23;⑤当1<x <3时, x 2+(b -1)x +c <0.其中正确结论的编号是 .三. 全面答一答 (本题有7个小题, 共66分)解答应写出文字说明、证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以. 17.(本小题满分6分)已知:如图,在⊙O 中,AB ,CD 是弦,且AB =CD . 求证:AD =BC .18.(本小题满分8分)人要使用斜靠在墙面上的梯子安全地攀到梯子的顶端,梯子与地面所成的角α一般要满足50°≤α≤75°.现有一个6m 的梯子.问:(1)使用这个梯子最高可以安全攀到多高的墙?(精确到 0.1m )(2)当梯子的底端距离墙面2.4m 时,此时人是否能够安 全地使用这个梯子?(sin50°≈0.77, cos50°≈0.64, tan50°≈1.19, sin75°≈0.97, cos75°≈0.26, tan75°≈3.73)19.(本小题满分8分)如图,已知△ABC .(1)用直尺和圆规作△ABC 的外接圆;(2)若AB =8,AC =5,BC =7,求△ABC 的外接圆半径R .20.(本小题满分10分)已知二次函数6422++-=x x y .(1)求函数图象的顶点坐标、对称轴和与坐标轴交点的坐标,并画出函数的大致图象.(2)自变量x 在什么范围内,y 随x 的增大而增大?何时y 随x的增大而减小?并求出函数的最大值或最(第16题)(第17题)αCAB(第18题)(第19题)小值.21.(本小题满分10分)有A ,B 两组卡片,每组各3张,A 组卡片上分别写有-2,4,6;B 组卡片上分别写有﹣1,0,2.每张卡片除正面写有不同数字外,其余均相同.甲从A 组中随机抽取一张记为x ,乙从B 组中随机抽取一张记为y .若甲抽出的数字是4,乙抽出的数是-1,它们恰好是方程x ﹣ay =6的解. (1)求a 的值;(2)求甲、乙随机抽取一次的数恰好是方程x ﹣ay =6的解的概率.(请用树状图或列表法求解) 22.(本小题满分12分)如图,已知抛物线的顶点在第一象限,顶点到x 轴的距离为3,抛物线与x 轴交于原点O (0,0)及点A ,且OA =4.(1)求该抛物线的解析式.(2)若将线段OA 绕点O 逆时针旋转30°到OA ′,作A ′E ⊥y 轴于点E ,连结AE ,OA ′交于点F . ①试判断点A ′是否在该抛物线上,说明理由. ②求△A ′EF 与△OAF 的面积之比.23.(本小题满分12分)如图,矩形ABCD 中,AB =4,BC =10,点P 为BC 边上一动点,AP 交BD 于点Q .点P 从B 点出发沿BC 边以每秒1个单位长度的速度向C 点移动,移动时间为t 秒.(1)t 为何值时,AP ⊥BD ?(2)t 为何值时,△BPQ 是等腰三角形?(3)设y S S PQB AQD =+△△,写出y 与t 之间的函数关系式,并探究P 点运动到第几秒与第几秒之间时,y 取得最小值.参考答案及评分标准(第22题)(第23题)。
房山区2014—2015学年度第一学期终结性检测试题九年级数学一、选择题(本题共32分,每小题4分)下列各题均有四个选项,其中有且只有一个..是符合题意的.请将正确选项前的字母填在下表中相应1. 抛物线()225=--+y x 的顶点坐标是 A .()2,5-B .()2,5C .()25,--D .()52,- 2.如图,⊙O 是△ABC 的外接圆,若AB=OA=OB ,则∠C 等于A .30°B .40°C .60°D .80° 3.在 Rt △ABC 中,∠C =90°,AC =8,BC =6,则sin B 的值等于A . 34B .43C .35D .454. 已知点P (-3,2)是反比例函数图象上的一 点,则该反比例函数的表达式为A.xy 3=B.5yx =- C. 6y x =D.6y x =-5.已知△ABC ∽△A′B′C′,相似比为1:2,则△ABC 与△A′B′C′ 的面积的比为 A .1:2 B . 2:1 C . 1:4 D .4:16. 如图,弦AB ⊥ OC ,垂足为点C ,连接OA ,若OC =2,AB =4,则OA 等于 A ....7. 在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为A . 10mB . 12mC . 15mD .40m8. 如图,⊙O 的半径为2,点P 是半径OA 上的一个动点,过点P 作直线MN 且∠APN =60°,过点A 的切线AB 交MN 于点B . 设OP =x ,△P AB 的面积为 y ,则下列图象中, 能表示y 与x 的函数关系的图象大致是二、填空题(本题共16分,每小题4分)9.如图,在△ABC 中,D 、E 分别是AB 、AC 边上的点,且 DE ∥BC , 若AD =5,DB =3,DE =4,则BC 等于 .10.如图,⊙O 的半径为2,4=OA ,AB 切⊙O 于B ,弦BC OA ∥连结AC , 则图中阴影部分的面积为 .11. 如图,⊙O 的直径CD 过弦AB 的中点E ,∠BCD =15°,⊙O 的半径为10,则AB = .12. 抛物线()()2211-11n y x x n n n n +=+++(其中n 是正整数)与x 轴交于A n 、B n 两点,若以A n B n 表示这两点间的距离,则A B _________=11; A B A B __________+=1122; n n A B A B A B A B ____________.+++⋅⋅⋅+=112233(用含n 的代数式表示) 二、解答题(本题共30分,每小题5分) 13.计算: 0111)2cos30()8--︒-+解:A E D xDC B ADC14.如图,C 为线段BD 上一点,AC CE ⊥,AB BD ⊥,ED BD ⊥.求证:AB BC CDDE=.解:15.已知二次函数12)3(2++-=x x k y 的图象与x 轴有交点,求k 的取值范围. 解:16. 如图,在ABC ∆中,90C ︒∠=,52sin =A ,D 为AC 上一点,45BDC ︒∠=,6=DC ,求AD 的长. 解:17. 小红想要测量校园内一座教学楼CD 的高度. 她先在A 处测得楼顶C 的仰角=α30°,再向楼的方向直行10米到达B 处,又测得楼顶C 的仰角=β60°,若小红的目高(眼睛到地面的高度)AE 为1.60米,请你帮助她计算出这座教学楼CD 的高度(结果精确到0.1米)参考数据:41.12≈,73.13≈,24.25≈解:EDCB ABAβαG F E CB18. 如图,直线y =3x 与双曲线ky x=的两个交点分别为A (1 , m )和B . (1)直接写出点B 坐标,并求出双曲线ky x=的表达式; (2)若点P 为双曲线ky x=上的点(点P 不与A 、B 重合),且满足PO=OB ,直接写出点P 坐标. 解:四、解答题(本题共20分,每小题5分)19. 抛物线2y x bx c =++与x 轴分别交于点A (-1,0)和点B ,与y 轴的交点C 坐标为(0,-3). (1)求抛物线的表达式;(2)点D 为抛物线对称轴上的一个动点,若DA +DC 的值最小,求点D 的坐标. 解:20. 如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A 、B ,并使AB 与车轮内圆相切于点D ,做CD ⊥AB 交外圆于点C .测得CD =10cm ,AB =60cm ,求这个车轮的外圆半径长.解:21.如图,AB 是⊙O 的直径, 点C 在⊙O 上,CE ⊥ AB 于E , CD 平分∠ECB , 交过 点B 的射线于D , 交AB 于F , 且BC=BD . (1)求证:BD 是⊙O 的切线; (2)若AE =9, CE =12, 求BF 的长. 解:22. 阅读下面的材料:小明在数学课外小组活动中遇到这样一个“新定义”问题:()()()0210.ab ba ab bb ⎧⎪⎪⎨⎪-⎪⎩=->;定义运算“: ※”求为※※<的值.小明是这样解决问题的:由新定义可知a =1,b =-2,又b <0,所以1※(-2)= 12.请你参考小明的解题思路,回答下列问题: (1) 计算:2※3= ;(2) 若5※m =56,则m = .(3) 函数y =2※x (x ≠0)的图象大致是( )五、解答题(本题共22分,其中23题7分,24题7分,25题8分)23. 直线y =﹣3x +3与x 轴交于点A , 与y 轴交于点B ,抛物线y =a (x ﹣2)2+k 经过点A 、B ,与x 轴的另一交点为C . (1)求a ,k 的值;(2)若点M 、N 分别为抛物线及其对称轴上的点, 且以A ,C ,M ,N 为顶点的四边形为平行四边形,请直接写出点M 的坐标.y x OyxOA B C DDAB24. 如图,⊙O 是△ABC 的外接圆,AC 是直径,过点O 作OD ⊥AB 于点D ,延长DO 交⊙O 于点P ,过点P 作PE ⊥AC 于点E ,作射线DE 交BC 的延长线于F 点,连接PF . (1)若∠POC =60°,AC =12,求劣弧PC 的长;(结果保留π) (2)求证:OD =OE ;(3)求证:PF 是⊙O 的切线. 解:25. 已知抛物线2154(3)22my x m x -=--+. (1) 求证:无论m 为任何实数,抛物线与x 轴总有两个交点;(2) 若A 2(3,2)n n -+、B 2(1,2)n n -++是抛物线上的两个不同点,求抛物线的表达式和n 的值; (3) 若反比例函数(0,0)ky k x x=>>的图象与(2)中的抛物线在第一象限内的交点的横坐标为0x ,且满足2<0x <3,求k 的取值范围.解:F房山区2014—2015学年度第一学期终结性检测试题九年级数学参考答案和评分参考二、填空题(每题4分)9. 325 10. 23π 11. 10 12. 12231n ;;n +(前两空每1分,最后一空2分) 三、解答题 13. 解:原式=1-2×32-8+2 3 …………………………4分 = 3 -7 ………………………………………5分14. 证明:∵90B ∠=,∴90A ACB ∠+∠=.∵C 为线段BD 上一点,且AC CE ⊥,∴90ACB ECD ∠+∠=.∴A ECD ∠=∠ . …………………………………………………………………2分 ∵B D ∠=∠=90, …………………………………………………………………3分 ∴△ABC ∽△CDE .………………………………………………………………4分 ∴AB BC CDDE=.………………………………………………………………………5分15. 由题意可知:30k -≠⎧⎨∆⎩≥ ……………………2分即()232430k k ≠⎧⎪⎨--⎪⎩≥…………………………3分解得34k k ≠⎧⎨⎩≤……………………………………4分∴ k 的取值范围是:k ≤4且k≠3……………5分16. 