九年级数学上学期课时同步测试20
- 格式:doc
- 大小:913.50 KB
- 文档页数:10
单元卷圆提高卷一、单选题(共12小题)1.Rt△ABC中,∠C=90°,AB=5,内切圆半径为1,则三角形的周长为()A.12B.13C.14D.15【解答】解:如图,设内切圆⊙O与△ABC三边的切点分别为D、E、F,连接OE、OF,∵∠C=90°,∴四边形OECF是正方形,∴CE=CF=1,由切线长定理得,AD=AF,BD=BE,∴AF+BE=AD+BD=AB=5,∴三角形的周长=5+5+1+1=12.故选:A.【知识点】三角形的内切圆与内心2.一根水平放置的圆柱形输水管横截面如图所示,其中有水部分水面宽8米,最深处水深2米,则此输水管道的半径是()A.8米B.6米C.5米D.4米【解答】解:连接OA,作OC⊥AB交AB于C,交圆于D,由题意得,AB=8,CD=2,∵OC⊥AB,∴AC=AB=4,设圆的半径为r,则OC=r﹣2,由勾股定理得,OA2=OC2+AC2,即r2=(r﹣2)2+42,解得,r=5,即此输水管道的半径是5米,故选:C.【知识点】垂径定理的应用3.如图,四边形ABCD是⊙O的内接四边形,AD与BC的延长线交于点E,BA与CD的延长线交于点F,∠DCE=85°,∠F=28°,则∠E的度数为()A.38°B.48°C.58°D.68°【解答】解:∠B=∠DCE﹣∠F=57°,∵四边形ABCD是⊙O的内接四边形,∴∠EDC=∠B=57°,∴∠E=180°﹣∠DCE﹣∠EDC=38°,故选:A.【知识点】圆内接四边形的性质、圆周角定理4.如图,在扇形OAB中,∠AOB=90°,半径OA=6,将扇形OAB沿过点A的直线折叠,点O恰好落在弧AB上的点O'处,折痕交OB于点C,则弧O'B的长是()A.πB.πC.2πD.3π【解答】解:连接OO′,∴OO′=OA,∵将扇形OAB沿过点A的直线折叠,点O恰好落在弧AB上的点O'处,∴OA=O′A,∴△AOO′是等边三角形,∴∠AOO′=60°,∵∠AOB=90°,∴∠BOO′=30°,∴的长==π,故选:B.【知识点】翻折变换(折叠问题)、圆周角定理、弧长的计算、垂径定理5.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则OD的长是()A.B.2C.3D.【解答】解:如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB=10,设⊙O与△ABC的三边的切点为E、F、G,连接OE、OF、OG,得正方形CGOF设OF=OE=OG=CG=CF=x,则AG=AE=6﹣x,BE=BF=8﹣x,∴6﹣x+8﹣x=10,解得x=2,∴AE=6﹣x=4,∵点D是斜边AB的中点,∴AD=5,∴DE=AD﹣AE=1,在Rt△ODE中,根据勾股定理,得OD===.故选:A.【知识点】三角形的内切圆与内心、直角三角形斜边上的中线6.如图,将矩形ABCD绕点A逆时针旋转90°至矩形AEFG,点D的旋转路径为,若AB=2,BC=4,则阴影部分的面积为()A.B.C.D.【解答】解:如图,设与EF交于H,连接AH,∵四边形ABCD是矩形,AB=2,BC=4,∴AH=AD=BC=4,∴∠AHE=∠GAH=30°,∵AE=AB=2,∴HE=2,∴阴影部分的面积=S扇形AHG+S△AHE=+×2×2=+2,故选:D.【知识点】扇形面积的计算、矩形的性质、旋转的性质7.如图,AB为⊙O的直径,点D是弧AC的中点,过点D作DE⊥AB于点E,延长DE交⊙O于点F,若AC=12,AE=3,则⊙O的直径长为()A.10B.13C.15D.16【解答】解:如图,连接OF.∵DE⊥AB,∴DE=EF,=,∵点D是弧AC的中点,∴=,∴=,∴AC=DF=12,∴EF=DF=6,设OA=OF=x,在Rt△OEF中,则有x2=62+(x﹣3)2,解得x=,∴AB=2x=15,故选:C.【知识点】勾股定理、垂径定理、圆心角、弧、弦的关系8.如图,在等腰Rt△ABC中,∠BAC=90°,BC=2,点P是△ABC内部的一个动点,且满足∠PBC=∠PCA,则线段AP长的最小值为()A.0.5B.﹣1C.2﹣D.【解答】解:∵△ABC为等腰直角三角形,∴∠ACB=45°,即∠PCB+∠PCA=45°,∵∠PBC=∠PCA,∴∠PBC+∠PCB=45°,∴∠BPC=135°,∴点P在以BC为弦的⊙O上,如图,连接OA交于P′,作所对的圆周角∠BQC,则∠BCQ=180°﹣∠BPC=45°,∴∠BOC=2∠BQC=90°,∴△OBC为等腰直角三角形,∴四边形ABOC为正方形,∴OA=BC=2,∴OB=BC=,∵AP≥OA﹣OP(当且仅当A、P、O共线时取等号,即P点在P′位置),∴AP的最小值为2﹣.故选:C.【知识点】旋转的性质、勾股定理、三角形三边关系、全等三角形的判定与性质、等腰直角三角形、圆周角定理9.如图,矩形ABCD中,AB=3,BC=8,点P为矩形内一动点,且满足∠PBC=∠PCD,则线段PD的最小值为()A.5B.1C.2D.3【解答】解:∵四边形ABCD为矩形,∴∠BCD=90°,∵∠PBC=∠PCD,∴∠PBC+∠PCB=90°,∴∠BPC=90°,∴点P在以BC为直径的⊙O上,连接OD交⊙O于P′,连接OP、PD,如图,∵PD≥OD﹣OP(当且仅当O、P、D共线时,取等号),即P点运动到P′位置时,PD的值最小,最小值为DP′,在Rt△OCD中,OC=BC=4,CD=AB=3,∴OD==5,∴DP′=OD﹣OP′=5﹣4=1,∴线段PD的最小值为1.故选:B.【知识点】矩形的性质、圆周角定理10.如图,在平面直角坐标系中,⊙P与y轴相切,直线y=x被⊙P截得的弦AB长为,若点P的坐标为(4,p),则p的值为()A.B.C.D.【解答】解:如图,作PF⊥x轴于F,交AB于D,作PE⊥AB于E,连结PB,∵⊙P与y轴相切于点C,⊙P的半径是4,∴OF=4,把x=4代入y=x得y=4,∴D点坐标为(4,4),∴DF=4,∴△ODF为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=4,∴PE==2,∴PD=PE=2,∴PF=PD+DF=4+2,∴p=4+2,故选:B.【知识点】切线的性质、一次函数图象上点的坐标特征、正比例函数的性质、垂径定理11.如图1、2、3中,点E、D分别是正△ABC、正方形ABCM、正五边形ABCMN中以C点为顶点的相邻两边上的点,且BE=CD,DB交AE于P点,∠APD的度数分别为60°,90°,108°.若其余条件不变,在正九边形ABCFGHIMN中,∠APD的度数是()A.120°B.135°C.140°D.144°【解答】解:正△ABC时,∠APD=∠ABC==60°,正方形ABCM时,∠APD=∠ABC==90°,正五边形时,∠APD=∠ABC==108°,正六边形时,∠APD=∠ABC==120°,依此类推得出正n边形时,∠APD=∠ABC=.当n=9时,∠APD=∠ABC==140°,故选:C.【知识点】正多边形和圆、正方形的性质、全等三角形的判定与性质、等边三角形的性质12.如图,在△ABC中,∠ABC=90°,AB=8,点P是AB边上的一个动点,以BP为直径的圆交CP于点Q,若线段AQ长度的最小值是4,则△ABC的面积为()A.32B.36C.40D.48【解答】解:如图,取BC的中点T,连接AT,QT.∵PB是⊙O的直径,∴∠PQB=∠CQB=90°,∴QT=BC=定值,AT是定值,∵AQ≥AT﹣TQ,∴当A,Q,T共线时,AQ的值最小,设BT=TQ=x,在Rt△ABT中,则有(4+x)2=x2+82,解得x=6,∴BC=2x=12,∴S△ABC=•AB•BC=×8×12=48,故选:D.【知识点】圆周角定理、勾股定理二、填空题(共4小题)13.如图,⊙O的半径为2,AB是⊙O的切线,A为切点.若半径OC∥AB,则阴影部分的面积为.【解答】解:∵AB是⊙O的切线,∴OA⊥AB,∵OC∥AB,∴OA⊥OC,即∠AOC=90°,∴阴影部分的面积==3π,故答案为:3π.【知识点】扇形面积的计算、切线的性质14.如图,已知圆锥的母线长为2,高所在直线与母线的夹角为30°,则圆锥的全面积.【解答】解:∵AO⊥BC,∠BAO=30°,∴OB=AB=1,∴圆锥的侧面积=×2π×1×2=2π,底面积为π,∴全面积为3π.故答案为:3π.【知识点】圆锥的计算15.如图,正方形ABCD边长为4,点O为对角线BD上一点,以点O为圆心,BO长为半径的圆与AD相切于F,则⊙O的半径为﹣.【解答】解:连接OF,设⊙O的半径为R,∵四边形ABCD为正方形,∴∠A=90°,∠ADB=45°,∴DF=OF=R,BD===4,∵AD为⊙O的切线,∴OF⊥AD,∴OD==R,则R+R=4,解得,R=8﹣4,故答案为:8﹣4.【知识点】切线的性质、正方形的性质16.在平面直角坐标系中,点A、B、C的坐标分别为(﹣2,0)、(0,2)、(4,0),点E是△ABC的外接圆上一点,BE交线段AC于点D,若∠DBC=45°,则点D的坐标为.【解答】解:连接CE,过E作EF⊥AC于F,∵点A、B、C的坐标分别为(﹣2,0)、(0,2)、(4,0),∴OA=OB=2,OC=4,∴△OBA是等腰直角三角形,∴∠BAC=45°,∴∠BEC=∠BAC=45°,∵∠DBC=45°,∴∠BCE=90°,∴△BCE是等腰直角三角形,∴BC=CE,∵∠CBO+∠BCO=∠BOC+∠ECF=90°,∴∠OBC=∠FCE,在△OBC与△FCE中,,∴△OBC≌△FCE(AAS),∴CF=OB=2,EF=OC=4,∴OF=2,∴E(2,﹣4),设直线BE的解析式为y=kx+b,∴,∴,∴直线BE的解析式为y=﹣3x+2,当y=0时,x=,∴D(,0),故答案为:(,0).【知识点】坐标与图形性质、三角形的外接圆与外心三、解答题(共6小题)17.如图,AB为⊙O的直径,弦AC的长为8cm.(1)尺规作图:过圆心O作弦AC的垂线DE,交弦AC于点D,交优弧于点E;(保留作图痕迹,不要求写作法);(2)若DE的长为8cm,求直径AB的长.【解答】解:(1)如图所示:(2)∵DE⊥AC,∴AD=CD=4cm,∵AO2=DO2+AD2,∴AO2=(DE﹣AO)2+16,∴AO=5,∴AB=2AO=10cm.【知识点】圆周角定理、作图—复杂作图18.如图,AB是半圆O的直径,C、D是半圆上的点,且0D⊥AC于点E,连接BE,BC,若AC=8,DE=2.(1)求半圆的半径长;(2)求BE的长.【解答】解:(1)∵OD⊥AC于点E且AC=8,∴,设半径为r,则OE=r﹣2在Rt△AOE中有r2=42+(r﹣2)2解得:r=5即半圆O的半径为5;(2)∵AB为半圆O的直径,∴∠C=90°,AB=10,则在Rt△BCE中有BE===2.【知识点】圆周角定理19.如图,已知⊙O为Rt△ABC的内切圆,切点分别为D,E,F,且∠C=90°,AB=13,BC=12.(1)求BF的长;(2)求⊙O的半径r.【解答】解:(1)在Rt△ABC中,∵∠C=90°,AB=13,BC=12,∴AC===5,∵⊙O为Rt△ABC的内切圆,切点分别为D,E,F,∴BD=BF,AD=AE,CF=CE,设BF=BD=x,则AD=AE=13﹣x,CFCE=12﹣x,∵AE+EC=5,∴13﹣x+12﹣x=5,∴x=10,∴BF=10.(2)连接OE,OF,∵OE⊥AC,OF⊥BC,∴∠OEC=∠C=∠OFC=90°,∴四边形OECF是矩形,∴OE=CF=BC﹣BF=12﹣10=2.即r=2.【知识点】切线的性质、三角形的内切圆与内心、勾股定理20.如图,已知AB是⊙O的直径,PB切⊙O于点B,过点B作BC⊥PO于点D,交⊙O于点C,连接AC、PC(1)求证:PC是⊙O的切线;(2)若∠BPC=60°,PB=3,求阴影部分面积.【解答】(1)证明:连接OC,如图:∵OB=OC,∴∠OBC=∠OCB,∵AB是⊙O的直径,PB切⊙O于点B,∴AB⊥PB,∠PBO=∠OBC+∠PBC=90°,∵BC⊥PO,∴BD=CD,∴PO是BC的垂直平分线,∴PB=PC,∴∠PBC=∠PCB,∴∠OCB+∠PCB=∠OBC+∠PBC=90°,即OC⊥PC,∴PC是⊙O的切线;(2)解:由(1)知,PB、PC为⊙O的切线,∴PB=PC,∵∠BPC=60°,PB=3,∴△PBC是等边三角形,∴BC=PB=3,∠PBC=60°,∴∠OBC=30°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴AC=OC=OB=PB=,∴扇形OAC的面积==,△OAC的面积=×()2=,∴阴影部分面积=﹣.【知识点】圆周角定理、扇形面积的计算、含30度角的直角三角形、切线的判定与性质21.如图,在直角坐标系中,以点C(2,0)为圆心,以3为半径的圆分别交x轴正半轴于点A,交y轴正半轴于点B,过点B的直线交x轴负半轴于点D(﹣,0).(1)求A、B两点的坐标;(2)求证:直线BD是⊙C的切线.【解答】解:(1)∵点C(2,0),圆的半径为3,∴OC=2,AC=3,∴OA=OC+CA=5,∴A(5,0),连接CB,在Rt△OCB中,∵OB===,∴B(0,);(2)∵点D(﹣,0),∴OD=.在Rt△DBO中,∵DB2=BO2+DO2=5+=,又∵DC=DO+OC=,CB=3,∴在△DBC中,DB2+CB2=+9==DC2,∴△DBC是直角三角形,∴BC⊥DB于点B.∵BC是⊙C半径,∴直线BD是⊙C的切线.【知识点】坐标与图形性质、切线的判定22.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若∠B=30°,AC=6,OA=2,直接写出阴影部分的面积.【解答】解:(1)直线DE与⊙O相切,理由如下:连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°﹣90°=90°,即OD⊥DE,又∵OD为⊙O的半径,∴直线DE与⊙O相切;(2)连接OE,∵∠B=30°,∴∠A=60°,∵OD=OA,∴∠ODA=∠A=60°,∴AD=AO=DO=2,∠MOD=120°,∵AC=6,∠B=30°,∴AB=12,∴BD=10,∵EF是BD的垂直平分线,∴BF=DF=5,∴EF=,BE=DE=,∴CE=BC﹣BE=,∴阴影部分的面积=四边形CEDO﹣扇形DOM的面积=××4+××2﹣=.【知识点】扇形面积的计算、直线与圆的位置关系、含30度角的直角三角形、线段垂直平分线的性质。
专题22.41 二次函数专题-销售与利润问题中考真题专练(专项练习)【专题说明】用二次函数解决销售与利润问题是中考的常考点,也是热点,解答这类问题最常用的方法之一是建立二次函数模式,利用二次函数的最大值或最小值。