解:在BDC ∆中,090=∠C , 045=∠BDC ,6=DC∴tan 451BCDC︒== EDBA∴6BC = …………………………………1分 在ABC ∆中,52sin =A ,∴25BC AB =,……2分 ∴15AB =……………………………………3分∴AC ==…………………4分∴6AD =……………………………5分17. ∵=α30°,=β60°,∴∠ECF =αβ-=30°. ∴10==EF CF .在Rt △CFG 中,.35cos =⋅=βCF CG ……………………………………………3分 ∴3.106.135≈+=+=GD CG CD . ………………………………………………5分 答:这座教学楼的高度约为10.3米.18.(1)点B 坐标为(-1,-3)……………………………………1分∵直线y=3x 过点A(1,m ) ∴m=3×1=3∴A(1,3) ……………………………………………………2分 将A(1,3)代入y=kx中,得 k =xy =1×3=3∴y=3x …………………………………………………………3分(2) P 1(-3,-1), P 2(3,1)………………………………………………5分四、解答题19. 解:(1) 将A(-1,0)和C(0,-3)代入抛物线2y x bx c =++ 中得: 103b c c -+=⎧⎨=-⎩ , 解得:23b c =-⎧⎨=-⎩ (1)∴抛物线的解析式为223y x x =-- (2)由223y x x =--=()()()21413x x x --=+-知抛物线的对称轴为直线x =1,点B (3,0) 连接BC ,交对称轴x =1于点D 可求得直线BC :y =x -3 当x =1时,y =-2∴点D (1,-2)……………………………………………5分20. 如图,设点O 为外圆的圆心,连接OA 和OC ,……1分∵CD=10cm ,AB=60cm ,∴设半径为r ,则OD=r ﹣10,…………………………2分根据题意得:r 2=(r ﹣10)2+302,…………………3分 解得:r=50,…………………………………………5分 ∴这个车轮的外圆半径长为50.21. (1)证明:∵CE AB ⊥,∴ 90CEB ∠=.∵ CD 平分ECB ∠, BC =BD , ∴ 12∠=∠, 2D ∠=∠.∴ 1D ∠=∠. …………………………1分 ∴ CE ∥BD .∴ 90DBA CEB ∠=∠=.∵ AB 是⊙O 的直径,∴ BD 是⊙O 的切线. ………………………………………………………2分 (2)连接AC ,∵ AB 是⊙O 直径,∴ 90ACB ∠=. ∵CE AB ⊥, 可得 2CE AE EB =⋅.∴ .162==AECE EB ………………………………………………………3分 在Rt △CEB 中,∠CEB =90︒, 由勾股定理得20.BC = ……………4分 ∴ 20BD BC ==.∵ 1D ∠=∠, ∠EFC =∠BFD ,∴ △EFC ∽△BFD. ………………………………………………………5分 ∴ BFEFBD EC =. ∴121620BFBF-=. ∴ BF =10. ………………………………………………………………………6分22. 解:(1)23…………………1分 (2) ±6 ……………………3分 (3)D ………………………5分五、解答题(本题共22分,其中23题7分,24题7分,25题8分)23. (1)∵直线33y x =-+与x 轴、y 轴分别交于点A 、B ,∴(1,0)A ,(0,3)B . ……………………………………2分 又抛物线2(2)y a x k =-+经过点(1,0)A ,(0,3)B∴0,43;a k a k +=⎧⎨+=⎩解得1,1.a k =⎧⎨=-⎩即a ,k 的值分别为1,1-. ……………………………4分 (2)()()()1230,3,4,3,2,1M M M - …………………………………7分 24. (1)解:∵AC =12,∴CO =6, ∴==2π;(2)证明:∵PE ⊥AC ,OD ⊥AB ,∠PEA =90°,∠ADO =90° 在△ADO 和△PEO 中,,∴△POE ≌△AOD (AAS ), ∴OD =EO ;(3)证明:如图,连接AP ,PC ,∵OA =OP , ∴∠OAP =∠OP A , 由(1)得OD =EO , ∴∠ODE =∠OED , 又∵∠AOP =∠EOD , ∴∠OP A =∠ODE , ∴AP ∥DF , ∵AC 是直径, ∴∠APC =90°, ∴∠PQE =90° ∴PC ⊥EF , 又∵DP ∥BF , ∴∠ODE =∠EFC , ∵∠OED =∠CEF , ∴∠CEF =∠EFC ,∴CE =CF ,∴PC 为EF 的中垂线,∴∠EPQ =∠QPF ,∵△CEP ∽△CAP∴∠EPQ =∠EAP ,∴∠QPF =∠EAP ,∴∠QPF =∠OP A ,∵∠OP A +∠OPC =90°,∴∠QPF +∠OPC =90°,∴OP ⊥PF ,∴PF 是⊙O 的切线.25.(1)证明:令2154(3)022m x m x ---+=. 得[]2154(3)422m m -∆=---⨯⨯224m m =-+2(1)3m =-+. 不论m 为任何实数,都有(m -1)2+3>0,即△>0. ……………1分∴不论m 为任何实数,抛物线与x 轴总有两个交点. ……………… 2分(2)解:抛物线2154(3)22m y x m x -=--+的对称轴为 ∵抛物线上两个不同点A 2(3,2)n n -+、B 2(1,2)n n -++的纵坐标相同,∴点A和点B 关于抛物线的对称轴对称,则(3)(1)312n n m -+-+-==-. ∴2m =. ……………………………………………………… 3分 ∴抛物线的解析式为21322y x x =+-. ………………… 4分 ∵A 2(3,2)n n -+在抛物线21322y x x =+-上, ∴2213(3)(3)222n n n -+--=+. 化简,得2440n n ++=.∴ 2n =-. ……………………………………………… 5分(3) 当2<x <3时, 对于21322y x x =+-,y 随着x 的增大而增大, 对于(0,0)k y k x x=>>,y 随着x 的增大而减小. (3) 3.122m x m --=-=-⨯所以当02x =时,由反比例函数图象在二次函数图象上方, 得2k >2132222⨯+-, 解得k >5. …………………………………6分 当03x =时,由二次函数图象在反比例函数图象上方, 得2133322⨯+->3k,解得k <18.……………………………………7分 所以k 的取值范围为5<k <18.……………………………8分。
山西省运城市名校2014-2015上学期期末联合考试数学试题(时间:120分钟 满分:120分)2015、1、13 一、选择题(每题3分,共45分)1.如图所示几何体的主(正)视图是( )A .B .C .D .2.一个口袋中装有 4个白球,1个红球,7个黄球,搅匀后随机从袋中摸出 1个球是白球的概率是( ) A 21 B 31 C 41 D 513.抛物线42-=x y 的顶点坐标是( )A (2,0)B (-2,0)C (1,-3)D (0,-4)4.若x 1,x 2是一元二次方程2560x x -+=的两个根,则12x x +的值是( ) A .1 B .5 C .5- D .65.身高1.6米的小芳站在一棵树下照了一张照片,小明量得照片上小芳的高度是1.2厘米,树的高度为6厘米,则树的实际高度大约是( )A .8米B .4.5米C .8厘米D .4.5厘米6.顺次连结一个四边形各边中点所得的四边形必定是( )。
A 、平行四边形 B 、矩形 C 、菱形 D 、正方形.7. 如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则A DB '∠=( )A .40°B .30°C .20°D .10°8. 如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD =2,AC =3, 则sinB 的值是( )A. 2 3B. 3 2C. 3 4D. 4 39.已知线段AB=1,C 是线段AB 的黄金分割点,则AC 的长度为( ) A.215- B .253- C .215-或253- D .以上都不对10.如图,在菱形ABCD 中,∠ABC =60°.AC =4. 则BD 的长为( )CABD (第8题图)第7题图A 'B DAC(A )38 (B )34 (C )32 (D )8 11. 如图,AB ∥CD ,BO :OC= 1:4,点E 、F 分别是OC , OD 的中点,则EF :AB 的值为( )A 、1B 、2C 、3D 、412.上海世博会的某纪念品原价168元,连续两次降价a %后售价为128元. 下列所列方程中正确的是( )A .128)% 1(1682=+aB .128)% 1(1682=-a C .128)% 21(168=-a D .128)% 1(1682=-a13.已知点A (11x y ,)、B (22x y ,)是反比例函数xky =(0>k )图象上的两点,若210x x <<,则有( )A .210y y <<B .120y y <<C .021<<y yD .012<<y y14.把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( ).A .2(1)3y x =---B .2(1)3y x =-+-C .2(1)3y x =--+ D .2(1)3y x =-++15.定义[,,a b c ]为函数2y ax bx c =++的特征数, 下面给出特征数为 [2m ,1 – m , –1– m] 的函数的一些结论: ① 当m = – 3时,函数图象的顶点坐标是(31,38); ② 当m > 0时,函数图象截x 轴所得的线段长度大于23; ③ 当m < 0时,函数在x >41时,y 随x 的增大而减小; ④ 当m ≠ 0时,函数图象经过同一个点. 其中正确的结论有( )A. ①②③④B. ①②④C. ①③④D. ②④ 二、填空题(每空3分,共18分)16. 已知点A (2,m )在函数xy 2=的图象上,那么m=_________。
杭州市滨江区2014-2015学年第一学期期末考试九年级数学试卷考生须知:1.本试卷满分120分,考试时间100分钟.2.答题前,必须在答题纸指定位置填写学校、班级、姓名、座位号(写在学校上面). 3.必须在答题卷的对应答题位置上答题,写在其他地方无效. 答题方式详见答题纸上的说明. 4.不能使用计算器;考试结束后,上交答题纸.试题卷一、仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的. 注意可以用多种不同的方法来选取正确答案.1.如图,已知圆心角∠BOC =︒76,则圆周角∠BAC 的度数是( ) A .︒152 B .︒76 C .︒38 D .︒362. 已知dcb a =那么下列各等式一定成立的是( ) A.b dc a = B. bd a c = C. d c a b = D. da b c = 3. 将抛物线22x y = 先向上平移两个单位,再向右平移3个单位,所得抛物线的函数表达式为( ) A .2)3(22++=x y B .2)3(22-+=x yC .2)3(22+-=x yD .2)3(22--=x y4. 从一幅扑克牌中抽出5张红桃,4张梅花,3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事情是( )A .必然事件B .随机事件C .不可能事件D .很可能事件5. 已知sin α<0.5,那么锐角α的取值范围是( )A.︒60<α<︒90B. ︒30<α<︒90C. ︒0<α<︒60D. ︒0<α<︒306. 如图,⊙O 的直径AB 垂直于弦CD ,垂足是E ,∠A =︒5.22,OC =8,则CD 的长为( ) A . 24 B. 28 C. 8 D. 167. 下列各组中的两个图形,一定相似的是( )A. 有一个角对应相等的两个菱形.B. 对应边成比例的两个多边形.C.两条对角线对应成比例的两个平行四边形.D. 任意两个矩形.8. 如图, △ABC 是O ⊙的内接等边三角形,AB =1.点D ,E 在圆上,四边形BCDE 为矩形,则这个矩形的面积是( )(第1题)ACOBE ODC B A(第6题)(第8题)DECBAOA .21B .1C .33D .3329.如图,在△ABC 中,D ,E 分别是AB ,BC 上的点,且DE ∥AC , 若S △BDE :S △CDE =1:3,则S △BDE :S △ACD =( )A . 1:5B .1:9C .1:10D .1:12 10.二次函数y =ax 2+bx +c 图象如图,下列正确的个数为( )①abc >0;②2a ﹣3c <0;③b a +2>0;④a x 2+bx+c=0有两个实数解x 1,x 2,且x 1+x 2<0; ⑤9a+3b+c >0;⑥当x <1时,y 随x 增大而减小.A . 2B . 3C . 4D . 5二、认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案.11.已知线段a =4,b =8. 则a,b 的比例中项线段长等于 ▲ . 12. 如图,正五边形ABCDE 的对角线为BE ,则∠ABE 的度数为 ▲ .13.如图,⊙O 的半径为2,AB 是⊙O 的一条弦,∠O =60º,14. 如图,在直角坐标系中,△ABC 的各顶点坐标为A (-1,1),B (2,3),C (0,3). 原点为位似中心,作△C B A ''',使△C B A '''与△ABC 的位似比为23.则点A 的坐标为 ▲ .15.把一个矩形剪去一个正方形,若所剩的矩形与原矩形相似,的比为 ▲ .16. Rt △ABC 中,∠ABC =︒90,AB =4,BC =3,若⊙O 和三角形三边所在的直线都相切,则符合条件的⊙O 的半径为 ▲ .三、全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以. 17.(本题满分 6分)(1)求比例式 4:3=5:x 中x 的值. (2)计算:2cos 45tan 60sin 60︒+︒⋅︒ 18. (本题满分 8分)由地面上A 点测得山顶电视塔顶点B 和电视塔基地C 点的仰角分别为60°和30°,已知山顶C 到地平面的垂直高度为50米.求电视塔高BC . 19. (本题满分 8分)如图,在△PAB中,C ,D ,分别为AP ,BP上的点,若 43==PA DP PB CP ,AB =8cm,求CD 的长.(第19题)PDBCA (第10题)(第12题)ED CBA(第14题)(第9题)DECA某校九年级有12个班,每班50名学生,为调查该校九年级学生一学期课外书的阅读量情况,准备从这12个班中抽取50名学生作为一个样本进行分析,并规定如下:设一个学生一学期阅读课外书籍本数为n ,当0≤n <5时,该学生为一般读者;当5≤n <10时,该学生为良好读者;当n ≥10时,该学生为优秀读者. (1)下列四种抽取方法:①随机抽取一个班的学生;②从这12个班中随机抽取50名学生;③随机抽取50名男生;④随机抽取50名女生,其中最具有代表性的是哪一种?(2)由上述最具代表性的抽取方法抽取50名学生一学期阅读书的本数数据如下:根据以上数据回答下列问题: ①求样本中优秀读者的频率; ②估计该校九年级优秀读者的人数;③在样本中为一般读者的学生中随机抽取2人,用树状图或列表法求抽得2人的课外书籍阅读本数都为4的概率.21.(本题满分10分)如图,△ABC 中,AB =4,BC =3,以C 为圆心,CB 的长为半径的圆和AC 交于点D ,连接BD ,若∠ABD =21∠C . (1) 求证:AB 是⊙C 的切线; (2) 求△DAB 的面积.22.(本题满分12分)随着城市高楼的增加,高楼火灾越来越受重视,今年11月9日消防日来临前,某区消防中队开展技能比赛.考官在一废弃高楼距地面10米的M 处和正上方距地面13米的N 处各设置了一个火源.随后消防甲队出场,来到火源的正前方,估计高度后,消防员站在A 处,拿着水枪距地面一定高度C 处喷出水,只见水流划过一道漂亮的抛物线,准确的落在M 处,待M 处火熄灭后,消防员不慌不忙,没有做任何调整,只向着楼房移动到B 处,只见水流又刚好落在N 处.随后的录像资料显示第一次水流在距离楼房水平距离为2米的地方达到最大高度,且距离地面14米(图中P 点).(1) 根据图中建立的平面直角坐标系(x 轴在地面上),写出P ,M ,N 的坐标; (2) 求出上述坐标系中水流CPM 所在抛物线的函数表达式; (3)请求出消防员移动的距离AB 的长. 23.(本题满分12分)D CBA(第21题)(第22题)xyPDC B AN M101314O个交点分别为P , Q ,连接CP , PQ . (1) 当t 为何值时⊙O 和直线BC 相切;(2) 若线段PC 和⊙O 只有一个交点,请求出t 的取值范围;(3) 设△QCP 的面积为S ,试求S 与t 之间的函数表达式,并求S 的最大值.2014学年第一学期期末检测九年级数学 评分标准一、选择题(总10小题,每小题3分,共30分)二、填空题(总6小题,每小题4分,共24分) (除第11题外,其他题目在答案正确的情况下,多出答案,则扣1分)11.24(答案多了扣2分) 12. 36° 13. 332-π14. 22(-,33,)32,32(- (每个答案2分) 15.215+ 16. 1,2,3,617.(本题满分 6分)x 453)1(=⨯ …………2分415=x …………1分 (2)原式=233)22(2⨯+ …………1分 =2321+ …………1分 =2 …………1分 18. (本题满分 8分) 由题意得:在Rt △ACD 中,∠CAD=30,∴AD=CD ·tan ∠ACD ………………1分=50︒60tan …………………1分=503 …………………1分 在Rt △ABD 中,∠BAD=60, ∴BD=AD BAD ⋅∠tan=AD ⋅︒60tan …………………1分=3AD=3503⨯…………………1分 =150 ……………………1分(第18题)。
2014—2015学年度九年级上期质量检测数学试题(试题卷) 姓名 成绩(全卷共25题,满分150分,考试时间120分钟)一、选择题:(本大题共10个小题,每小题4分,共40分) 1.从1到9这九个自然数中任取一个,是偶数的概率是( )A .B .C .D .2.线段d c b a 、、、是成比例线段,224===c b a 、、,则d 的长为( ) A .1 B .2 C .3 D. 4 3.一元二次方程092=-x 的根是( )A .3B .3±C .9D .9± 4.下列函数中,图象经过点)2 1(-,的是( ) A .x y 1=B .x y 1-=C .xy 2= D. x y 2-=5.(2013•包头)3tan30°的值等于( )A .B . 3C .D .6.用配方法解方程122=-x x 时,配方后所得的方程为( )A .0)1(2=+xB .0)1(2=-xC .2)1(2=+xD .2)1(2=-x 7.已知点) 2(1y A ,-,) 1(2y B ,-和) 3(3y C ,都在反比例函数xy 3=的图象上,则321y y y 、、的大小关系是( ) A .321y y y << B .123y y y << C .312y y y << D .231y y y <<8. 如图,小强自制了一个小孔成像装置,其中纸筒的长度为cm 15,他准备了一支长为cm 20的蜡烛,想要得到高度为cm 4的像,蜡烛与纸筒的距离应该为( )A .cm 60B . cm 65C .cm 70D . cm 759. 如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AB OE ⊥,垂足为E ,若︒=∠130ADC ,则A OE ∠的大小是( )A .︒75B .︒65C .︒55D .︒5010如图,正方形ABCD 位于第一象限,22=AC ,顶点C A 、在直线x y =上,且A 的横坐标为1,若双曲线)0(≠=k xky 与正方形ABCD 有交点,则k 的取值范围是( ) A .10≤<k 或6≥k B .61≤≤k C .91≤≤k D .10≤<k 或9≥k二、填空题:(本大题共6个小题,每小题4分,共24分)11.如图,已知在Rt△ACB 中,∠C=90°,AB=13,AC=12,则cosB 的值为 . 12.如图,点B 在反比例函数xy 2=()0>x 的图象上,过点B 向x 轴作垂线,垂足为A ,连接OB ,则OAB ∆的面积为__________;13.如图,在矩形ABCD 中,点F E 、分别是CD AB 、的中点,连接DE 和BF ,分别取BF DE 、的中点N M 、,连接MN CN AM 、、.若3=AB ,52=BC ,则图中阴影部分的面积为___________;14.如图,将DEF △缩小为原来的一半,操作方法如下:任意取一点P ,连接DP ,取DP 的中点A ,再连接EP FP 、,取它们的中点B C 、,得到ABC △,则下列说法正确的有___________ ①ABC △与DEF △是位似图形; ②ABC △与DEF △是相似图形;③ABC △与DEF △的周长比是1:2; ④ABC △与DEF △的面积比是1:2.15.从3211 3---、、、、这五个数中,取一个数作为函数xk y 2-=和关于x 的方程 012)1(2=+++kx x k 中k 的值,恰好使所得函数的图象经过第二、四象限,且方程有实根,满足要求的k 的值共有__________个; 16. 如图,正方形OABC 的顶点O 是坐标原点,顶点A 在x 轴的正半轴上,3=OA ,点D 是BC 边的中点,连接OD ,点E 在OC 上且1:2:=OE CE ,过点E 作EF ∥OA 交OD 于点G ,交AB 于点F ,连接DF ,过点G 作DF GH ⊥,垂足为H ,若BC 边上有一点P 与点H 在同一反比例函数的图象上,则点P 的坐标为_____________;三、解答题:(共86分)解答时每小题必须给出必要的演算过程或推理步骤.17.(7分)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张。