运用二次函数的性质求实际问题的最大值和最小值的一般步骤:(1)设自变量x 和函数y ;(2)求出函数解析式和自变量的取值范围;(3)化为顶点式,求出最值;检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内,并作答。
相关等量关系:(1)利润=售价一进价;(2)总利润、单件利润、数量的关系;(3)总利润=单件利润×数量。
1.(2021·辽宁大连·中考真题)某电商销售某种商品一段时间后,发现该商品每天的销售量y (单位:千克)和每千克的售价x (单位:元)满足一次函数关系(如图所示),其中5080x ≤≤, (1)求y 关于x 的函数解析式;(2)若该种商品的成本为每千克40元,该电商如何定价才能使每天获得的利润最大?最大利润是多少?2.(2021·江苏泰州·中考真题)农技人员对培育的某一品种桃树进行研究,发现桃子成熟后一棵树上每个桃子质量大致相同.以每棵树上桃子的数量x(个)为横坐标、桃子的平均质量y(克/个)为纵坐标,在平面直角坐标系中描出对应的点,发现这些点大致分布在直线AB附近(如图所示).(1)求直线AB的函数关系式;(2)市场调研发现:这个品种每个桃子的平均价格w(元)与平均质量y(克/个)满足函数表达式w=1100y+2.在(1)的情形下,求一棵树上桃子数量为多少时,该树上的桃子销售额最大?3.(2021·辽宁丹东·中考真题)某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本.(1)求该商品每月的销售量y(件)与销售单价x(元)之间的函数关系式;(不需要求自变量取值范围)(2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?(3)超市的销售人员发现:当该商品每月销售量超过某一数量时,会出现所获利润反而减小的情况,为了每月所获利润最大,该商品销售单价应定为多少元?4.(2021·湖北荆门·中考真题)某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,下表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的三组对应值数据.(1)求y关于x的函数解析式(不要求写出自变量的取值范围);(2)若该商品进价a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润;m ),公司为回馈消费者,规定该商品售价(3)因疫情期间,该商品进价提高了m(元/件)(0x不得超过55(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求m的值.5.(2021·贵州遵义·中考真题)为增加农民收入,助力乡村振兴.某驻村干部指导农户进行草莓种植和销售,已知草莓的种植成本为8元/千克,经市场调查发现,今年五一期间草莓的销售量y(千克)与销售单价x(元/千克)(8≤x≤40)满足的函数图象如图所示.(1)根据图象信息,求y与x的函数关系式;(2)求五一期间销售草莓获得的最大利润.6.(2021·江苏淮安·中考真题)某超市经销一种商品,每件成本为50元.经市场调研,当该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件.设该商品每件的销售价为x元,每个月的销售量为y件.(1)求y与x的函数表达式;(2)当该商品每件的销售价为多少元时,每个月的销售利润最大?最大利润是多少?7.(2021·辽宁锦州·中考真题)某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/t,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(t)之间的关系为m =50+0.2x,销售价y(万元/t)与原料的质量x(t)之间的关系如图所示.(1)求y与x之间的函数关系式;(2)设销售收入为P(万元),求P与x之间的函数关系式;(3)原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润=销售收入﹣总支出).8.(2021·辽宁盘锦·中考真题)某工厂生产并销售A,B两种型号车床共14台,生产并销售1台A 型车床可以获利10万元;如果生产并销售不超过4台B型车床,则每台B型车床可以获利17万元,如果超出4台B型车床,则每超出1台,每台B型车床获利将均减少1万元.设生产并销售B型车床x台.x 时,完成以下两个问题:(1)当4①请补全下面的表格:①若生产并销售B型车床比生产并销售A型车床获得的利润多70万元,问:生产并销售B型车床多少台?(2)当0<x≤14时,设生产并销售A,B两种型号车床获得的总利润为W万元,如何分配生产并销售A,B两种车床的数量,使获得的总利润W最大?并求出最大利润.9.(2021·内蒙古鄂尔多斯·中考真题)鄂尔多斯市某宾馆共有50个房间供游客居住,每间房价不低于200元且不超过320元、如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.已知每个房间定价x(元)和游客居住房间数y(间)符合一次函数关系,如图是y关于x的函数图象.(1)求y与x之间的函数解析式,并写出自变量x的取值范围;(2)当房价定为多少元时,宾馆利润最大?最大利润是多少元?10.(2021·辽宁营口·中考真题)某商家正在热销一种商品,其成本为30元/件,在销售过程中发现随着售价增加,销售量在减少.商家决定当售价为60元/件时,改变销售策略,此时售价每增加1元需支付由此产生的额外费用150元.该商品销售量y (件)与售价x (元/件)满足如图所示的函数关系,(其中4070x ≤≤,且x 为整数)(1)直接写出y 与x 的函数关系式;(2)当售价为多少时,商家所获利润最大,最大利润是多少?11.(2021·四川雅安·中考真题)某药店选购了一批消毒液,进价为每瓶10元,在销售过程中发现销售量y (瓶)与每瓶售价x (元)之间存在一次函数关系(其中1021x ≤≤,且x 为整数),当每瓶消毒液售价为12元时,每天销售量为90瓶;当每瓶消毒液售价为15元时,每天销售量为75瓶;(1)求y 与x 之间的函数关系式;(2)设该药店销售该消毒液每天的销售利润为w 元,当每瓶消毒液售价为多少元时,药店销售该消毒液每天销售利润最大.12.(2021·辽宁本溪·中考真题)某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x 元,每星期销售量为y 个.(1)请直接写出y (个)与x (元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?13.(2021·湖北湖北·中考真题)去年“抗疫”期间,某生产消毒液厂家响应政府号召,将成本价为6元/件的简装消毒液低价销售.为此当地政府决定给予其销售的这种消毒液按a 元/件进行补贴,设某月销售价为x 元/件,a 与x 之间满足关系式:()20%10a x =-,下表是某4个月的销售记录.每月销售量y (万件)与该月销售价x (元/件)之间成一次函数关系(69)x ≤<.(1)求y 与x 的函数关系式;(2)当销售价为8元/件时,政府该月应付给厂家补贴多少万元?(3)当销售价x 定为多少时,该月纯收入最大?(纯收入=销售总金额-成本+政府当月补贴)14.(2021·山东济宁·中考真题)某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.(1)求甲、乙两种商品每箱各盈利多少元?(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可以多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?15.(2021·贵州铜仁·中考真题)某品牌汽车销售店销售某种品牌的汽车,每辆汽车的进价16(万元).当每辆售价为22(万元)时,每月可销售4辆汽车.根据市场行情,现在决定进行降价销售.通过市场调查得到了每辆降价的费用1y (万元)与月销售量x (辆)(4x ≥)满足某种函数关系的五组对应数据如下表:(1)请你根据所给材料和初中所学的函数知识写出1y 与x 的关系式1y =________;(2)每辆原售价为22万元,不考虑其它成本,降价后每月销售利润y =(每辆原售价-1y -进价)x ,请你根据上述条件,求出月销售量()4x x ≥为多少时,销售利润最大?最大利润是多少?16.(2021·广东深圳·中考真题)某科技公司销售高新科技产品,该产品成本为8万元,销售单价x (万元)与销售量y (件)的关系如下表所示:(1)求y 与x 的函数关系式;(2)当销售单价为多少时,有最大利润,最大利润为多少?17.(2021·广东·中考真题)端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.(1)求猪肉粽和豆沙粽每盒的进价;(2)设猪肉粽每盒售价x 元()0,565x y ≤≤表示该商家每天销售猪肉粽的利润(单位:元),求y 关于x 的函数解析式并求最大利润.18.(2021·湖北鄂州·中考真题)为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户发展种植业,每亩土地每年发放种植补贴120元.张远村老张计划明年承租部分土地种植某种经济作物.考虑各种因素,预计明年每亩土地种植该作物的成本y (元)与种植面积x (亩)之间满足一次函数关系,且当160x =时,840y =;当190x =时,960y =.(1)求y 与x 之间的函数关系式(不求自变量的取值范围);(2)受区域位置的限制,老张承租土地的面积不得超过240亩.若老张明年销售该作物每亩的销售额能达到2160元,当种植面积为多少时,老张明年种植该作物的总利润最大?最大利润是多少?(每亩种植利润=每亩销售额-每亩种植成本+每亩种植补贴)19.(2021·湖北黄冈·中考真题)红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元/件.一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x (单位:元/件),月销售量为y (单位:万件).(1)直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a 元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a 的值.20.(2021·湖北武汉·中考真题)在“乡村振兴”行动中,某村办企业以A ,B 两种农作物为原料开发了一种有机产品,A 原料的单价是B 原料单价的1.5倍,若用900元收购A 原料会比用900元收购B 原料少100kg .生产该产品每盒需要A 原料2kg 和B 原料4kg ,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒. (1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是x 元(x 是整数),每天的利润是w 元,求w 关于x 的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过a 元(a 是大于60的常数,且是整数),直接写出每天的最大利润.21.(2021·湖北十堰·中考真题)某商贸公司购进某种商品的成本为20元/kg ,经过市场调研发现,这种商品在未来40天的销售单价y (元/kg )与时间x (天)之间的函数关系式为:0.2530(120)35(2040)x x y x +≤≤⎧=⎨<≤⎩且x 为整数,且日销量()kg m 与时间x (天)之间的变化规律符合一次函数关系,如下表:填空:(1)m与x的函数关系为___________;(2)哪一天的销售利润最大?最大日销售利润是多少?n<)给当地福利院,(3)在实际销售的前20天中,公司决定每销售1kg商品就捐赠n元利润(4后发现:在前20天中,每天扣除捐赠后的日销售利润随时间x的增大而增大,求n的取值范围.22.(2021·四川达州·中考真题)渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克.为增大市场占有率,在保证盈利的情况下,工厂采取降价措施.批发价每千克降低1元,每天销量可增加50千克.(1)写出工厂每天的利润W元与降价x元之间的函数关系.当降价2元时,工厂每天的利润为多少元?(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?23.(2021·浙江·中考真题)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;(2)若该景区仅有,A B两个景点,售票处出示的三种购票方式如表所示:据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元,求景区六月份的门票总收入;①问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?24.(2021·四川阿坝·中考真题)某商品的进价为每件40元,在销售过程中发现,每周的销售量y=+,且当售价定为50元/件时,(件)与销售单价x(元)之间的关系可以近似看作一次函数y kx b每周销售30件,当售价定为70元/件时,每周销售10件.(1)求k,b的值;(2)求销售该商品每周的利润w(元)与销售单价x(元)之间的函数解析式,并求出销售该商品每周可获得的最大利润.25.(2021·辽宁鞍山·中考真题)2022年冬奥会即将在北京召开,某网络经销商购进了一批以冬奥会为主题的文化衫进行销售,文化衫的进价为每件30元,当销售单价定为70元时,每天可售出20件,每销售一件需缴纳网络平台管理费2元,为了扩大销售,增加盈利,决定采取适当的降价措施,经调查发现:销售单价每降低1元,则每天可多售出2件(销售单价不低于进价),若设这款文化衫的销售单价为x(元),每天的销售量为y(件).(1)求每天的销售量y(件)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款文化衫每天所获得的利润最大,最大利润为多少元?26.(2021·四川南充·中考真题)超市购进某种苹果,如果进价增加2元/千克要用300元;如果进价减少2元/千克,同样数量的苹果只用200元.(1)求苹果的进价.(2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元/千克.写出购进苹果的支出y(元)与购进数量x(千克)之间的函数关系式.(3)超市一天购进苹果数量不超过300千克,且购进苹果当天全部销售完.据统计,销售单价z(元/千克)与一天销售数量x(千克)的关系为112100z x=-+.