BA延庆县2014-2015学年第一学期期末测试卷初 三 数 学一、选择题(本题共32分,每小题4分)下列各题均有四个选项,其中只有一个是符合题........意.的. 1. 下列图形中,是中心对称图形的是A .B .C .D .2.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为A. 15B. 25C. 35D. 453. 抛物线2(2)3y x =-+的顶点坐标是A .(2,3)B .(-2,3)C .(2,-3)D .(-2,-3) 4. 如图,□ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F , 则EF :FC 等于A .1:1B .1:2C .1:3D .2:35.如图,⊙O 的直径AB 垂直于弦CD ,垂足是E ,OC =5,CD =8, 则OE 的长为A .1B .2 C .3D . 4 6.在Rt △ABC 中,∠C =90°,若AB BC =2,则sin B 的值为 A BC .12D .27.二次函数2y ax bx c =++的图象如图所示, 则下列结论中错误..的是 A BCDE FnAB 22A .函数有最小值B .当-1 < x < 2时,0y >C .0a b c ++<D .当12x <,y 随x 的增大而减小 8.如图,矩形ABCD 中,对角线AC ,BD 交于点O ,E ,F 分别是边BC ,AD 的中点, AB =3,BC =4,一动点P 从点B 出发,沿着B ﹣A ﹣D ﹣C 在矩形的边上运动,运动到 点C 停止,点M 为图1中某一定点,设点P 运动的路程为x ,△BPM 的面积为y ,表 示y 与x 的函数关系的图象大致如图2所示.则点M 的位置可能是图1中的A .点CB .点FC .点D D .点O二、填空题 (本题共16分,每小题4分)9.如果圆锥的母线长为5cm ,底面半径为2cm ,那么这个圆锥的侧面积是________ cm 2. 10. 请写出一个开口向下,并且与y 轴交于点(0,-2)的抛物线的表达式__________. 11. 已知关于x 的一元二次方程2410x x m -+-=无实数根,那么m 的取值范围是____. 12. 如图,AD 是⊙O 的直径.(1)如图1,垂直于AD 的两条弦B 1C 1,B 2C 2把圆周4等分,则∠B 1的度数是 ,∠B 2的度数是 ;(2)如图2,垂直于AD 的三条弦B 1C 1,B 2C 2,B 3C 3把圆周6等分,则∠B 3的度数是 ; (3)如图3,垂直于AD 的n 条弦B 1C 1,B 2C 2,B 3 C 3,…,B n C n 把圆周2n 等分,则∠B n的度数是 (用含n 的代数式表示∠B n 的度数).图1 图2 图3图2图1三、解答题(本题共35分,每小题5分)13. 021(2015)()2π-︒+++14. 解方程:2450x x --=15. 已知:二次函数的图象过点A (2,-3),且顶点坐标为C (1,-4). (1)求此二次函数的表达式;(2)画出此函数图象,并根据函数图象写出:当12x -<<时,y 的取值范围. 16. 如图,在⊙O 中,弦AC 与BD 交于点E ,AB =8,AE =6,ED =4,求CD 的长.(第16题)60°A B 30°CD17.如图,一渔船由西往东航行,在A 点测得海岛C 位于北偏东60°的方向,前进30海里到达B 点,此时,测得海岛C 位于北偏东30°的方向,求海岛C 到航线AB 的距离 CD 的长(结果保留根号).18. 已知:AD 是△ABC的高,AD AB =4,tan ACD ∠=BC 的长.19. 某种商品每天的销售利润y (元)与销售单价x (元)之间 满足关系:y = ax 2+ bx ﹣75.其图象如图.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?(第19题)(第17题)B四、解答题(本题共15分,每小题5分)20. 有六张完全相同的卡片,分A ,B 两组,每组三张,在A 组的卡片上分别画上☆○☆,B 组的卡片上分别画上☆○○,如图1所示.(1)若将卡片无标记的一面朝上摆在桌上,再分别从两组卡片中随机各抽取一张,求两张卡片上标记都是☆的概率(请用画树形图法或列表法求解)(2)若把A ,B 两组卡片无标记的一面对应粘贴在一起得到3张卡片,其正反面标记如图2所示,将卡片正面朝上摆放在桌上,并用瓶盖盖住标记.若揭开盖子,看 到的卡片正面标记是☆后,猜想它的反面也是☆,求猜对的概率是多少?21. 如图,在△ABC 中,以AC 为直径作⊙O 交BC 于点D ,交AB 于点G ,且D 是BC 中点,DE ⊥AB ,垂足为E , 交AC 的延长线于点F .(1)求证:直线EF 是⊙O 的切线; (2)CF =5,cos ∠A = 25,求BE 的长.○☆B 组A 组☆☆○○ 图1○○ ○☆反面正面☆☆图2AE C FBAB CCBA22. 探究发现:如图1,△ABC是等边三角形,点E在直线BC上,∠AEF=60°,EF交等边三角形外角平分线CF于点F,当点E是BC的中点时,有AE=EF成立;数学思考:某数学兴趣小组在探究AE,EF的关系时,运用“从特殊到一般”的数学思想,通过验证得出如下结论:当点E是直线BC上(B,C除外)(其它条件不变),结论AE=EF仍然成立.请你从“点E在线段BC上”;“点E在线段BC延长线”;“点E在线段BC反向延长线上”三种情况中,任选一种情况,在图2中画出图形,并证明AE=EF.拓展应用:当点E在线段BC的延长线上时,若CE=BC,在图3中画出图形,并运用上述结论求出S△ABC:S△AEF的值.图1图2图3五、解答题(本题共22分,第23题7分,第24题9分,第25题6分) 23. 已知关于x 的一元二次方程21202k x x -++=有实数根,k 为正整数. (1)求k 的值;(2)当此方程有两个非零的整数根时,将关于x 的二次函数2122k y x x -=++的图象 向下平移9个单位,求平移后的图象的表达式;(3)在(2)的条件下,平移后的二次函数的图象与x 轴交于点A ,B (点A 在点B 左侧),直线(0)y kx b k =+>过点B ,且与抛物线的另一个交点为C ,直线BC 上方的抛物线与线段BC 组成新的图象,当此新图象的最小值大于-5时,求k 的取值范围.C24. 已知:△ABC 是⊙O 的内接三角形,AB =AC ,在∠BAC 所对弧AC 上,任取一点D ,连接AD ,BD ,CD ,(1)如图1,BAC α∠=,直接写出∠ADB 的大小(用含α的式子表示); (2)如图2,如果∠BAC =60°,求证:BD+CD=AD ;(3)如图3,如果∠BAC =120°,那么BD+CD 与AD 之间的数量关系是什么?写出猜测并加以证明;(4)如果BAC α∠=,直接写出BD+CD 与AD 之间的数量关系.图1图2图325. 在平面直角坐标系xOy 中,已知抛物线C 1: 224y mx mx =-++(0≠m )与抛物线C 2:22y x x =-,(1)抛物线C 1与y 轴交于点A ,其对称轴与x 轴交于点B .求点A ,B 的坐标; (2)若抛物线C 1在21x -<<-这一段位于C 2下方,并且抛物线C 1在13x <<这一段位于C 2上方,求抛物线C 1的解析式.----------------5分------------------4分 ------------------4分 ------------------5分------------------4分 ------------------5分------------------5分------------------4分 延庆县2014—2015学年第一学期期末测试答案初 三 数 学一、选择题(共32分,每小题4分)二、填空题(共16分,每题4分)三、解答题(本题共35分,每小题5分) 13. 02145(2015)()2π-︒+++= 414+ =514.解方程:2450x x --= 解1: (5)(1)0x x -+=∴125,1x x ==-解2: 2450x x --= 2449x x -+= 2(2)9x -= 23x ∴-=±∴125,1x x ==-解3: 2450x x --= ∵a =1,b =-4,c =-5∴462x ±==∴125,1x x ==--------4分-----------2分 ---------3分----------------------2分----------------------1分-----------5分---------------3分-------5分15.(1) 设二次函数的表达式为2()y a x h k =-+∵此函数图象顶点C (1,﹣4) ∴2(1)4y a x =-- 过点A (2,-3),∴a =1∴二次函数的解析式: 223y x x =-- (2)二次函数的解析式: 223y x x =--当x = -1时,y =0当x =1时,y 有最小值,为y =-4 ∵x =1在12x -<<内∴当12x -<<时,y 的取值范围-4 ≤ y <016. 解:∵∠B =∠C ,∠A =∠D ∴△ABE ∽△CDE∴AB AECD DE= ∵AB =8,AE =6,ED =4, ∴864CD = ∴163CD =---------1分---------2分 ---------3分--------4分 ---------5分E2D60°AB30°CD1---------2分 ---------3分---------5分---------4分 DCB ADC A17. 解:∵DA ⊥AD ,∠DAC =60°, ∴∠1=30°.∵EB ⊥AD ,∠EBC =30°, ∴∠2=60°. ∴∠ACB =30°. ∴BC = AB=30.在Rt △ACD 中,∵∠CDB =90°,∠2=60°, ∴tan 2CDBC∠=∴tan 6030CD ︒==∴CD =18. 分两种情况: (1)如图1在Rt △ABD 中,∠CDB =90°,AD =AB =4,由勾股定理可得:3BD ===. 在Rt △ACD 中,∠ADC =90°,AD =∵tan ACD ∠=,AD =∴tan ADACD CD∠== ∴CD =1. ∴BC =4. (2)如图2同理可求:BD =3,CD =1 ∴BC =2.综上所述:BC 的长为4或2.图1 图2---------2分---------4分 ---------5分---------3分---------1分○☆☆○○○○○☆☆☆---------5分---------4分 19. 解:(1)y =ax 2+bx ﹣75图象过点(5,0)、(7,16),∴,解得,y =﹣x 2+20x ﹣75的顶点坐标是(10,25) 当x =10时,y 最大=25,答:销售单价为10元时,该种商品每天销售利润最大,最大利润为25元; (2)∵函数y =﹣x 2+20x ﹣75图象的对称轴为直线x =10,可知点(7,16)关于对称轴的对称点是(13,16), 又∵函数y =﹣x 2+20x ﹣75图象开口向下, ∴当7≤x ≤13时,y ≥16.答:销售单价不少于7元且不超过13元时,该商品每天销售利润不低于16元.20.(1)方法1:由题意:从树状图中可以看到,所有可能结果共9种,且每种结果出现的可能性相等,其中两张卡片上标记都是☆的结果共2种,所以 2()9P =两张都是☆. 方法1:由题意可列表如下:从表中可以看到,所有可能结果共9种,且每种结果出现的可能性相等,其中两张卡片上标记都是☆的结果共2种,所以 2()9P =两张都是☆. (2)12---------2分---------1分---------3分---------4分 ---------5分21.证明:(1)连接CD ∵AO=CO ,CD=BD∴OD //AB ∴∠ODE =∠DEB ∵DE ⊥AB ∴∠DEB=90° ∴∠ODE=90° ∴OD ⊥BC∴直线EF 是⊙O 的切线(2)设⊙O 的半径为x ,则OC=OA=OD ,∵OD //AB∴∠ODC =∠B ,∠FOD =∠A ∵OC =OD ∴∠ODC =∠OCD ∴∠B =∠OCD∴AC=BC=2x在Rt △ODF 中,∠ODF =90°, ∴2cos cos 5OD FOD A OF ∠=∠== ∴255xx =+ ∴103x =在Rt △AEF 中,∠FEA =90°, ∴2cos 5AE A AF ∠== ∴23553AE =∴143AE =∴BE =2B---------3分---------2分---------1分22. 数学思考:证明:如图一,在AB 上截取AG ,使AG=EC ,连接EG , ∵△ABC 是等边三角形, ∴AB=BC ,∠B =∠ACB =60°. ∵AG=EC , ∴BG=BE ,∴△BEG 是等边三角形,∠BGE =60°, ∴∠AGE =120°. ∵FC 是外角的平分线, ∴∠ECF =120°=∠AGE . ∵∠AEC 是△ABE 的外角, ∴∠AEC =∠B +∠GAE =60°+∠GAE . ∵∠AEC =∠AEF +∠FEC =60°+∠FEC , ∴∠GAE =∠FEC . 在△AGE 和△ECF 中,∴△AGE ≌△ECF (ASA ), ∴AE =EF ;拓展应用:如图二:∵△ABC 是等边三角形,BC=CE ∴CE=BC=AC , ∴∠CAH =30°, 作CH ⊥AE 于H 点, ∴∠AHC =90°. ∴CH =AC ,AH =AC ,∵AC=CE ,CH ⊥AE ∴AE=2AH =AC .---------5分---------4分°CAB-3-1-2-4-3-1-22O-4311-5y-6-7∴.由数学思考得AE=EF , 又∵∠AEF =60°, ∴△AEF 是等边三角形, ∴△ABC ∽△AEF . ∴==.五、解答题(本题共22分,第23题7分,第24题9分,第25题6分) 23.(1)∵关于x 的一元二次方程21202k x x -++=有实数根 ∴2144402k b ac -∆=-=-⨯≥ ∴12k -≤∴3k ≤…………………………………………………1分 ∵k 为正整数∴k 的值是1,2,3 ……………………………………2分 (2)方程有两个非零的整数根当1k =时,220x x +=,不合题意,舍 当2k =时,21202x x ++=,不合题意,舍 当3k =时,2210x x ++=,121x x ==-∴3k = ……………………………3分∴221y x x =++∴平移后的图象的表达式228y x x =+- ……(3)令y =0,2280x x +-= ∴124,2x x =-=∵与x 轴交于点A ,B (点A 在点B 左侧)∴A (-4,0),B (2,0)∵直线l :y kx b =+(0)k >经过点B , ∴函数新图象如图所示,当点C 在抛物 线对称轴左侧时,新函数的最小值有(1)902ADB α∠=︒-可能大于5-.令5y =-,即2285x x +-=-.解得 13x =-,21x =(不合题意,舍去). ∴抛物线经过点(3,5)--. ……………5分当直线y kx b =+(0)k >经过点(-3,-5),(2,0)时,可求得1k =…………6分由图象可知,当01k <<时新函数的最小值大于5-. ………………………7分 (也可以用三角形相似求出-5以及k 的值) 24.………………1分(2)延长BD 到E ,使得DE=DC ∵∠BAC =60°,AB =AC∴△ABC 是等边三角形 ………………2分 ∴BC=AC ,∠BAC =∠ACB=60°∵四边形ABCD 内接于圆 ∴∠BAC +∠BDC=180° ∵∠BDC +∠EDC=180° ∴∠BAC=∠EDC=60° ∵DC=DE∴△DCE 是等边三角形 ………………3分 ∴∠DCE=60° ∴∠ACD=∠BCE ∴△ACD ≌△BCE ∴BE=AD ∵BE=BD+DE∴AD=BD+CD ………………4分 (3)延长DB 到E ,使得BE=DC ,连接AE , 过点A 作AF ⊥BD 于点F ,∵AB =AC ∴∠1=∠2 ………………5分∵四边形ABCD 内接于圆 ∴∠DBA +∠ACD=180° ∵∠EBA +∠DBA =180° ∴∠EBA=∠DCA ∵BE=CD ,AB=AC∴△EBA ≌△DCA ∴∠E=∠1 ∴AE=AD ………………6分在Rt △ADF 中,∠AFD =90°, ∴cos 1DFAD∠= ………………………………7分∵∠1=90°-2α=30°, ∴cos30DF AD AD =︒=∴2DE DF == ∵ BE =BD +CD∴BD CD += …………………………………………8分 (4) 2cos(90)2DF AD α=︒- ……………………………………………9分25.(1)根据:224y mx mx =-++ 2122b mx a m=-=-=- 可得点A (0,4),B (1,0) ……………………………2分(2)根据对称, 抛物线C 1在21x -<<-这一段位于C 2下方,相当于抛物线C 1在34x <<这 一段位于C 2下方 ……………………………3分 ∵抛物线C 1在13x <<这一段位于C 2上方, ∴两条抛物线的交点横坐标:x =3……………………………4分 ∴把x =3代入22y x x =- ∴y=3∴抛物线C 1:224y mx mx =-++经过点(3,3)……………………………5分 ∴13m =-∴抛物线C 1的解析式: 212433y x x =-+……………………………6分。
2014—2015学年第一学期初三年级期末质量抽测数学试卷2014.12学校姓名考试编号考生须知1.本试卷共6页,共五道大题,25个小题,满分120分.考试时间120分钟.2.在试卷和答题卡上认真填写学校名称、姓名和考试编号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.考试结束,请将答题卡交回.一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.1.已知⊙O 1和⊙O 2的半径分别为3和5,如果O 1O 2= 8,那么⊙O 1和⊙O 2的位置关系是A .外切B.相交C.内切D.内含2.在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球..的概率是A .15B.13C.25D.233.如图,⊙O 的直径AB=4,点C 在⊙O 上,如果∠ABC =30°,那么AC 的长是A .1B .2C .3D .24. 在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使它与图中阴影部分组成的新图形构成中心对称图形,该小正方形的序号是A .①B .②C .③D .④5.如图,在△ABC 中,点D E 、分别在AB AC 、边上,DE ∥BC ,若:3:4AD AB,6AE,则AC 等于A. 3B. 4C . 6D. 86.当二次函数249y xx 取最小值时,x 的值为A .2B .1C .2D .9来源学|科|网ABC30°④③②①ABCODC BAO7.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的影长BC 为24米,那么旗杆AB 的高度约是A .12米B .83米C .24米D .243米[来源:]8.已知:如图,在半径为4的⊙O 中,AB 为直径,以弦AC (非直径)为对称轴将AC折叠后与AB 相交于点D ,如果3ADDB ,那么AC 的长为A .214B .27C .42D .6二、填空题(共4道小题,每小题4分,共16分)9.如果3cos 2A,那么锐角A 的度数为.10.如果一个圆锥的母线长为4,底面半径为1,那么这个圆锥的侧面积为.11.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为.12.在平面直角坐标系xoy 中,直线2x 和抛物线2yax 在第一象限交于点A,过A 作ABx 轴于点B .如果a 取1,2,3,,,n 时对应的△AOB 的面积为123S S S ,,,,n S ,那么1S _____;123nS S S S _____.三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.