在(2)的条件下,要使超市销售苹果利润w(元)最大,求一天购进苹果数量.(利润=销售收入-购进支出)27.(2021·四川遂宁·中考真题)某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T恤的销售单价提高x元.(1)服装店希望一个月内销售该种T恤能获得利润3360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?28.(2021·江苏扬州·中考真题)甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:说明:①汽车数量为整数..; ①月利润=月租车费-月维护费;①两公司月利润差=月利润较高公司的利润-月利润较低公司的利润.在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是_______元;当每个公司租出的汽车为_______辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;(3)甲公司热心公益事业,每租出1辆汽车捐出a 元()0a >给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a 的取值范围.参考答案1.(1)y 关于x 的函数解析式为2200y x =-+;(2)该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.【分析】(1)由图象易得()50,100和()80,40,然后设y 关于x 的函数解析式为y kx b =+,进而代入求解即可;(2)设该电商每天所获利润为w 元,由(1)及题意易得222808000w x x =-+-,然后根据二次函数的性质可进行求解.解:(1)设y 关于x 的函数解析式为y kx b =+,则由图象可得()50,100和()80,40,代入得:501008040k b k b +=⎧⎨+=⎩,解得:2200k b =-⎧⎨=⎩, ①y 关于x 的函数解析式为2200y x =-+;(2)设该电商每天所获利润为w 元,由(1)及题意得:()()240220022808000w x x x x =--+=-+-,①-2<0,开口向下,对称轴为702b x a=-=, ①5080x ≤≤,①当70x =时,w 有最大值,即为22702807080001800w =-⨯+⨯-=;答:该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.【点拨】本题主要考查二次函数的应用,熟练掌握二次函数的应用是解题的关键.2.(1)55003y x =-+;(2)210. 【分析】(1)将()120,300A ,()240,100B 代入到y kx b =+,得到方程组300120100240k b k b =+⎧⎨=+⎩,解得k 与b 的值,即可求出直线AB 的解析式;(2)将55003y x =-+代入12100w y =+中,得到新的二次函数解析式,再表示出总销售额,配方成顶点式,求出最值即可.解:(1)设直线AB 的函数关系式为y kx b =+,将()120,300A ,()240,100B 代入可得:300120100240k b k b=+⎧⎨=+⎩, 解得:53500k b ⎧=-⎪⎨⎪=⎩, ①直线AB 的函数关系式55003y x =-+. 故答案为:55003y x =-+. (2)将55003y x =-+代入12100w y =+中,可得:1550021003w x ⎛⎫=-++ ⎪⎝⎭, 化简得:1760w x =-+, 设总销售额为z ,则1760z wx x x ⎛⎫==-+ ⎪⎝⎭ 21760z x x =-+ ()2142060x x =-- ()222114************x x =--++⨯ ()2121073560x =--+ ①1060a =-<, ①z 有最大值,当210x =时,z 取到最大值,最大值为735.故答案为:210.【点拨】本题考查了一次函数解析式的求解,二次函数的应用,能理解题意,并表示出其解析式是解题关键.3.(1)5550y x =-+;(2)70元;(3)80元.【分析】(1)明确题意,找到等量关系求出函数关系式即可;(2)根据题意,按照等量关系“销售量⨯(售价-成本)4000=”列出方程,求解即可得到该商品此时的销售单价;(3)设每月所获利润为w ,按照等量关系列出二次函数,并根据二次函数的性质求得最值即可.解:(1)①依题意得()150100102y x =+-⨯⨯, ①y 与x 的函数关系式为5550y x =-+;(2)①依题意得()504000y x -=,即()()5550504000x x -+-=,解得:170x =,290x =,①7090<①当该商品每月销售利润为4000,为使顾客获得更多实惠,销售单价应定为70元;(3)设每月总利润为w ,依题意得()()()250555050580027500w y x x x x x =-=-+-=-+-①50-<,此图象开口向下①当()8008025x =-=⨯-时, w 有最大值为:258080080275004500-⨯+⨯-=(元), ①当销售单价为80元时利润最大,最大利润为4500元,故为了每月所获利润最大,该商品销售单价应定为80元.【点拨】本题考查了二次函数在实际生活中的应用,根据题意找到等量关系并掌握二次函数求最值的方法是解题的关键.4.(1)3300y x =-+;(2)售价60元时,周销售利润最大为4800元;(3)5m =【分析】(1)①依题意设y=kx+b ,解方程组即可得到结论;(2)根据题意得(3300)()W x x a =-+-,再由表格数据求出20a =,得到2(3300)(20)3(60)4800W x x x =-+-=--+,根据二次函数的顶点式,求出最值即可;(3)根据题意得3(100)(20)(55)W x x m x =----,由于对称轴是直线60602m x =+>,根据二次函数的性质即可得到结论.解:(1)设y kx b =+,由题意有 401807090k b k b +=⎧⎨+=⎩,解得3300k b =-⎧⎨=⎩, 所以y 关于x 的函数解析式为3300y x =-+;(2)由(1)(3300)()W x x a =-+-,又由表可得:3600(340300)(40)a =-⨯+-,20a ∴=,22(3300)(20)336060003(60)4800W x x x x x ∴=-+-=-+-=--+.所以售价60x =时,周销售利润W 最大,最大利润为4800;(3)由题意3(100)(20)(55)W x x m x =----, 其对称轴60602m x =+>,055x ∴<时上述函数单调递增, 所以只有55x =时周销售利润最大,40503(55100)(5520)m ∴=----.5m ∴=.【点拨】本题考查了二次函数在实际生活中的应用,重点是掌握求最值的问题.注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,然后再利用二次函数求最值.5.(1)3216(832)120(3240)x xyx-+≤≤⎧=⎨≤⎩<;(2)最大利润为3840元【分析】(1)分为8≤x≤32和32<x≤40求解析式;(2)根据“利润=(售价−成本)×销售量”列出利润的表达式,在根据函数的性质求出最大利润.解:(1)当8≤x≤32时,设y=kx+b(k≠0),则22150 32120k bk b+=⎧⎨+=⎩,解得:3216kb=-⎧⎨=⎩,①当8≤x≤32时,y=−3x+216,当32<x≤40时,y=120,①3216(832)120(3240)x xyx-+≤≤⎧=⎨≤⎩<;(2)设利润为W,则:当8≤x≤32时,W=(x−8)y=(x−8)(−3x+216)=−3(x−40)2+3072,①开口向下,对称轴为直线x=40,①当8≤x≤32时,W随x的增大而增大,①x=32时,W最大=2880,当32<x≤40时,W=(x−8)y=120(x−8)=120x−960,①W随x的增大而增大,①x=40时,W最大=3840,①3840>2880,①最大利润为3840元.【点拨】点评:本题以利润问题为背景,考查了待定系数法求一次函数的解析式、分段函数的表示、二次函数的性质,本题解题的时候要注意分段函数对应的自变量x的取值范围和函数的增减性,先确定函数的增减性,才能求得利润的最大值.6.(1)y =-10x+900;(2)每件销售价为70元时,获得最大利润;最大利润为4000元【分析】(1)根据等量关系“利润=(售价﹣进价)×销量”列出函数表达式即可.(2)根据(1)中列出函数关系式,配方后依据二次函数的性质求得利润最大值. 解:(1)根据题意,y =300﹣10(x ﹣60)=-10x+900,①y 与x 的函数表达式为:y =-10x+900;(2)设利润为w ,由(1)知:w =(x ﹣50)(-10x+900)=﹣10x 2+1400x ﹣45000,①w =﹣10(x ﹣70)2+4000,①每件销售价为70元时,获得最大利润;最大利润为4000元.【点拨】本题考查的是二次函数在实际生活中的应用.此题难度不大,解题的关键是理解题意,找到等量关系,求得二次函数解析式.7.(1)1y 204x =-+;(2)21165P x x =-+;(3)原料的质量为24吨时,所获销售利润最大,最大销售利润是3265万元 【分析】 (1)利用待定系数法求函数关系式;(2)根据销售收入=销售价×销售量列出函数关系式;(3)设销售总利润为W ,根据销售利润=销售收入﹣原料成本﹣加工费列出函数关系式,然后根据二次函数的性质分析其最值.解:(1)设y 与x 之间的函数关系式为y kx b +=,将(20,15),(30,12.5)代入,可得:20153012.5k b k b +=⎧⎨+=⎩, 解得:1420k b ⎧=-⎪⎨⎪=⎩, ①y 与x 之间的函数关系式为1y 204x =-+; (2)设销售收入为P (万元),①()2411120%2016545P xy x x x x ⎛⎫=-=⨯-+=-+ ⎪⎝⎭, ①P 与x 之间的函数关系式为21165P x x =-+;(3)设销售总利润为W , ①()216.216 6.2500.25W P x m x x x x =--=-+--+, 整理,可得:()22148132650245555W x x x =-+-=--+, ①﹣15<0, ①当24x =时,W 有最大值为3265, ①原料的质量为24吨时,所获销售利润最大,最大销售利润是3265万元. 【点拨】本题考查了二次函数的实际应用,涉及了数形结合的数学思想,熟练掌握待定系数法求解析式是解决本题的关键.8.(1)①14x -,21x -;①10台;(2)分配产销A 型车床9台、B 型车床5台;或产销A 型车床8台、B 型车床6台,此时可获得总利润最大值170万元【分析】(1)①由题意可知,生产并销售B 型车床x 台时,生产A 型车床(14-x )台,当4x >时,每台就要比17万元少(4x -)万元,所以每台获利17(4)x --,也就是(21x -)万元;①根据题意可得根据题意:(21)10(14)70x x x ---=然后解方程即可;(2)当0≤x ≤4时,W =10(14)x -+17x =7140x +,当4<x ≤14时,W =2( 5.5)170.25x --+,分别求出两个范围内的最大值即可得到答案.解:(1)当4x >时,每台就要比17万元少(4x -)万元所以每台获利17(4)x --,也就是(21x -)万元①补全表格如下面:①此时,由A 型获得的利润是10(14x -)万元,由B 型可获得利润为(21)x x -万元,根据题意:(21)10(14)70x x x ---=, 2312100x x -+=,(21)(10)0x x --=,①0≤x ≤14, ①10x =,即应产销B 型车床10台;(2)当0≤x ≤4时,此时,W =10(14)x -+17x =7140x +,该函数值随着x 的增大而增大,当x 取最大值4时,W 最大1=168(万元);当4<x ≤14时,则W =10(14)x -+(21)x x -=211140x x -++=2( 5.5)170.25x --+,当5x =或6x =时(均满足条件4<x ≤14),W 达最大值W 最大2=170(万元),①W 最大2> W 最大1,①应分配产销A 型车床9台、B 型车床5台;或产销A 型车床8台、B 型车床6台,此时可获得总利润最大值170万元.【点拨】本题主要考查了一元二次方程的实际应用,一次函数和二次函数的实际应用,解题的关键在于能够根据题意列出合适的方程或函数关系式求解.9.(1)y 与x 之间的函数解析式为y=-0.1x+68,200x 320≤≤;(2)当房价定为320元时,宾馆利润最大,最大利润是10800元【分析】(1)设y 与x 之间的函数解析式为y=kx+b ,根据待定系数法即可得出答案;(2)设宾馆每天的利润为W 元,利用房间数乘每一间房间的利润即可得到W 关于x 的函数解析式,配方法再结合增减性即可求得最大值.。
全新人教版九年级数学上册课时同步测试题(全册共217页附答案)目录21.1 一元二次方程21.2 解一元二次方程21.3 实际问题与一元二次方程22.1 二次函数的图象和性质22.2 二次函数与一元二次方程22.3 实际问题与二次函数23.1图形的旋转23.2中心对称23.3 课题学习图案设计24.1 圆的有关性质24.2 点和圆、直线和圆的位置关系24.3 正多边形和圆24.4 弧长和扇形面积25.1 随机事件与概率25.2 用列举法求概率25.3 用频率估计概率21.1 一元二次方程一.选择题1.(2018•宁夏)若2﹣是方程x2﹣4x+c=0的一个根,则c的值是()A.1 B.C.D.2.(2018•盐城)已知一元二次方程x2+kx﹣3=0有一个根为1,则k的值为()A.﹣2 B.2 C.﹣4 D.43.(2017•本溪)关于x的一元二次方程x2﹣3x﹣a=0有一个实数根为﹣1,则a的值()A.2 B.﹣2 C.4 D.﹣44.(2017•威海)若1﹣是方程x2﹣2x+c=0的一个根,则c的值为()A.﹣2 B.4﹣2 C.3﹣D.1+5.(2017•温州)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3 6.(2016•大庆)若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M与N的大小关系正确的为()A.M>N B.M=N C.M<N D.不确定7.(2016•包头)若关于x的方程x2+(m+1)x+=0的一个实数根的倒数恰是它本身,则m 的值是()A.﹣ B.C.﹣或 D.18.(2016•攀枝花)若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为()A.﹣1或4 B.﹣1或﹣4 C.1或﹣4 D.1或4二.填空题9.(2018•扬州)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2015的值为.10.(2018•苏州)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n= .11.(2018•荆门)已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为.12.(2018•资阳)已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m= .13.(2018•南充)若2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,则m﹣n的值为.14.(2017•常州)已知x=1是关于x的方程ax2﹣2x+3=0的一个根,则a= .15.(2017•巴中)已知x=1是一元二次方程x2+ax+b=0的一个根,则a2+2ab+b2的值为.16.(2017•菏泽)关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,则k的值是.17.(2016•泰州)方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为.18.(2016•河池)已知关于x的方程x2﹣3x+m=0的一个根是1,则m= .19.(2016•临夏州)三角形的两边长分别是3和4,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长为.20.(2016•菏泽)已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m= .参考答案一.选择题1.A.2.B.3.C.4.A.5.D.6.B.7.C.8.C.二.填空题9.201810.﹣2.11.﹣3.12.2.13..14.﹣1.15.1.16.017.﹣3.18.2.19.12.20.6.21.2 解一元二次方程一.选择题1.(2018•泰州)已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是()A.x1≠x2B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<02.(2018•娄底)关于x的一元二次方程x2﹣(k+3)x+k=0的根的情况是()A.有两不相等实数根 B.有两相等实数根C.无实数根 D.不能确定3.(2018•包头)已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为()A.6 B.5 C.4 D.34.(2018•宜宾)一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A.﹣2 B.1 C.2 D.05.(2018•临沂)一元二次方程y2﹣y﹣=0配方后可化为()A.(y+)2=1 B.(y﹣)2=1 C.(y+)2=D.(y﹣)2=6.(2018•眉山)若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是()A.B.﹣C.﹣D.7.(2018•铜仁市)关于x的一元二次方程x2﹣4x+3=0的解为()A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=1,x2=3 D.x1=﹣1,x2=﹣3 8.(2018•湘潭)若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是()A.m≥1 B.m≤1 C.m>1 D.m<19.(2018•福建)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根10.(2018•桂林)已知关于x的一元二次方程2x2﹣kx+3=0有两个相等的实根,则k的值为()A.B.C.2或3 D.11.(2017•广州)关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16 B.q>16 C.q≤4 D.q≥412.(2017•呼和浩特)关于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的两个实数根互为相反数,则a的值为()A.2 B.0 C.1 D.2或013.(2017•宜宾)一元二次方程4x2﹣2x+=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.无法判断14.(2017•通辽)若关于x的一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有实数根,则k 的取值范围在数轴上表示正确的是()A.B.C.D.15.(2016•贵港)若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个不相等的实数根分别为a和b,且a2﹣ab+b2=18,则+的值是()A.3 B.﹣3 C.5 D.﹣516.(2016•金华)一元二次方程x2﹣3x﹣2=0的两根为x1,x2,则下列结论正确的是()A.x1=﹣1,x2=2 B.x1=1,x2=﹣2 C.x1+x2=3 D.x1x2=217.(2016•昆明)一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定18.(2016•威海)已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是()A.B.﹣ C.4 D.﹣119.(2016•枣庄)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B. C. D.20.(2016•天津)方程x2+x﹣12=0的两个根为()A.x1=﹣2,x2=6 B.x1=﹣6,x2=2 C.x1=﹣3,x2=4 D.x1=﹣4,x2=3二.填空题(2018•怀化)关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.21.22.(2018•淮安)一元二次方程x2﹣x=0的根是.23.(2018•南京)设x1、x2是一元二次方程x2﹣mx﹣6=0的两个根,且x1+x2=1,则x1= ,x2= .24.(2018•吉林)若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为.25.(2018•德州)若x1,x2是一元二次方程x2+x﹣2=0的两个实数根,则x1+x2+x1x2= .(2017•连云港)已知关于x的方程x2﹣2x+m=0有两个相等的实数根,则m的值是.26.27.(2017•抚顺)已知关于x的方程x2+2x﹣m=0有实数解,那么m的取值范围是.(2017•南京)已知关于x的方程x2+px+q=0的两根为﹣3和﹣1,则p= ,q= .28.29.(2016•青岛)已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c的值为.30.(2016•达州)设m,n分别为一元二次方程x2+2x﹣2018=0的两个实数根,则m2+3m+n= .31.(2016•德州)方程2x2﹣3x﹣1=0的两根为x1,x2,则x12+x22= .三.解答题32.(2018•成都)若关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,求a的取值范围.33.(2018•齐齐哈尔)解方程:2(x﹣3)=3x(x﹣3).34.(2018•梧州)解方程:2x2﹣4x﹣30=0.35.(2018•南充)已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.36.(2018•随州)已知关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若+=﹣1,求k的值.37.(2018•遂宁)已知关于x的一元二次方程x2﹣2x+a=0的两实数根x1,x2满足x1x2+x1+x2>0,求a的取值范围.38.(2017•黄冈)已知关于x的一元二次方程x2+(2k+1)x+k2=0①有两个不相等的实数根.(1)求k的取值范围;(2)设方程①的两个实数根分别为x1,x2,当k=1时,求x12+x22的值.参考答案一.选择题1.A.2.A.3.B.4.D.5.B.6.C.7.C.8.D.9.D.10.A.11.A.12.B.13.B.14.A.15.D.16.C.17.B.18.A.19.B.20.D.二.填空题(共11小题)21.1.22.x1=0,x2=1.23.﹣2;3.24.﹣1.25.﹣326.1.27.m≥﹣1.28.4;3.29..30.2016.31..三.解答题(共7小题)32.解:∵关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,∴△=[﹣(2a+1)]2﹣4a2=4a+1>0,解得:a>﹣.33.解:2(x﹣3)=3x(x﹣3),移项得:2(x﹣3)﹣3x(x﹣3)=0,整理得:(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,解得:x1=3或x2=.34.解:∵2x2﹣4x﹣30=0,∴x2﹣2x﹣15=0,∴(x﹣5)(x+3)=0,∴x1=5,x2=﹣3.35.解:(1)由题意可知:△=(2m﹣2)2﹣4(m2﹣2m)=4>0,∴方程有两个不相等的实数根.(2)∵x1+x2=2m﹣2,x1x2=m2﹣2m,∴+=(x1+x2)2﹣2x1x2=10,∴(2m﹣2)2﹣2(m2﹣2m)=10,∴m2﹣2m﹣3=0,∴m=﹣1或m=336.解:(1)∵关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根,∴△=(2k+3)2﹣4k2>0,解得:k>﹣.(2)∵x1、x2是方程x2+(2k+3)x+k2=0的实数根,∴x1+x2=﹣2k﹣3,x1x2=k2,∴+==﹣=﹣1,解得:k1=3,k2=﹣1,经检验,k1=3,k2=﹣1都是原分式方程的根.又∵k>﹣,∴k=3.37.解:∵该一元二次方程有两个实数根,∴△=(﹣2)2﹣4×1×a=4﹣4a≥0,解得:a≤1,由韦达定理可得x1x2=a,x1+x2=2,∵x1x2+x1+x2>0,∴a+2>0,解得:a>﹣2,∴﹣2<a≤1.38.解:(1)∵方程有两个不相等的实数根,∴△=(2k+1)2﹣4k2=4k+1>0,解得:k>﹣;(2)当k=1时,方程为x2+3x+1=0,∵x1+x2=﹣3,x1x2=1,∴x12+x22=(x1+x2)2﹣2x1x2=9﹣2=7.21.3 实际问题与一元二次方程一.选择题(共20小题)1.(2018•宜宾)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2% B.4.4% C.20% D.44%2.(2018•大连)如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32 B.(10﹣2x)(6﹣2x)=32 C.(10﹣x)(6﹣x)=32 D.10×6﹣4x2=323.(2018•绵阳)在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人4.(2018•宁夏)某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x.应列方程是()A.300(1+x)=507 B.300(1+x)2=507C.300(1+x)+300(1+x)2=507 D.300+300(1+x)+300(1+x)2=5075.(2018•黑龙江)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.76.(2018•广西)某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=100 7.(2018•乌鲁木齐)宾馆有50间房供游客居住,当毎间房毎天定价为180元时,宾馆会住满;当毎间房毎天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房毎天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x元.则有()A.(180+x﹣20)(50﹣)=10890 B.(x﹣20)(50﹣)=10890C.x(50﹣)﹣50×20=10890 D.(x+180)(50﹣)﹣50×20=10890 8.(2018•眉山)我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A.8% B.9% C.10% D.11%9.(2018•赤峰)2017﹣2018赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛),比赛总厂数为380场,若设参赛队伍有x支,则可列方程为()A. x(x﹣1)=380 B.x(x﹣1)=380C. x(x+1)=380 D.x(x+1)=38010.(2017•来宾)某文具店二月销售签字笔40支,三月、四月销售量连续增长,四月销售量为90支,求月平均增长率.设月平均增长率为x,则由已知条件列出的方程是()A.40(1+x2)=90 B.40(1+2x)=90 C.40(1+x)2=90 D.90(1﹣x)2=40 11.(2017•杭州)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.812.(2017•无锡)某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%13.(2017•白银)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=57014.(2017•朝阳)某校进行体操队列训练,原有8行10列,后增加40人,使得队伍增加的行数、列数相同,你知道增加了多少行或多少列吗?设增加了x行或列,则列方程得()A.(8﹣x)(10﹣x)=8×10﹣40 B.