如图1,正方形ABCD 是一个 6 × 6网格的示意图,其中每个小正方形的边长为1,位于AD 中点处的点P 按图2的程序移动.(1)请在图中画出点P 经过的路径;(2)求点P 经过的路径总长.绕点A 顺时针旋转90°绕点B 顺时针旋转90°绕点C 顺时针旋转90°输入点P输出点ADPxOy[来源:.Com]14.计算:3tan302cos452sin 60.15.现有三个自愿献血者,两人血型为O 型,一人血型为A 型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所献血的血型均为O 型的概率(要求:用列表或画树状图的方法解答).[来源:]16. 如图,从热气球C 处测得地面A 、B 两处的俯角分别为30°、45°,如果此时热气球C处的高度CD 为100米,点A 、D 、B 在同一直线上,求AB 两处的距离.17. 已知抛物线与x 轴相交于两点A(1,0),B(-3,0),与y 轴相交于点C (0,3).(1)求此抛物线的函数表达式;(2)如果点3,2Dm 是抛物线上的一点,求△ABD 的面积.18.如图,在△ABC 中,∠AB C =2∠C ,BD 平分∠ABC ,且2AD ,22BD ,求AB 的值.BCDADCBA四、解答题(共4道小题,每小题5分,共20分)19.如图,在平面直角坐标系xoy 中,⊙A 与y 轴相切于点3(0,)2B ,与x 轴相交于M 、N 两点.如果点M 的坐标为1(,0)2,求点N 的坐标.20.(1)已知二次函数223y xx ,请你化成2()y x h k的形式,并在直角坐标系中画出223y xx 的图象;(2)如果11()A x y ,,22()B x y ,是(1)中图象上的两点,且121x x ,请直接写出1y 、2y 的大小关系;(3)利用(1)中的图象表示出方程2210xx 的根来,要求保留画图痕迹,说明结果.21.已知:如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 与BC 交于点D ,DE ⊥AB ,垂足为E ,ED 的延长线与AC 的延长线交于点F .(1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为4,BE =2,求∠F 的度数.yxO AB MNyOxEOA22.阅读下面的材料:小明遇到一个问题:如图(1),在□ABCD 中,点E 是边BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G. 如果3AF EF,求CD CG的值.他的做法是:过点E 作EH ∥AB 交BG 于点H ,则可以得到△BAF ∽△HEF .请你回答:(1)AB 和EH 的数量关系为,CG 和EH 的数量关系为,CD CG的值为.(2)如图(2),在原题的其他条件不变的情况下,如果(0)AF a a EF,那么CD CG的值为(用含a 的代数式表示).(3)请你参考小明的方法继续探究:如图(3),在四边形ABCD 中,DC ∥AB ,点E是BC 延长线上一点,AE 和BD 相交于点 F. 如果(00)AB BC m n mnCDBE,,,那么AF EF的值为(用含m ,n 的代数式表示).H(1)ABCDE FG G FE DCBA(2)(3)AB CDEF五、解答题(共3道小题,第23题7分,第24、25题各8分,共23分)23.由于2013年第30号强台风“海燕”的侵袭,致使多个城市受到影响. 如图所示,A 市位于台风中心M 北偏东15°的方向上,距离612千米,B 市位于台风中心M 正东方向603千米处. 台风中心以每小时30千米的速度沿MF 向北偏东60°的方向移动(假设台风在移动的过程中的风速保持不变),距离台风中心60千米的圆形区域内均会受到此次强烈台风的影响.(1)A 市、B 市是否会受到此次台风的影响?说明理由.(2)如果受到此次台风影响,该城市受到台风影响的持续时间为多少小时?备用图24.已知二次函数y = x 2–kx + k – 1(k >2).(1)求证:抛物线y = x 2–kx + k- 1(k >2)与x 轴必有两个交点;(2)抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,若tan 3OAC,求抛物线的表达式;(3)以(2)中的抛物线上一点P (m,n )为圆心,1为半径作圆,直接写出:当m 取何值时,x 轴与P 相离、相切、相交.25.已知:四边形ABCD 中,AD ∥BC ,AD=AB=CD ,∠BAD =120°,点E 是射线CD 上的一个动点(与C 、D 不重合),将△ADE 绕点A 顺时针旋转120°后,得到△ABE',连接EE'.(1)如图1,∠AEE'= °;(2)如图2,如果将直线AE 绕点A 顺时针旋转30°后交直线BC 于点F ,过点E 作EM∥AD 交直线AF 于点M ,写出线段DE 、BF 、ME 之间的数量关系;(3)如图3,在(2)的条件下,如果CE =2,AE=27,求ME 的长.xyO–1–21234–1–21234E'MFEDC BAE'EDCBA图1图2E'MFEDC BA图32014—2015学年第一学期初三年级期末质量抽测数学试卷参考答案及评分标准2014.12一、选择题(共8个小题,每小题4分,共32分)题号 1 2 3 4 5 6 7 8 答案 ACDBDABA二、填空题(共4个小题,每小题4分,共16分)题号9 10 1112答案304344 ,2n(n+1)(各2分)三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.解:(1)如图所示:PAB CD,,,,,,,,,,,,,,,,,,,,2分(2)由题意得,点P 经过的路径总长为:270318091802n r .,,,,,,,,,,,4分14.解:原式=323322322,,,,,,,,,,,,,,,,,,,,,,3分=113,,,,,,,,,,,,,,,,,,,,,,4分=23.,,,,,,,,,,,,,,,,,,,,,,,,,,,,5分15.解:列表如下:O 1O 2 A O 1(O 1,O 1)(O 1,O 2)(O 1,A)O 2(O 2,O 1) (O 2,O 2) (O 2,A) A(A ,O 1)(A ,O 2) (A ,A),,,,,,,,,,,,,,,,,,,,,,,4分所以,两次所献血型均为O 型的概率为49.,,,,,,,,,,,,,,,,,,,,,,5分16.解:依题意,可知:30,45,,100,CABCBACD AB D CD 于点,,,,,,,,,,,,,,,1分,CD AB 90.CDACDB ,,,,,,,,,,,,,,,,,,,,,,,,,2分Rt 100BDC BDCD 在中,,,,,,,,,,,,,,,,,,,,,,,,3分Rt tan CDADC AAD在中,.∴31003AD CD .,,,,,,,,,,,,,,,,,,,,,,,,,4分1003100ABADBD.,,,,,,,,,,,,,,,,,,,,,,,5分∴AB 两处的距离为(1003100)米.17.解:(1)∵抛物线与y 轴相交于点C (0,3),∴设抛物线的解析式为23y axbx .,,,,,,,,,,,,,,,,,1分∵抛物线与x 轴相交于两点(1,0),(3,0)A B ,∴30,9330.a b a b ,,,,,,,,,,,,,,,,,,,,,,,,,,,2分解得:1,2.a b∴抛物线的函数表达式为:232yxx .,,,,,,,,,,,,,,,,3分(2)∵点3(,)2D m 是抛物线上一点,∴2(23339)224m . ,,,,,,,,,,,,,,,,,,,,,,4分∴119942242ABDDSAB y . ,,,,,,,,,,,,,,,,,,5分18.解:∵BD 平分∠ABC ,∴∠ABC =2∠1=2∠2.∵∠ABC =2∠C ,∴∠C =∠1=∠2.,,,,,,,,,,,1分∴22CD BD . ,,,,,,,,,,,,2分∴32AC.又∵∠A=∠A,∴△ABD ∽△ACB .,,,,,,,,,,,,,,,,,,,,,,,,,,,3分∴AD AB ABAC.,,,,,,,,,,,,,,,,,,,,,,,,,,,4分∴22326AB AD AC .∴6AB(舍负).,,,,,,,,,,,,,,,,,,,,,,,,,,5分四、解答题(共4道小题,每小题5分,共20分)19.解:连接AB 、AM ,过点A 作AC ⊥MN 于点C .∵⊙A 与y 轴相切于点B(0,32),∴AB ⊥y 轴.又∵AC ⊥MN ,x 轴⊥y 轴,∴四边形BOCA 为矩形.∴AC =OB=32,OC =BA .∵AC ⊥MN ,∴∠ACM=90°,MC=CN .,,,,,,,,,,,,,,,,,,,,2分∵M(12,0),∴OM =12.在Rt △AMC 中,设AM=r.O A B MNCyx21DCBA。
苏科版2014-2015学年第一学期期末模拟试卷(1)初三数学含答案(满分:130分时间:120分钟)一、选择题(每小题3分,共24分)1.(2014.常德)某班体育委员记录了7名女生1分钟仰卧起坐的个数分别为28、38、38、35、35、38、48,这组数据的中位数和众数分别是( )A.35、38 B.38、35 C.38、38 D.35、352.(2013.天津)七年级(1)班与(2)班各选出20名学生进行英文打字比赛,通过对参赛学生每分钟输入的单词个数进行统计,两班成绩的平均数相同,(1)班成绩的方差为17.5个x,(2)班成绩的方差为15个2.由此可知( )A.(1)班比(2)班成绩稳定B.(2)班比(1)班成绩稳定C.两班的成绩一样稳定D.无法确定哪个班的成绩更稳定3.(2013.宁夏)一元二次方程x(x-2)=2-x的根是( )A.-1 B.0C.1和2 D.-1和24.(2014.天津)如图,在□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于( )A.3:2 B.3:1 C.1:1 D.1:2第4题第5题第6题5.(2013.嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB=8,CD=2,则EC的长为( )A.B.8 C.D.6.家用电冰箱在使用过程中能有效地散热是节电的有效途径之一.将一台家用电冰箱置于厨房的墙角,如图是它的俯视图,∠DAO=22°,冰箱的后背AD=110 cm,AD平行于前沿BC,且与BC的距离为60 cm,则从墙角O到前沿BC的距离约为(精确到1 cm) ( ) A.97 cm B.98 cm C.99 cm D.100 cm7.(2013.