(8﹣x)(10﹣x)=8×10+40C.(8+x)(10+x)=8×10﹣40 D.(8+x)(10+x)=8×10+4015.(2017•黔南州)“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,在论坛召开之际,福田欧辉陆续向缅甸仰光公交公司交付1000台清洁能源公交车,以2017客车海外出口第一大单的成绩,创下了客车行业出口之最,同时,这也是在国家“一带一路”战略下,福田欧辉代表“中国制造”走出去的成果.预计到2019年,福田公司将向海外出口清洁能源公交车达到3000台.设平均每年的出口增长率为x,可列方程为()A.1000(1+x%)2=3000 B.1000(1﹣x%)2=3000C.1000(1+x)2=3000 D.1000(1﹣x)2=300016.(2016•通辽)现代互联网技术的广泛应用,促进快递行业高速发展,据调查,我市某家快递公司,今年3月份与5月份完成投递的快递总件数分别为6.3万件和8万件.设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是()A.6.3(1+2x)=8 B.6.3(1+x)=8C.6.3(1+x)2=8 D.6.3+6.3(1+x)+6.3(1+x)2=817.(2016•抚顺)某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.4 18.(2016•大连)某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)19.(2016•恩施州)某商品的售价为100元,连续两次降价x%后售价降低了36元,则x 为()A.8 B.20 C.36 D.1820.(2016•随州)随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次,2016年约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A.20(1+2x)=28.8 B.28.8(1+x)2=20C.20(1+x)2=28.8 D.20+20(1+x)+20(1+x)2=28.8二.填空题(共5小题)21.(2018•通辽)为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为.22.(2017•宜宾)经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是.。
课时练第1单元菱形的性质与判定一.菱形的性质1.菱形具有而平行四边形不具有的性质是()A.对角线互相垂直B.两组对角分别相等C.对角线互相平分D.两组对边分别平行2.已知菱形的面积为24cm2,一条对角线长为6cm,则这个菱形的边长是()厘米.A.8B.5C.10D.4.83.已知菱形的周长为9.6cm,两个邻角的比是1:2,这个菱形较短的对角线的长是()A.2.1cm B.2.2cm C.2.3cm D.2.4cm4.如图,正△AEF的边长与菱形ABCD的边长相等,点E、F分别在BC、CD上,则∠B 的度数是()A.70°B.75°C.80°D.95°5.在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,(如图)则∠EAF等于()A.75°B.45°C.60°D.30°6.如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是()A.4B.3C.2D.7.如图,菱形ABCD的对角线AC=4cm,把它沿对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形EMCN的面积之比为.8.如图,边长为1的菱形ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠F AC=60°.连接AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是.9.如图,在菱形ABCD中,∠A=100°,M、N分别是边AB、BC的中点,MP⊥CD于点P.则∠NPC的度数为.10.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是.11.如图,菱形ABCD中,∠ABC=60°,AB=2,E、F分别是边BC和对角线BD上的动点,且BE=DF,则AE+AF的最小值为.12.如图,在边长为10的菱形ABCD中,对角线BD=16,点O是直线BD上的动点,OE ⊥AB于E,OF⊥AD于F(1)对角线AC的长是,菱形ABCD的面积是;(2)如图1,当点O在对角线BD上运动时,OE+OF的值是否会发生变化?请说明理由;(3)如图2,当点O在对角线BD的延长线上时,OE+OF的值是否会发生变化?若不变,请说明理由;若变化,请探究OE、OF之间的数量关系,并说明理由.13.菱形ABCD中,点P为CD上一点,连接BP.(1)如图1,若BP⊥CD,菱形ABCD边长为10,PD=4,连接AP,求AP的长.(2)如图2,连接对角线AC、BD相交于点O,点N为BP的中点,过P作PM⊥AC于M,连接ON、MN.试判断△MON的形状,并说明理由.14.在菱形ABCD中,∠BAD=60°.(1)如图1,点E为线段AB的中点,连接DE,CE,若AB=4,求线段EC的长;(2)如图2,M为线段AC上一点(M不与A,C重合),以AM为边,构造如图所示等边三角形AMN,线段MN与AD交于点G,连接NC,DM,Q为线段NC的中点,连接DQ,MQ,求证:DM=2DQ.二.菱形的判定15.红丝带是关注艾滋病防治问题的国际性标志,人们将红丝带剪成小段,并用别针将折叠好的红丝带别在胸前,如图所示.红丝带重叠部分形成的图形是()A.正方形B.等腰梯形C.菱形D.矩形16.▱ABCD的对角线AC与BD相交于点O,添加以下条件,不能判定平行四边形ABCD 为菱形的是()A.AC=BD B.AC⊥BD C.∠ACD=∠ACB D.BC=CD 17.顺次连接等腰梯形各边中点所围成的四边形是()A.平行四边形B.矩形C.菱形D.正方形18.已知:如图,过四边形ABCD的顶点A、C、B、D分别作BD、AC的平行线围成四边形EFGH,如果EFGH成菱形,那么四边形ABCD必定是()A.菱形B.平行四边形C.长方形D.对角线相等的四边形19.如图,将三角形纸片△ABC沿DE折叠,使点A落在BC边上的点F处,且DE∥BC,下列结论中,一定正确的个数是()①△BDF是等腰三角形;②DE=BC;③四边形ADFE是菱形;④∠BDF+∠FEC=2∠A.A.1B.2C.3D.420.如图,平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:①BE⊥AC;②EG=EF;③△EFG≌△GBE;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的个数是()A.2B.3C.4D.521.已知AD是△ABC的角平分线,点E、F分别是边AB,AC的中点,连接DE,DF,在不再连接其他线段的前提下,要使四边形AEDF成为菱形,还需添加一个条件,这个条件可以是(答案不唯一).22.已知,AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F.求证:四边形AEDF是菱形.23.已知:如图,平行四边形ABCD的两条对角线相交于点O,E是BO的中点,过B点作AC的平行线,交CE的延长线于点F,连接BF(1)求证:FB=AO;(2)当平行四边形ABCD满足什么条件时,四边形AFBO是菱形?说明理由.三.菱形的判定与性质24.下列说法中错误的是()A.四边相等的四边形是菱形B.菱形的对角线长度等于边长C.一组邻边相等的平行四边形是菱形D.对角线互相垂直平分的四边形是菱形25.如图是以KL所在的直线为对称轴的轴对称图形,六边形EFGHLK的各个内角相等,记四边形HCH′L、四边形EKE′A、△BGF的周长分别为C1、C2、C3,且C1=2C2=4C3,已知FG=LK,EF=6,则AB的长是()A.9.5B.10C.10.5D.1126.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于()A.4B.3C.2D.127.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB 的面积为4cm2.则OC的长为()A.2B.3C.4D.528.如图,在四边形ABCD中,AC=BD=6,E、F、G、H分别是AB、BC、CD、DA的中点,则EG2+FH2=.29.将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形的边长;(3)在(2)的条件下折痕EF的长.30.如图,在Rt△ABC中,∠B=90°,AC=40cm,∠A=60°,点D从点C出发沿CA 方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤10).过点D作DF⊥BC于点F,连接DE,EF.(1)四边形AEFD能构成菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(2)当t为何值时,△DEF为直角三角形?请说明理由.参考答案一.菱形的性质1.A2.B3.D4.C5.C6.B7.8.()n﹣19.50°10.﹣111.212.解:(1)如图,连接AC与BD相交于点G,在菱形ABCD中,AC⊥BD,BG=BD=×16=8,由勾股定理得,AG===6,∴AC=2AG=2×6=12,菱形ABCD的面积=AC•BD=×12×16=96;故答案为:12;96;=S△ABO+S△ADO,(2)如图1,连接AO,则S△ABD所以,BD•AG=AB•OE+AD•OF,即×16×6=×10•OE+×10•OF,解得OE+OF=9.6是定值,不变;=S△ABO﹣S△ADO,(3)如图2,连接AO,则S△ABD所以,BD•AG=AB•OE﹣AD•OF,即×16×6=×10•OE﹣×10•OF,解得OE﹣OF=9.6,是定值,不变,所以,OE+OF的值变化,OE、OF之间的数量关系为:OE﹣OF=9.6.13.解:(1)如图1中,∵四边形ABCD是菱形,∴AB=BC=CD=AD=10,AB∥CD∵PD=4,∴PC=6,∵PB⊥CD,∴PB⊥AB,∴∠CPB=∠ABP=90°,在RT△PCB中,∵∠CPB=90°PC=6,BC=10,∴PB===8,在RT△ABP中,∵∠ABP=90°,AB=10,PB=8,∴P A===2.(2)△OMN是等腰三角形.理由:如图2中,延长PM交BC于E.∵四边形ABCD是菱形,∴AC⊥BD,CB=CD,∵PE⊥AC,∴PE∥BD,∴=,∴CP=CE,∴PD=BE,∵CP=CE,CM⊥PE,∴PM=ME,∵PN=NB,∴MN=BE,∵BO=OD,BN=NP,∴ON=PD,∴ON=MN,∴△OMN是等腰三角形.14.解:(1)如图1,连接BD,则BD平分∠ABC,∵四边形ABCD是菱形,∴AD∥BC,∴∠A+∠ABC=180°,∵∠A=60°,∴∠ABC=120°,∴∠ABD=∠ABC=60°,∴△ABD是等边三角形,∴BD=AD=4,∵E是AB的中点,∴DE⊥AB,由勾股定理得:DE==2,∵DC∥AB,∴∠EDC=∠DEA=90°,在Rt△DEC中,DC=4,EC===2;(2)如图2,延长CD至H,使CD=DH,连接NH、AH,∵AD=CD,∴AD=DH,∵CD∥AB,∴∠HDA=∠BAD=60°,∴△ADH是等边三角形,∴AH=AD,∠HAD=60°,∵△AMN是等边三角形,∴AM=AN,∠NAM=60°,∴∠HAN+∠NAG=∠NAG+∠DAM,∴∠HAN=∠DAM,在△ANH和△AMD中,∵,∴△ANH≌△AMD(SAS),∴HN=DM,∵D是CH的中点,Q是NC的中点,∴DQ是△CHN的中位线,∴HN=2DQ,∴DM=2DQ.二.菱形的判定15.C16.A17.C18.D19.C20.C21.解:由题意知,可添加:AB=AC.则三角形是等腰三角形,由等腰三角形的性质知,顶角的平分线与底边上的中线重合,即点D是BC的中点,∴DE,EF是三角形的中位线,∴DE∥AB,DF∥AC,∴四边形ADEF是平行四边形,∵AB=AC,点E,F分别是AB,AC的中点,∴AE=AF,∴平行四边形ADEF为菱形.22.证明:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠EDA=∠F AD,∵AD是△ABC的角平分线,∴∠EAD=∠F AD,∴∠EAD=∠EDA,∴EA=ED,∴四边形AEDF为菱形.23.证明:(1)∵E是BO的中点,∴OE=BE,∵BF∥AC,∴∠BFE=∠OCE,在△BEF和△OEC中,,∴△BEF≌△OEC,∴BF=OC,∵平行四边形ABCD的两条对角线相交于点O,∴OA=OC,∴FB=AO;(2)当平行四边形ABCD是矩形时,四边形AFBO是菱形.理由如下:∵平行四边形ABCD是矩形,∴OA=OB,∴平行四边形AFBO是菱形.三.菱形的判定与性质24.B25.D26.C27.C28.3629.(1)证明:∵矩形ABCD折叠使A,C重合,折痕为EF,∴OA=OC,EF⊥AC,EA=EC,∵AD∥BC,∴∠F AC=∠ECA,在△AOF和△COE中,,∴△AOF≌△COE,∴OF=OE,∵OA=OC,∴四边形AECF为平时四边形,∵AC⊥EF,∴四边形AECF为菱形;(2)解:设菱形的边长为x,则BE=BC﹣CE=8﹣x,AE=x,在Rt△ABE中,∵BE2+AB2=AE2,∴(8﹣x)2+42=x2,解得x=5,即菱形的边长为5;(3)解:在Rt△ABC中,AC===4,∴OA=AC=2,在Rt△AOE中,OE===,∴EF=2OE=2.30.(1)证明:能.理由如下:在△DFC中,∠DFC=90°,∠C=30°,DC=4t,∴DF=2t,又∵AE=2t,∴AE=DF,∵AB⊥BC,DF⊥BC,∴AE∥DF,又∵AE=DF,∴四边形AEFD为平行四边形,当AE=AD时,四边形AEFD为菱形,即40﹣4t=2t,解得t=.∴当t=秒时,四边形AEFD为菱形.(2)①当∠DEF=90°时,由(1)知四边形AEFD为平行四边形,∴EF∥AD,∴∠ADE=∠DEF=90°,∵∠A=60°,∴∠AED=30°,∴AD=AE=t,又AD=40﹣4t,即40﹣4t=t,解得t=8;②当∠EDF=90°时,四边形EBFD为矩形,在Rt△AED中∠A=60°,则∠ADE=30°,∴AD=2AE,即40﹣4t=4t,解得t=5.③若∠EFD=90°,则E与B重合,D与A重合,此种情况不存在.综上所述,当t=8或5秒时,△DEF为直角三角形.。
第二十二章 一元二次方程测试1 一元二次方程的有关概念及直接开平方法学习要求1.掌握一元二次方程的有关概念,并应用概念解决相关问题. 2.掌握一元二次方程的基本解法——直接开平方法.课堂学习检测一、填空题1.一元二次方程中,只含有______个未知数,并且未知数的______次数是2.它的一般形式为__________________.2.把2x 2-1=6x 化成一般形式为__________,二次项系数为______,一次项系数为______,常数项为______.3.若(k +4)x 2-3x -2=0是关于x 的一元二次方程,则k 的取值范围是______.4.把(x +3)(2x +5)-x (3x -1)=15化成一般形式为______,a =______,b =______,c =______. 5.若x x m -m+-222)(-3=0是关于x 的一元二次方程,则m 的值是______.6.方程y 2-12=0的根是______. 二、选择题7.下列方程中,一元二次方程的个数为( ). (1)2x 2-3=0 (2)x 2+y 2=5 (3)542=-x (4)2122=+x x A .1个B .2个C .3个D .4个 8.在方程:3x 2-5x =0,,5312+=+x x 7x 2-6xy +y 2=0,322,052222--=+++xx x x ax =0, 3x 2-3x =3x 2-1中必是一元二次方程的有( ).A .2个B .3个C .4个D .5个 9.x 2-16=0的根是( ). A .只有4 B .只有-4 C .±4D .±810.3x 2+27=0的根是( ).A .x 1=3,x 2=-3B .x =3C .无实数根D .以上均不正确 三、解答题(用直接开平方法解一元二次方程) 11.2y 2=8.12.2(x +3)2-4=0. 13..25)1(412=+x14.(2x +1)2=(x -1)2.综合、运用、诊断一、填空题15.把方程x x x +=-2232化为一元二次方程的一般形式(二次项系数为正)是______ ____,一次项系数是______.16.把关于x 的一元二次方程(2-n )x 2-n (3-x )+1=0化为一般形式为_______________,二次项系数为______,一次项系数为______,常数项为______. 17.若方程2kx 2+x -k =0有一个根是-1,则k 的值为______. 二、选择题18.下列方程:(x +1)(x -2)=3,x 2+y +4=0,(x -1)2-x (x +1)=x ,,01=+xx ,5)3(21,42122=+=-+x x x 其中是一元二次方程的有( ).A .2个B .3个C .4个D .5个19.形如ax 2+bx +c =0的方程是否是一元二次方程的一般形式,下列说法正确的是( ).A .a 是任意实数B .与b ,c 的值有关C .与a 的值有关D .与a 的符号有关 20.如果21=x 是关于x 的方程2x 2+3ax -2a =0的根,那么关于y 的方程y 2-3=a 的解是( ). A .5±B .±1C .±2D .2±21.关于x 的一元二次方程(x -k )2+k =0,当k >0时的解为( ).A .k k +B .k k -C .k k -±D .无实数解三、解答题(用直接开平方法解下列方程) 22.(3x -2)(3x +2)=8.23.(5-2x )2=9(x +3)2. 24..063)4(22=--x25.(x -m )2=n .(n 为正数)拓广、探究、思考26.若关于x 的方程(k +1)x 2-(k -2)x -5+k =0只有唯一的一个解,则k =______,此方程的解为______.27.如果(m -2)x |m |+mx -1=0是关于x 的一元二次方程,那么m 的值为( ).A .2或-2B .2C .-2D .以上都不正确 28.已知关于x 的一元二次方程(m -1)x 2+2x +m 2-1=0有一个根是0,求m 的值.29.三角形的三边长分别是整数值2cm ,5cm ,k cm ,且k 满足一元二次方程2k 2-9k -5=0,求此三角形的周长.测试2 配方法与公式法解一元二次方程学习要求掌握配方法的概念,并能熟练运用配方法与公式法解一元二次方程.课堂学习检测一、填空题1.+-x x 82_________=(x -__________)2.2.x x 232-+_________=(x -_________)2.3.+-px x 2_________=(x -_________)2.4.x abx -2+_________=(x -_________)2. 5.关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的根是______.6.一元二次方程(2x +1)2-(x -4)(2x -1)=3x 中的二次项系数是______,一次项系数是______,常数项是______.二、选择题7.用配方法解方程01322=--x x 应该先变形为( ). A .98)31(2=-xB .98)31(2-=-x C .910)31(2=-xD .0)32(2=-x8.用配方法解方程x 2+2x =8的解为( ). A .x 1=4,x 2=-2 B .x 1=-10,x 2=8 C .x 1=10,x 2=-8 D .x 1=-4,x 2=29.用公式法解一元二次方程x x 2412=-,正确的应是( ). A .252±-=xB .252±=x C .251±=x D .231±=x 10.方程mx 2-4x +1=0(m <0)的根是( ).A .41 B .m m-±42 C .mm-±422 D .mm m -±42 三、解答题(用配方法解一元二次方程) 11.x 2-2x -1=0.12.y 2-6y +6=0.四、解答题(用公式法解一元二次方程) 13.x 2+4x -3=0.14..03232=--x x五、解方程(自选方法解一元二次方程) 15.x 2+4x =-3. 16.5x 2+4x =1.综合、运用、诊断一、填空题17.将方程x x x 32332-=++化为标准形式是______________________,其中a =____ __,b =______,c =______.18.关于x 的方程x 2+mx -8=0的一个根是2,则m =______,另一根是______. 二、选择题19.若关于x 的二次三项式x 2-ax +2a -3是一个完全平方式,则a 的值为( ).A .-2B .-4C .-6D .2或6 20.4x 2+49y 2配成完全平方式应加上( ).A .14xyB .-14xyC .±28xyD .0 21.关于x 的一元二次方程ax a x 32222=+的两根应为( ).A .22a±-B .a 2,a 22C .422a± D .a 2±三、解答题(用配方法解一元二次方程)22.3x 2-4x =2.23.x 2+2mx =n .(n +m 2≥0).四、解答题(用公式法解一元二次方程) 24.2x -1=-2x 2.25.x x 32132=+26.2(x -1)2-(x +1)(1-x )=(x +2)2.拓广、探究、思考27.解关于x 的方程:x 2+mx +2=mx 2+3x .(其中m ≠1)28.用配方法说明:无论x 取何值,代数式x 2-4x +5的值总大于0,再求出当x 取何值时,代数式x 2-4x +5的值最小?最小值是多少?测试3 一元二次方程根的判别式学习要求掌握一元二次方程根的判别式的有关概念,并能灵活地应用有关概念解决实际问题.课堂学习检测一、填空题1.一元二次方程ax 2+bx +c =0(a ≠0)根的判别式为∆=b 2-4ac , (1)当b 2-4ac ______0时,方程有两个不相等的实数根; (2)当b 2-4ac ______0时,方程有两个相等的实数根; (3)当b 2-4ac ______0时,方程没有实数根.2.若关于x 的方程x 2-2x -m =0有两个相等的实数根,则m =______. 3.若关于x 的方程x 2-2x -k +1=0有两个实数根,则k ______. 4.若方程(x -m )2=m +m 2的根的判别式的值为0,则m =______. 二、选择题5.方程x 2-3x =4根的判别式的值是( ). A .-7 B .25 C .±5 D .56.一元二次方程ax 2+bx +c =0有两个实数根,则根的判别式的值应是( ). A .正数 B .负数 C .非负数 D .零 7.下列方程中有两个相等实数根的是( ). A .7x 2-x -1=0 B .9x 2=4(3x -1) C .x 2+7x +15=0D .02322=--x x8.方程03322=++x x 有( ).A .有两个不等实根B .有两个相等的有理根C .无实根D .有两个相等的无理根 三、解答题9.k 为何值时,方程kx 2-6x +9=0有:(1)不等的两实根;(2)相等的两实根;(3)没有实根. 10.若方程(a -1)x 2+2(a +1)x +a +5=0有两个实根,求正整数a 的值.11.求证:不论m 取任何实数,方程02)1(2=++-mx m x 都有两个不相等的实根.综合、运用、诊断一、选择题12.方程ax 2+bx +c =0(a ≠0)根的判别式是( ).A .242ac b b -±-B .ac b 42-C .b 2-4acD .abc13.若关于x 的方程(x +1)2=1-k 没有实根,则k 的取值范围是( ).A .k <1B .k <-1C .k ≥1D .k >1 14.若关于x 的方程3kx 2+12x +k +1=0有两个相等的实根,则k 的值为( ).A .-4B .3C .-4或3D .21或32- 15.若关于x 的一元二次方程(m -1)x 2+2mx +m +3=0有两个不等的实根,则m 的取值范围是( ).A .23<m B .23<m 且m ≠1 C .23≤m 且m ≠1 D .23>m16.如果关于x 的二次方程a (1+x 2)+2bx =c (1-x 2)有两个相等的实根,那么以正数a ,b ,c为边长的三角形是( ). A .锐角三角形 B .钝角三角形 C .直角三角形 D .任意三角形 二、解答题17.已知方程mx 2+mx +5=m 有相等的两实根,求方程的解.18.求证:不论k 取任何值,方程(k 2+1)x 2-2kx +(k 2+4)=0都没有实根.19.如果关于x 的一元二次方程2x (ax -4)-x 2+6=0没有实数根,求a 的最小整数值. 20.已知方程x 2+2x -m +1=0没有实根,求证:方程x 2+mx =1-2m 一定有两个不相等的实根.拓广、探究、思考21.若a ,b ,c ,d 都是实数,且ab =2(c +d ),求证:关于x 的方程x 2+ax +c =0,x 2+bx +d =0中至少有一个方程有实数根.测试4 因式分解法解一元二次方程学习要求掌握一元二次方程的重要解法——因式分解法.课堂学习检测一、填空题(填出下列一元二次方程的根) 1.x (x -3)=0.______ 2.(2x -7)(x +2)=0.______ 3.3x 2=2x .______ 4.x 2+6x +9=0.______ 5..03222=-x x ______ 6..)21()21(2x x -=+______ 7.(x -1)2-2(x -1)=0.______. 8.(x -1)2-2(x -1)=-1.______二、选择题9.方程(x -a )(x +b )=0的两根是( ). A .x 1=a ,x 2=b B .x 1=a ,x 2=-b C .x 1=-a ,x 2=bD .x 1=-a ,x 2=-b10.下列解方程的过程,正确的是( ).A .x 2=x .两边同除以x ,得x =1.B .x 2+4=0.直接开平方法,可得x =±2.C .(x -2)(x +1)=3×2.∵x -2=3,x +1=2, ∴x 1=5, x 2=1.D .(2-3x )+(3x -2)2=0.整理得3(3x -2)(x -1)=0,.1,3221==∴x x 三、解答题(用因式分解法解下列方程,*题用十字相乘法因式分解解方程) 11.3x (x -2)=2(x -2).12..32x x =*13.x 2-3x -28=0. 14.x 2-bx -2b 2=0. *15.(2x -1)2-2(2x -1)=3. *16.2x 2-x -15=0. 四、解答题17.x 取什么值时,代数式x 2+8x -12的值等于2x 2+x 的值.综合、运用、诊断一、写出下列一元二次方程的根18.0222=-x x .______________________. 19.(x -2)2=(2x +5)2.______________________. 二、选择题20.方程x (x -2)=2(2-x )的根为( ).A .-2B .2C .±2D .2,2 21.方程(x -1)2=1-x 的根为( ).A .0B .-1和0C .1D .1和022.方程0)43)(21()43(2=--+-x x x 的较小的根为( ).A .43-B .21C .85D .43 三、用因式分解法解下列关于x 的方程23..2152x x =-24.4(x +3)2-(x -2)2=0.25..04222=-+-b a ax x26.abx 2-(a 2+b 2)x +ab =0.(ab ≠0) 四、解答题27.已知关于x 的一元二次方程mx 2-(m 2+2)x +2m =0.(1)求证:当m 取非零实数时,此方程有两个实数根; (2)若此方程有两个整数根,求m 的值.测试5 一元二次方程解法综合训练学习要求会用适当的方法解一元二次方程,培养分析问题和解决问题的能力.课堂学习检测一、填空题(写出下列一元二次方程的根) 1.3(x -1)2-1=0.__________________2.(2x +1)2-2(2x +1)=3.__________________ 3.3x 2-5x +2=0.__________________ 4.x 2-4x -6=0.__________________ 二、选择题5.方程x 2-4x +4=0的根是( ). A .x =2 B .x 1=x 2=2C .x =4D .x 1=x 2=46.5.27.0512=+x 的根是( ).A .x =3B .x =±3C .x =±9D .3±=x7.072=-x x 的根是( ). A .77=x B .77,021==x x C .x 1=0,72=xD .7=x8.(x -1)2=x -1的根是( ). A .x =2 B .x =0或x =1 C .x =1 D .x =1或x =2 三、用适当方法解下列方程 9.6x 2-x -2=0. 