内江)同时抛掷A、B两个质地均匀的小正方体(每个面上分别标有数字1、2、3、4、5、6),将两个正方体朝上的数字分别记为x、y,并以此确定点P(x,y),那么点P 落在抛物线y=-x2+3x上的概率为( )A.118B.112C.19D.168.(2013.白银)如图,⊙P的圆心在定角∠α(0°<α<180°)的平分线上运动,且⊙P与∠α的两边相切,则图中阴影部分的面积S关于⊙P的半径r(r>0)变化的函数图像大致是( )二、填空题(每小题3分,共30分)9.(2014.贺州)近年来,A市民用汽车拥有量持续增长,2009年至2013年该市民用汽车拥有量(单位:万辆)依次为11、13、15、19、x.若这五个数的平均数为16,则x=_______.10.已知一组数据中有n个数,方差为s2.若将每个数据都乘2,则得到的一组新数据的方差是_______.11.(2013.郴州)已知关于x的一元二次方程x2+bx+b=0有两个相等的实数根,则b的值是_______.12.(2014.黑龙江)在直径为10 cm的⊙O中,弦AB=5 cm,则弦AB所对的圆周角是_______.13.如图,PA、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交PA、PB于点E、F,切点C在AB上,若PA的长为2,则△PEF的周长为_______.第13题第14题14.(2014.遵义)“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图是矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB、AD的中点,EG⊥AB,FH⊥AD,EG=15里,HG经过点A,则FH=_______里.15.将抛物线y=ax2+bx+c先向右平移3个单位长度,再向下平移2个单位长度,所得的抛物线对应的函数表达式是y=x2-3x+5,则a+b+c=_______.16.如图是二次函数y=ax2+bx+c的图像的一部分,图像经过点A(-3,0),对称轴为直线x=-1.下列四个结论:①b2>4ac;②2a+b=0;③a-b+c=0;④5a<b.其中,正确的是_______(填序号).第16题第17题17.如图,在Rt △ABC 中,∠ABC =90°,∠ACB =30°,将△ABC 绕点A 按逆时针方向旋转15°后得到△AB 1C 1,B 1C 1交AC 于点D .如果AD =,那么△ABC 的周长为_______.18.有七张正面分别标有数字-3、-2、-1、0、1、2、3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于x 的一元二次方程x 2-2(a -1)x +a(a -3)=0有两个不相等的实数根,且以x 为自变量的二次函数y =x 2-(a 2+1)x -a +2的图像不经过点(1,0)的概率是_______. 三、解答题(共76分)19.(4分)(2014.安顺)计算:)114sin304cos30tan603-⎛⎫︒++︒-︒ ⎪⎝⎭.20.(4分)(2014.鄂州)已知一元二次方程mx 2-2mx +m -2=0. (1)若方程有两个实数根,求m 的取值范围;(2)设方程的两个实数根为x 1、x 2,且12x x -=1,求m 的值.21.(5分)如图,在△ABC 中,AD ⊥BC ,垂足为D ,EC ⊥AB ,垂足为E ,连接DE .求证:∠BDE =∠BAC .22.(6分)(2014.凉山)州教育局为了了解我州八年级学生参加社会实践活动的情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅不完整的统计图(如图).请根据图中提供的信息,回答下列问题:(1)a =_______%,并写出该扇形所对圆心角的度数为_______,请补全条形统计图; (2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该县共有八年级学生2000人,那么“活动时间不少于7天”的学生人数大约是多少?23.(6分)(2014.桂林)电动自行车已成为市民日常出行的首选工具.据某市品牌电动自行车经销商1至3月份的统计数据,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月平均增长率;(2)若该品牌电动自行车的进价为2300元/辆,售价为2800元/辆,则该经销商1至3月份共盈利多少元?24.(6分)在一个口袋中有4个完全相同的小球,把它们分别标号1、2、3、4.小明先随机摸出一个小球,小强再随机摸出一个小球.记小明摸出球的标号为x,小强摸出球的标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y时,小明获胜,否则小强获胜.(1)若小明摸出的球不放回,求小明获胜的概率;(2)若小明摸出的球放回后小强再随机摸球,则他们制定的游戏规则公平吗?请说明理由.25.(8分)(2014.天水)如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA =∠CBD.(1)判断直线CD和⊙O的位置关系,并说明理由;(2)过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.26.(9分)如图,抛物线y2x+x轴的两个交点分别为点A、B,与y 轴相交于点C.(1)求A、B、C三点的坐标;(2)求证:△ABC是直角三角形;(3)若坐标平面内有一点M,使得以M、A、B、C为顶点的四边形是平行四边形,求点M的坐标(直接写出点M的坐标,不必写出求解过程).27.(9分)如图(1),正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上的一点,以AE为边在直线MN的上方作正方形AEFG.(1)连接GD,求证:△ABE≌△ADG;(2)连接FC,猜测∠FCN的度数,并说明理由;(3)如图(2),将图①中的正方形ABCD改为矩形ABCD,AB=a,BC=b(a、b为常数),E 是线段BC上的一个动点(不与端点B、C重合),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上,试判断当点E由点B向点C运动时,∠FCN的度数是否总保持不变.若不变,请用含a、b的代数式表示tan∠FCN的值;若发生改变,请举例说明.28.(10分)(2013.绵阳)如图,二次函数y=ax2+bx+c的图像的顶点C的坐标为(0,-2),交x轴于A、B两点,已知A(-1,0),直线l:x=m(m>1)与x轴交于点D.(1)求二次函数的表达式和点B的坐标;(2)在直线l上找点P(P在第一象限),使得以P、D、B为顶点的三角形与以B、C、O为顶点的三角形相似,求点P的坐标(用含m的代数式表示);(3)在(2)成立的条件下,在抛物线上是否存在第一象限内的点Q,使△BPQ是以P为直角顶点的等腰直角三角形?如果存在,请求出点Q的坐标;如果不存在,请说明理由.29.(10分)(2014.宿迁)如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.(1)如图1,已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4);①求此抛物线的表达式与点D的坐标;②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;(2)如图2,若a=1,求证:无论b,c取何值,点D均为顶点,求出该定点坐标.参考答案一、1.C 2.B 3.D 4.D 5.D 6.B 7.A 8.C二、9.22 10.4s211.4或0 12.30°或150°13.4 14.212015.1116.①④17.6+18.3 7三、19.4 20.(1)m的取值范围为m>0 (2)m=8 21.略22.(1) 10 36°图略(2)在这次抽样调查中,众数和中位数分别是5天、6天(3)80023.(1)20% (2)273000(元)24.(1)12(2)不公平25.(1) CD与⊙O相切(2)626.(1)A(-1,0),B(3,0),C(0) (2)略(3)M1(4),M2(-4),M3(227.(1)略(2)∠FCN=45°(3)保持不变tan∠FCN=b a28.(1)B(1,0),y=2x2-2 (2)点P的坐标为(m,12m)或(m,2m-2)(3)不存在29.(1)∵抛物线y=ax2+bx+c过点A(﹣2,0),B(8,0),C(0,﹣4),∴,解得,∴抛物线的解析式为:y=x2﹣x﹣4;∵OA=2,OB=8,OC=4,∴AB=10.如答图1,连接AC、BC.由勾股定理得:AC=,BC=.∵AC2+BC2=AB2=100,∴∠ACB=90°,∴AB为圆的直径.由垂径定理可知,点C、D关于直径AB对称,∴D(0,4).(2)解法一:设直线BD的解析式为y=kx+b,∵B(8,0),D(0,4),∴,解得,∴直线BD解析式为:y=﹣x+4.设M(x,x2﹣x﹣4),如答图2﹣1,过点M作ME∥y轴,交BD于点E,则E(x,﹣x+4).∴ME=(﹣x+4)﹣(x2﹣x﹣4)=﹣x2+x+8.∴S△BDM=S△MED+S△MEB=ME(x E﹣x D)+ME(x B﹣x D)=ME(x B﹣x D)=4ME,∴S△BDM=4(﹣x2+x+8)=﹣x2+4x+32=﹣(x﹣2)2+36.∴当x=2时,△BDM的面积有最大值为36;解法二:如答图2﹣2,过M作MN⊥y轴于点N.设M(m,m2﹣m﹣4),∵S△OBD=OB•OD==16,S梯形OBMN=(MN+OB)•ON=(m+8)[﹣(m2﹣m﹣4)]=﹣m(m2﹣m﹣4)﹣4(m2﹣m﹣4),S△MND=MN•DN=m[4﹣(m2﹣m﹣4)]=2m﹣m(m2﹣m﹣4),∴S△BDM=S△OBD+S梯形OBMN﹣S△MND=16﹣m(m2﹣m﹣4)﹣4(m2﹣m﹣4)﹣2m+m(m2﹣m﹣4)=16﹣4(m2﹣m﹣4)﹣2m=﹣m2+4m+32=﹣(m﹣2)2+36;∴当m=2时,△BDM的面积有最大值为36.(3)如答图3,连接AD、BC.由圆周角定理得:∠ADO=∠CBO,∠DAO=∠BCO,∴△AOD∽△COB,∴=,设A(x1,0),B(x2,0),∵已知抛物线y=x2+bx+c(c<0),∵OC=﹣c,x1x2=c,∴=,∴OD==1,∴无论b,c取何值,点D均为定点,该定点坐标D(0,1).。
2014-2015学年第一学期期末质量检测九年级数学试卷(本试卷共三个大题,26个小题,时间90分钟,满分120分)一、精心选一选(本大题共16小题。
1-6题,每题2分;7-16题,每题3分,共42分)每小题给出的4个选项中只有一个符合题意,请将所选选项的字母代号写在题中的括号内. 1. 一元二次方程02=-x x 的解为……………………………………………【 】 A.1=x B.0=x C.0,121==x x D.0,121=-=x x 2.在平面直角坐标系中,点M (3,-5)关于原点对称的点的坐标是……………【 】 A .(-3,-5) B .(3,5) C .(5,-3) D .( -3,5) 3.下列各点中,在函数xy 2-=的图象上的是…………………………………【 】 A.(2,1) B.(-2,1) C.(2,-2) D.(1,2)4. 顶点坐标为(-2,3),开口方向和大小与抛物线y =x 2相同的解析式为…【 】A .y =(x -2)2+3B .y =(x +2)2-3C .y =(x +2)2+3D .y =-(x +2)2+35. 盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出黑色笔芯的概率是………………………………………【 】A .23B .15C .25D . 356. Rt △ABC 中∠C =90°,AC =3cm ,BC =4cm ,则它的外心与顶点C 的距离为……【 】 A .2.4cm B .2.5cm C .3cm D .4cm7.向上发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度关系为y =ax 2+bx .若此炮弹在第6秒与第15秒时的高度相等,则下列几个时刻高度最高的是……【 】 A. 第8秒 B.第10秒 C.第12秒 D. 第14秒 8. 如图,⊙O 的直径CD ⊥EF 于G ,若∠EOD =50°,则∠DCF 等于………………【 】 A.80° B. 50° C. 40° D. 25°9.如图,为了测量一池塘的宽DE ,在岸边找一点C ,测得CD =30m ,在DC 的延长线上找一点A ,测得AC=5m ,过点A 作AB ∥DE ,交EC 的延长线于B ,测得AB =6m ,则池塘的宽DE 为…………………………………………………………………【 】 A.25m B.30m C.36m D.40m10. 已知:如图,PA 切⊙O 于点A ,PB 切⊙O 于点B ,如果∠APB =60°,⊙O 半径是3,则劣弧AB 的长为…………………………………………………………【 】 A .π B .6π C .2π D .3π11.面积为2的直角三角形一直角边长为x ,另一直角边长为y ,则y 与x 的变化 规律用图象大致表示为……………………………………………………………【 】12.已知反比例函数y =xm52 的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当 x 1<x 2<0时,y 1<y 2,则m 的取值范围是………………………………………【 】A.m <0B.m >0C.m <52 D.m >52 13.如图所示,在一边靠墙(墙足够长)的空地上,修建一个面积为640m 2的矩形临时仓库,仓库一边靠墙,另三边用总长为80 m 的栅栏围成,若设栅栏AB 的长为 xm ,则下列各方程中,符合题意的是………………………………………………【 】 A .21x (80-x )=640 B .21x (80-2x )=640 C .x (80-2x )=640 D . x (80-x )=640第8题图第9题图 第10题图第13题图第14题图第15题图第16题图14. 如图,若P 为△ABC 的边AB 上一点(AB >AC ),则下列条件不一定能保证 △ACP ∽△ABC 的有…………………………………………………………………【 】A.∠ACP =∠BB.∠APC =∠ACBC.AC AP AB AC =D.AB ACBC PC = 15.如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是…………………………………………【 】 A.x <-1 B.x >2 C.-1<x <0或x >2 D.x <-1或0<x <2 16.如图,量角器的直径与含30°角的直角三角板ABC 的斜边AB 重合,射线CP 从CA 处出发沿顺时针方向以每秒2度的速度旋转,CP 与量角器的半圆弧交于点E ,当第30秒时,点E 在量角器上对应的读数是……………………………………【 】 A. 120° B.150° C.75° D. 60°二、细心填一填(本大题共4小题,每小题3分,共12分)把答案直接写在题中的横线上.17. 圆锥的母线长5cm ,底面半径长3cm ,那么它的侧面展开图的面积是 . 18. 如图,△ABC 中,E 、F 分别是AB 、AC 上的两点,且,若△AEF 的面积为3,则四边形EBCF 的面积为 .19. 如图,在平面内将Rt △ABC 绕着直角顶点C 逆时针旋转90°得到Rt △EFC .若AB =1BC =,则阴影部分的面积为 .20.如图,Rt △ABC 中,∠ACB =90°,∠ABC =60°,BC =4cm ,D 为BC 的中点,若动点E 以1cm /s 的速度从A 点出发,沿着A →B →A 的方向运动,设E 点的运动时间为t 秒(0≤t <12),连接DE ,当△BDE 是直角三角形时,t 的值为 .第18题图 第19题图第20题图三、专心解一解(本题满分66分)请认真读题,冷静思考.解答题应写出文字说明、解答过程.21. (本题满分9分) 已知双曲线xky的图象经过点A (-1,2). (1)求该反比例函数的解析式.(2)若B (b ,m )、C (c ,n )是该双曲线上的两个点,且b <c ,判断m ,n 的大小关系.(3)判断关于x 的一元二次方程k x 2+2x -1=0的根的情况.22. (本题满分10分)如图,方格纸中每个小正方形的边长都是单位1,△ABC 在平面直角坐标系中的位置如图所示.(1)将△ABC 绕点B 顺时针方向旋转 90o后得△A 1BC 1,画出△A 1BC 1,并直接写 出点C 1的坐标为 . (2)把△ABC 以点C 为位似中心同侧 放大,使放大前后对应边长的比为1:2, 画作出△A 2B 2C ,并直接写出点B 2的坐标 为 .23. (本题满分11分)在一副扑克牌中,拿出黑桃3、黑桃4、黑桃5、黑桃6四张牌,小刚从中随机摸出一张记下牌面上的数字为x,再由小明从剩下的牌中随机摸出一张,记下牌面上的数字为y,组成一对数(x,y).(1)用列表法或树状图表示出(x,y)的所有可能出现的结果;(2)求小刚、小明各摸一次扑克牌所确定的一对数是方程x+y=9的解的概率.24.(本题满分11分)如图所示,AB 是⊙O 的直径,AD 与⊙O 相切于点A ,DE 与⊙O 相切于点E ,点C 为DE 延长线上一点,且CE =CB .(1)求证:BC 为⊙O 的切线; (2)若AB =4,AD =1,求线段CE 的长.25. (本题满分12分)某商场出售一批进价为3元的小工艺品,在市场营销中发现此工艺品的日销售单价x (单位:元)与日销售量y (单位:个)之间有如下关系:(1) (2)设经营此小工艺品的日销售利润为S元,求出S 与x 之间的函数关系式; (3)物价局规定小商品的利润不得高于进价的200%,请你求出当日销售单价x 定为多少时,才能获得最大日销售利润?最大日销售利润是多少?26. (本题满分13分)如图,抛物线y=ax2+52x-2与x轴相交于点A(1,0)与点B ,与y轴相交于点C.(1)确定抛物线的解析式;(2)连接AC、BC,△AOC与△COB相似吗?并说明理由.(3)点N在抛物线的对称轴上,在抛物线上是否存在点M,使得以点N、M、A、B为顶点的四边形是平行四边形?若存在,求出对应的点M、N的坐标;若不存在,请说明理由.备用图九年级数学答案一、1.C 2.D 3.B 4.C 5.C 6.B 7.B 8.D 9.C 10. C 11. C 12.D 13.A 14.D 15.D 16.A二、17. π15 18.24 19. 1-π 20. 4或7或9 三、21.解:(1)由题意可知,12-=k ,∴k =-2-----------------2分 (2)∵k =-2<0,∴y 随x 的增大而增大-----------------4分 又∵b <c ,∴m <n-----------------6分(3)△=22-4×(-2)×(-1)=-4<0 -----------------8分∴关于x 的一元二次方程k x 2+2x -1=0没有实数根-----------------9分22.如图 (1)作图 3分 C 1(2,3)2分 (2) 作图 3分 B 2(1,-2) 2分23.解:(1)分析题意,用树状图表示为:--------------5分所以共有12种等可能的结果,即(3,4)(3,5)(3,6)(4,3)(4,5)(4,6)(5,3)(5,4)(5,6)(6,3)(6,4)(6,5) -----------7分(2)满足所确定的一对数是方程x+y=9的解的结果有4种:(3,6)(4,5)(5,4)(6,3) -----------9分此事件记作A ,则P(A)=31124= -----------11分 24 (1)证明:连接OE,O C …………1分∵DE 与⊙O 相切于点E ∴∠OEC =90° -----------3分 ∵OE=OB CB=CE OC=OC∴△CEO ≌△CBO -----------5分 ∴∠OBC=∠OEC =90° -----------6分 ∴BC 为⊙O 的切线 -----------7分 (2)过点D 作D F ⊥BC 于F …………………8分 设CE=x ∵CE,CB 为⊙O 切线 ∴CB=CE=x ∵DE,DA 为⊙O 切线 ∴DE=DA=1∴DC=x+1………………………………9分 ∵∠DAB=∠ABC =∠DFB= 90° ∴四边形ADFB 为矩形 ∴DF=AB=4 BF=AD=1 ∴FC=x-1Rt △CDF 中,(x+1)2-(x-1)2=16 -----------10分 x=4 ∴CE=4 -----------11分25.解:(1)由表中数据规律可知x 与y 的乘积一定,为105×4=420 -----------2分所以函数关系式为xy 420= -----------3分 (2)S=(x-3)x420-----------5分=4201260+-x-----------7分 (3)由题意可知:x ≤3+3×200% ∴3≤x ≤9 -----------8分 ∵k=-1260<0九年级数学试卷共8页,第11页∴S 随x 的增大而增大∴当x=9时,S 的值最大 -----------10分最大值为280 -----------11分∴当日销售单价定为9元时,才能获得最大日销售利润是280元。