10.(x +3)(x -3)=3. 11.x 2-2mx +m 2-n 2=0. 12.2a 2x 2-5ax +2=0.(a ≠0) 四、解下列方程(先将你选择的最佳解法写在括号中) 13.5x 2=x .(最佳方法:______)14.x 2-2x =224.(最佳方法:______) 15.6x 2-2x -3=0.(最佳方法:______) 16.6-2x 2=0.(最佳方法:______)17.x 2-15x -16=0.(最佳方法:______) 18.4x 2+1=4x .(最佳方法:______)19.(x -1)(x +1)-5x +2=0.(最佳方法:______)综合、运用、诊断一、填空题20.若分式1872+--x x x 的值是0,则x =______.21.关于x 的方程x 2+2ax +a 2-b 2=0的根是____________. 二、选择题22.方程3x 2=0和方程5x 2=6x 的根( ).A .都是x =0B .有一个相同,x =0C .都不相同D .以上都不正确 23.关于x 的方程abx 2-(a 2+b 2)x +ab =0(ab ≠0)的根是( ).A .ba x ab x 2,221== B .b ax a b x ==21,C .0,2221=+=x abb a xD .以上都不正确三、解下列方程24.(x +1)2+(x +2)2=(x +3)2. 25.(y -5)(y +3)+(y -2)(y +4)=26. 26..02322=+-x x27.kx 2-(k +1)x +1=0.四、解答题28.已知:x 2+3xy -4y 2=0(y ≠0),求yx yx +-的值. 29.已知:关于x 的方程2x 2+2(a -c )x +(a -b )2+(b -c )2=0有两相等实数根.求证:a +c =2b .(a ,b ,c 是实数)拓广、探究、思考30.若方程3x 2+bx +c =0的解为x 1=1,x 2=-3,则整式3x 2+bx +c 可分解因式为______________________.31.在实数范围内把x 2-2x -1分解因式为____________________.32.已知一元二次方程ax 2+bx +c =0(a ≠0)中的两根为,4,221acb b x x -±-=请你计算x 1+x 2=____________,x 1·x 2=____________.并由此结论解决下面的问题:(1)方程2x 2+3x -5=0的两根之和为______,两根之积为______.(2)方程2x 2+mx +n =0的两根之和为4,两根之积为-3,则m =______,n =______. (3)若方程x 2-4x +3k =0的一个根为2,则另一根为______,k 为______.(4)已知x 1,x 2是方程3x 2-2x -2=0的两根,不解方程,用根与系数的关系求下列各式的值: ①;1121x x + ②;2221x x + ③|x 1-x 2|; ④;221221x x x x +⑤(x 1-2)(x 2-2).测试6 实际问题与一元二次方程学习要求会灵活地应用一元二次方程处理各类实际问题.课堂学习检测一、填空题1.实际问题中常见的基本等量关系。
专题23.9 《旋转》全章复习与巩固(巩固篇)(专项练习)一、单选题1.下列与杭州亚运会有关的图案中,中心对称图形是( )A .B .C .D .2.如图,将AOB 绕着点O 顺时针旋转,得到COD △(点C 落在AOB 外),若30AOB ∠=︒,10BOC ∠=︒,则最小旋转角度是( )A .20°B .30°C .40°D .50°3.如图,在正方形网格中,△ABC 绕某点旋转一定的角度得到A B C ''',则旋转中心是点( )A .OB .PC .QD .M4.如图,菱形 ABCD 的对角线 AC 、BD 交于点 O ,将△BOC 绕着点 C 旋转 180°得到B O C '',若AC =2,5AB '=,则菱形 ABCD 的边长是( )A .3B .4CD 5.如图,在钝角ABC 中,35BAC ∠=︒,将ABC 绕点A 顺时针旋转70︒得到ADE ,点B ,C 的对应点分别为D ,E ,连接BE .则下列结论一定正确的是( )A .ABC AED ∠=∠B .AC DE = C .AD BE AC += D .AE 平分BED ∠6.如图,矩形ABCD 的顶点1,0A ,()0,2D ,()5,2B ,将矩形以原点为旋转中心,顺时针旋转75°之后点C 的坐标为( )A .()4,2-B .(-C .()2-D .(-7.如图,在Rt ABC △中,90ABC ∠=︒,AB BC ==ABC 绕点A 逆时针转60°得到AB C ''△,则BC '的长是( )A 1B .2C .D .8.如图,菱形ABCD 对角线交点与坐标原点O 重合,点()2,5A -,则点C 的坐标为( )A .()5,2-B .()2,5-C .()2,5D .()2,5--9.已知点()2,4P a a --关于原点对称的点在第三象限,则a 的取值范围在数轴上表示正确的是( )A .B .C .D .10.在如图所示的单位正方形网格中,ABC 经过平移后得到111A B C △,已知在AC 上一点()2.4,2P 平移后的对应点为1P ,点1P 绕点O 逆时针旋转180°,得到对应点2P ,则2P 点的坐标为( )A .()1.6,1--B .()1, 1.6--C .()1.6,1D .()1, 1.6-二、填空题11.若点P (a -1,5)与点Q (5,1-b )关于原点成中心对称,则a +b =___. 12.如图,在ABC 中,△C =90°,点D 、E 分别在AC 、BC 上,△CDE =45°,ECD 绕点D 顺时针旋转x 度(45<x <180)到11E C D △,则1BEE ∠等于______度.(用含x 的代数式表示)13.如图,AB =BC =CD ,AB △BC ,△BCD =30°,则△BAD =________°.14.如图,ABC 中,AB =2AC =,30BAC ∠=︒.将ABC 绕点A 逆时针旋转60°,得到ADE ,连接BE ,则BE =______.15.如图,BD 为ABCD 的对角线,点P 为ABD △内一点,连接PA 、PB 、PC 、PD ,若ABP △和BCP 的面积分别为3和13,则BDP △的面积为_________.16.如图,在直角坐标平面内,△ABC 的顶点()1,0A -,点B 与点A 关于原点对称,AB =BC ,△CAB =30°,将△ABC 绕点C 旋转,使点A 落在x 轴上的点D 处,点B 落在点E 处,那么BE 所在直线的解析式为______.17.如图,在矩形ABCD 中,AB =6BC =,点E 是直线BC 上的一个动点,连接DE ,将线段DE 绕着点D 顺时针旋转120︒得到线段DG ,连接AG ,则线段AG 的最小值为_________.18.如图,在平面直角坐标系中,点A ,B 的坐标分别为()1,0,(,将OAB 绕原点O 顺时针旋转60°再将其各边都扩大为原来的2倍,使得12OA OA =,12OB OB =,得到11OA B .将11OA B 绕原点顺时针旋转60°再将其各边都扩大为原来的2倍,使得212OA OA =,212OB OB =,得到22OA B △,…,如此继续下去,得到20222022OA B △,则点2022A 的坐标是______.三、解答题19.已知△ABC 的三个顶点的坐标分别为A (-5,0)、B (-2,3)、C (-1,0).(1)画出△ABC 关于坐标原点O 成中心对称的△A ′B ′C ′;(2)将△ABC 绕坐标原点O 顺时针旋转90°,画出对应的△A ′′B ′′C ′′;(3)若以A ′、B ′、C ′、D ′为顶点的四边形为平行四边形,则在第四象限中的点D ′坐标为 .20.如图,点D 在等边三角形ABC 的边BC 上,将△ABD 绕点A 旋转,使得旋转后点B 的对应点为点C .小明是这样做的:如图,过点C 画BA 的平行线l ,在l 上取CE BD =,连接AE ,则△ACE 即为旋转后的图形.你能说明小明这样做的道理吗?21.已知:如图,在△ABC中,△BAC=120°,以BC为边向形外作等边三角形BCD,把△ABD绕着点D按顺时针方向旋转60°后得到△ECD,且A、C、E三点共线,若AB=3,AC=2,求△BAD的度数与AD的长.22.如图,ABC为等边三角形,点P是线段AC上一动点(点P不与A,C重合),连接BP,过点A作直线BP的垂线段,垂足为点D,将线段AD绕点A逆时针旋转60°得到线段AE,连接DE,CE(1) 求证:BD=CE(2) 延长ED交BC于点F,△ 求△CED的度数;△ 求证:F为BC的中点23.如图,在平面直角坐标系中,直线AB与x轴、y轴分别相交于A(6,0)、B(0,2)两点.(1) 直接写出直线AB 的关系式为 .(2) 点C 为y 轴上的一点,当BC =AC 时,求△ABC 的周长;(3) 点D 为x 轴上的一点,将线段DB 绕着点D 旋转90°得到DE ,若点E 恰好落在直线AB 上,求满足条件的其中一个点E 的坐标,并直接写出满足条件的其余点E 的坐标,24.【性质探究】(1)如图1,在Rt ABC △中,90BAC ∠=︒,AB =AC ,点D 在斜边BC 上,将△ABD 绕点A 逆时针旋转90°得到△ACE .△直线BD 与CE 的位置关系为______;△若点F 为BE 的中点,连接AF ,请探究线段AF 与CD 的数量关系,并给予证明.【拓展应用】(2)如图2,已知点E是正方形ABCD的边BC上任意一点,以AE为边作正方形AEFG,连接BG,点H为BG的中点,连接AH.若AB=4,BE=3,求AH的长.参考答案1.D【分析】根据中心对称图形的定义进行判断,即可得出答案.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.解:A,不是中心对称图形,故此选项不符合题意;B. 不是中心对称图形,故此选项不符合题意;C. 不是中心对称图形,故此选项不符合题意;D.是中心对称图形,故选:D【点拨】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.2.C【分析】直接利用已知得出△AOC的度数,再利用旋转的性质得出对应边之间夹角,得出答案即可.解:△△AOB= 30°,△BOC = 10°,△△AOC=△AOB+△COB = 30°+ 10°= 40°△将△AOB绕着点O顺时针旋转,得到△COD,△最小旋转角为△AOC = 40°.故选:C.【点拨】此题主要考查了旋转的性质,正确得出△AOC的度数是解题关键.3.B【分析】根据旋转的性质,对应点到旋转中心的距离相等,可得对应点连线的垂直平分线的交点即为旋转中心.解:如图,连接BB',AA',可得其垂直平分线相交于点P,∴旋转中心是点P.故选:B .【点拨】本题考查了旋转的性质,对应点连线的垂直平分线的交点即为旋转中心,熟练掌握旋转中心的确定方法是解题的关键.4.D【分析】根据菱形的性质、旋转的性质,得到1OA OC O C '===、OB OC ⊥、O B O C '''⊥、BC B C '=,根据5AB '=,利用勾股定理计算O B '',再次利用勾股定理计算B C '即可.解:△四边形ABCD 是菱形,且△BOC 绕着点C 旋转180°得到B O C '',2AC =,△1OA OC O C '===,OB OC ⊥,BC B C '=,△O B O C '''⊥,213O A AC O C ''=+=+=,△5AB '=,△4O B ''==,△B C '==△BC B C '== ABCD故选:D .【点拨】本题考查了菱形的性质、旋转的性质以及勾股定理等知识,熟练掌握菱形的基本性质并灵活运用勾股定理是解题的关键.5.D【分析】根据旋转可知△CAB △△EAD ,△CAE =70°,结合△BAC =35°,可知△BAE =35°,则可证得△CAB △△EAB ,即可作答.解:根据旋转的性质可知△CAB △△EAD ,△CAE =70°,△△BAE =△CAE -△CAB =70°-35°=35°,AC =AE ,AB =AD ,BC =DE ,△ABC =△ADE ,故A 、B 错误,△△CAB =△EAB ,△AC =AE ,AB =AB ,△△CAB △△EAB ,△△EAB △△EAD△△BEA =△DEA ,△AE 平分△BED ,故D 正确,△AD +BE =AB +BE >AE =AC ,故C 错误,故选:D .【点拨】本题考查了旋转的性质和全等三角形的判定与性质,求出△BAE =35°是解答本题的关键.6.D【分析】过点B 作BG △x 轴于G ,过点C 作CH △y 轴于H ,根据矩形的性质得到点C 的坐标,求出△COE =45°,OC C 作CE △x 轴于E ,过点C 1作C 1F △x 轴于F ,由旋转得△COC 1=75°,求出△C 1OF =30°,利用勾股定理求出OF ,即可得到答案.解:过点B 作BG △x 轴于G ,过点C 作CH △y 轴于H ,△四边形ABCD 是矩形,△AD =BC ,AB =CD ,AD ∥BC ,△CDA =△DAB =90°,△△HCD =△ADO =△BAG ,△△CHD =△BGA =90°,△△CHD △△AGB (AAS ),△1,0A ,()0,2D ,()5,2B ,△CH =AG =5-1=4,DH =BG =2,△OH =2+2=4,△C (4,4),△OE =CE =4,△△COE =45°,OC如图,过点C 作CE △x 轴于E ,过点C 1作C 1F △x 轴于F ,由旋转得△COC 1=75°,△△C 1OF =30°,△C 1F =12OC 1=12OC ,△OF =△点C 1的坐标为(-,故选:D .【点拨】此题考查了矩形的性质,旋转的性质,勾股定理,直角三角形30度角的性质,熟记各知识点并综合应用是解题的关键.7.A【分析】设AC 与BC '的交点为点O ,连接CC ',先利用勾股定理、旋转的性质可得2,60AC AC CAC ''==∠=︒,再根据等边三角形的判定与性质可得AC CC ''=,然后根据垂直平分线的判定与性质可得12,2OA AC OA BC '==⊥,最后利用勾股定理分别可得2,OB OC '==解:如图,设AC 与BC '的交点为点O ,连接CC ',90,ABC AB BC ∠=︒==2AC ∴,由旋转的性质得:2,60AC AC CAC ''==∠=︒,ACC '∴是等边三角形,AC CC ''∴=,BC '∴是线段AC 的垂直平分线,11,2OA AC OA BC '∴==⊥,在Rt AOB 中,1OB ==,在Rt AOC '△中,OC ',则1BC OB OC ''=+=故选:A .【点拨】本题考查了勾股定理、旋转的性质、等边三角形的判定与性质、垂直平分线的判定与性质等知识点,通过作辅助线,构造等边三角形是解题关键.8.B【分析】根据菱形的中心对称性,A 、C 坐标关于原点对称,利用横反纵也反的口诀求解即可. 解:△菱形是中心对称图形,且对称中心为原点,△A 、C 坐标关于原点对称,△C 的坐标为()2,5-,故选C . 【点拨】本题考查了菱形的中心对称性质,原点对称,熟练掌握菱形的性质,关于原点对称点的坐标特点是解题的关键.9.D【分析】根据点P(a−2,4−a)关于原点对称的点在第三象限,可得点P在第一象限,因此就可列出不等式,解不等式可得a的取值范围.解:△点P(a−2,4−a)关于原点对称的点在第三象限,△点P在第一象限,△20 40aa-⎧⎨-⎩>>,△24<<a,则a的取值范围在数轴上表示正确的是:故选:D.【点拨】本题主要考查不等式组的解法,根据不等式组的解集,在数轴上表示即可,关键在于点P的坐标所在的象限.10.C【分析】根据平移的性质得出,△ABC的平移方向以及平移距离,即可得出P1坐标,进而利用中心对称图形的性质得出P2点的坐标.解:△A点坐标为:(2,4),A1(﹣2,1),△点P(2.4,2)平移后的对应点P1为:(﹣1.6,﹣1),△点P1绕点O逆时针旋转180°,得到对应点P2,△P2点的坐标为:(1.6,1).故选:C.【点拨】此题主要考查了旋转的性质以及平移的性质,根据已知得出平移距离是解题关键.11.2【分析】根据关于原点对称的性质得到a-1+5=0,5+1-b=0,求出a、b,问题得解.解:△点P (a -1,5)与点Q (5,1-b )关于原点成中心对称,△a -1+5=0,5+1-b =0,△a =-4,b =6,△a +b =2.故答案为:2【点拨】本题考查了关于原点对称的点的坐标特点,熟知“两个点关于原点对称,则这两个点的横纵坐标都互为相反数”是解题关键.12.452x ⎛⎫+ ⎪⎝⎭ 【分析】根据旋转的性质可得1DE DE =,1EDE x ∠=,利用等腰三角形的性质和三角形内角和定理求出1E ED ∠和△CED 即可解决问题.解:如图,由旋转的性质可得:1DE DE =,1EDE x ∠=, △11809022x x E ED ︒-∠==︒-, △△C =90°,△CDE =45°,△△CED =45°, △1118018090454522x x BEE E ED CED ⎛⎫⎛⎫∠=︒-∠-∠=︒-︒--︒=+︒ ⎪ ⎪⎝⎭⎝⎭, 故答案为:452x ⎛⎫+ ⎪⎝⎭.【点拨】本题考查了旋转的性质,等腰三角形的性质以及三角形内角和定理,灵活运用各性质进行推理计算是解题的关键.13.15【分析】把CD 绕着点C 逆时针旋转60°到达CE 的位置,连接CE ,DE ,BE ,可得△CDE 是等边三角形,从而得到DE =CD =CE ,△DEC =60°,再由△BCD =30°,可得BC △DE ,然后根据AB =BC =CD ,可得BC =CE ,AB =DE ,从而得到()1180752BEC BCE ∠=︒-∠=︒,进而得到△BED =15°,再证得四边形ABED 是平行四边形,即可求解.解:如图,把CD 绕着点C 逆时针旋转60°到达CE 的位置,连接CE ,DE ,BE ,△△DCE =60°,CD =CE ,△△CDE 是等边三角形,△DE =CD =CE ,△DEC =60°,△△BCD =30°,△△BCE =30°,△△BCD =△BCE ,△BC △DE ,△AB =BC =CD ,△BC =CE ,AB =DE , △()1180752BEC BCE ∠=︒-∠=︒, △△BED =△BEC -△DEC =15°,△AB △BC ,△AB △DE ,△四边形ABED 是平行四边形,△△BAD =△BED =15°.故答案为:15【点拨】本题主要考查了图形的旋转,等边三角形的判定和性质,平行四边形的判定和性质,等腰三角形的性质,熟练掌握图形的旋转,等边三角形的判定和性质,平行四边形的判定和性质,等腰三角形的性质是解题的关键.14.3【分析】根据旋转的性质得出△CAE =60°,AC =AE =2,求出△BAE =90°,根据勾股定理求出即可.解:△将△ABC 绕点A 逆时针旋转60°得到△ADE ,AB =2AC = ,△60,CAE AC =AE =2,△△BAC =30°,△△BAE =30°+60°=90°,在Rt △BAE 中, 由勾股定理得:2222523,BEAB AE 故答案为:3.【点拨】本题考查了旋转的性质和勾股定理,能求出AE 的长度和求出△BAE 的度数是解此题的关键.15.10 【分析】由平行四边形和三角形的面积公式及平行四边形的性质可以得到BDP BCP ABP S S S =-,把已知ABP △和BCP 的面积分别为3和13代入计算即可得到答案. 解:由平行四边形和三角形的面积公式易得12ADP BCP ABCD SS S +=, 由平行四边形的性质可得12ABD ABCD SS =, △12ADP ABP BDP ABCD SS S S ++=, △BCP ABP BDP SS S =+, △13310BDP BCP ABP S S S =-=-=,故答案为10.【点拨】本题考查平行四边形的应用,熟练掌握平行四边形和三角形的面积公式及平行四边形的中心对称性是解题关键.16.y =【分析】如图,过点C 作CF △x 轴于点F ,根据关于原点对称的点的坐标特征可得点B 坐标,根据等腰三角形的性质可得AB =BC =2,利用外角性质可得△CBF =60°,利用含30°角的直角三角形的性质及勾股定理可得CF 、BF 的长,利用旋转的性质可得AB =CE =2,AC =CD ,△ECD =△ACB =30°,根据等腰三角形的性质可得△CDA =△CAD=30°,可得CE //AD ,可得点E 坐标,利用待定系数法即可得答案.解:如图,过点C 作CF △x 轴于点F ,△△ABC 的顶点()1,0A -,点B 与点A 关于原点对称,△()10B ,, △AB =BC =2.△△CAB =30°,△△ACB =△CAB =30°,△△CBF =△CAB +△ACB =60°,△BCF =30°,△BF =12BC =1,CF=△(C .△将△ABC 绕点C 旋转,使点A 落在x 轴上的点D 处,点B 落在点E 处,△AB =CE =2,AC =CD ,△CDA =△CAD=30°,△ECD =△ACB =30°,△CE //AD ,△(E .设直线BE 的解析式为()0y kx b k =+≠,△04k b k b +=⎧⎪⎨+⎪⎩解得:k b ⎧=⎪⎪⎨⎪=⎪⎩△BE所在直线的解析式为:y .故答案为:y =【点拨】本题考查关于原点对称的点的坐标特征,旋转的性质、等腰三角形的性质、含30°角的直角三角形的性质及勾股定理,30°角所对的直角边等于斜边的一半;图形旋转前后的对应边相等、对应角相等;熟练掌握相关性质及定理是解题关键.17【分析】将线段DC 绕点D 顺时针旋转120︒得到线段DC ',作直线GC '交AD 于K ,过点A 作AH GC '⊥于点H .当点E 在直线BC 上运动时,G 在直线GC '上运动,即点G 的运动轨迹是直线GC '.当点G 运动到H 时,AG 最小,最小值即为AH 的长度,利用旋转的性质,根据“边角边”的判定方法可证明DCE DC G '≌△△,进而利用全等三角形的性质以及旋转性质可求出AG 的最小值.解:如图所示,将线段DC 绕点D 顺时针旋转120︒得到线段DC ',作直线GC '交AD 于K ,过点A 作AH GC '⊥于点H .120,,,EDC EDC GDC CD C D DE DG '''∠=︒-∠=∠==DCE DC G '∴≌△△(SAS )90,GC D C KC D ''∴∠=∠=︒=∠如图所示,当点E 在直线BC 上运动时,G 在直线GC '上运动,即点G 的运动轨迹是直线GC '.∴当点G 运动到H 时,AG 最小,最小值即为AH 的长度.120,90,CDC CDA '∠=︒∠=︒30,KDC '∴∠=︒1,602C K DK C KD AKH ''∴=∠=︒=∠C D CD AB '===2,4C K DK '∴==6AD BC ==2AK AD DK ∴=-=在Rt AKH 中,60AKH ∠=︒11,2KH AK AH ∴===则线段AG【点拨】本题主要考查了矩形中的旋转变换,能够掌握旋转的性质以及正确作出辅助线找到点G 的轨迹是解决本题的关键.18.(22022,0)【分析】根据图形可知:首先△OAB 绕原点O 顺时针方向旋转60°,旋转6次后,正好旋转一周,规律是6次一循环,其次根据将其各边都扩大为原来的2倍,依此类推,得到OAn =2n ,进而得出答案.解:如图,1,0,(,△点A,B的坐标分别为()△OAB=90°,△OA=1,AB△△OBA=30°,△△AOB=60°,△每一次旋转角是60°,△旋转6次后,正好旋转一周,点A6在x轴的正半轴上,△2022÷6=337,△点A2022在x轴的正半轴上;△每次旋转后OA1=2OA,OB1=2OB,OA2=2OA1,OB2=2OB1,…△OA1=2=2,OA2=2OA1=2×2=22,OA3=2OA2=2×22=23,…依此类推,OAn=2n,当n=2022时,OA2022=22022,△点A2022在x轴的正半轴上,△点A2022的坐标是(22022,0).故答案为:(22022,0).【点拨】本题主要考查了旋转的性质、含30°锐角的直角三角形的性质、勾股定理、坐标与图形性质、规律型、点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.19.(1)见分析(2)见分析(3)(6,-2)【分析】(1)根据关于原点对称的点的横坐标与纵坐标都互为相反数解答;(2)根据网格结构找出点A、B、C绕坐标原点O顺时针旋转90°的点A″、B″、C″的坐标,然后顺次连接即可;(3)根据平行四边形的对边平行且相等解答.(1)如图所示,△A′B′C′就是求作的图形;(2)如图所示,△A′′B′′C′′就是求作的三角形;(3)如图所示,点D′坐标为(6,-2);【点拨】本题考查了利用旋转变换作图,平行四边形的性质,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.能,见分析【分析】直接利用等边三角形的性质结合全等三角形的判定方法进而得出答案.解:能.理由:△△ABC 为等边三角形,△60B BAC ∠=∠=,AC AB =.△//CE AB ,△60ACE BAC ∠=∠=,在△ABD 和△ACE 中,AB AC B ACE BD CE =⎧⎪∠=∠⎨⎪=⎩,△()ABD ACE SAS ∆≅∆△AD AE =,BAD CAE ∠=∠,△60DAE BAC ∠=∠=,△△ACE 即为旋转后的图形.【点拨】本题主要考查了旋转变换以及全等三角形的判定,正确应用等边三角形的性质是解题关键.21.△BAD =60°,AD 的长为5.【分析】由旋转的性质可得出△ADE =60°、DA =DE ,进而可得出△ADE 为等边三角形以及△DAE =60°,由点A 、C 、E 在一条直线上可得出△BAD =△BAC -△DAE =60°;由点A 、C 、E 在一条直线上可得出AE =AC +CE ,根据旋转的性质可得出CE =AB ,结合AB =3、AC =2可得出AE 的长度,再根据等边三角形的性质即可得出AD 的长度.解:△△ABD 绕着点D 按顺时针方向旋转60°后得到△ECD ,△△ADE =60°,DA =DE ,△△ADE 为等边三角形,△△DAE =60°.△点A 、C 、E 在一条直线上,△△BAD =△BAC -△DAE =120°-60°=60°.△点A 、C 、E 在一条直线上,△AE =AC +CE .△△ABD 绕着点D 按顺时针方向旋转60°后得到△ECD ,△CE =AB ,△AE =AC +AB =2+3=5.△△ADE 为等边三角形,△AD =AE =5.【点拨】本题考查了旋转的性质以及等边三角形的判定与性质,根据旋转的性质结合旋转角度为60°找出△ADE 为等边三角形是解题的关键.22.(1)见详解(2)△△DEC =30°;△见详解【分析】(1)由等边三角形的性质和旋转的性质可得△BAD =△CAE ,AB =AC ,AD =AE ,再利用SAS 可证△BAD △△CAE ,可得BD =CE ;(2)△根据AD △BD ,得出△ADB =90°,根据△BAD △△CAE ,得出△ADB =△AEC =90°,根据△AED =60°,利用图中角度计算即可;△过点C 作CG △BP ,交EF 的延长线于点G ,由等边三角形的性质和全等三角形的性质可得CG =BD ,△BDG =△G ,△BFD =△GFC ,可证△BFD △△CFG ,可得结论;(1)证明:△线段AD 绕点A 逆时针旋转60°得到线段AE ,△AD =AE ,△DAE =60°,△△ADE 是等边三角形,在等边△ABC 和等边△ADE 中,△ AB =AC ,AD =AE ,△BAD +△DAC =△CAE +△DAC =60°,△△BAD =△CAE ,在△BAD 和△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩, △△BAD △△CAE (SAS ),△BD =CE ;(2)解:△△AD △BD ,△△ADB =90°,△△BAD △△CAE△△ADB =△AEC =90°,△△AED =60°,△△DEC =△AEC -△AED =90°-60°=30°,△如图,过点C 作CG △BP 交DF 的延长线于点G ,△△G =△BDF ,由(1)可知,BD =CE ,△CEA =△BDA ,△AD △BP ,△△BDA =90°,△△CEA =90°,△△AED =60°,△△BDG =180°-△ADB -△ADE =30°,△△CED =△G =△BDG =30°,△CE =CG ,△BD =CG ,在△BDF 和△CGF 中,BDF G BFD CFG BD CG ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△BDF △△CGF (AAS ),△BF =FC ,即F 为BC 的中点.【点拨】本题考查了等边三角形的性质,全等三角形的判定和性质,旋转的性质,添加恰当辅助线构造全等三角形是本题的关键.23.(1)123y x =-+(2)20(3)点E 的坐标为(6,4)-或(3,1)【分析】(1)用待定系数法即可得直线AB 解析式,(2)由(6,0)A 、(0,2)B ,得AB =,设(0,)C m ,由BC AC =,可得22(2)36m m -=+,解得8m =-,即可得10BC =,10AC =,从而可得ABC ∆的周长为20AB BC AC ++=;(3)当D 在B 左侧时,过E 作EH x ⊥轴于H ,设OD n =,根据将线段DB 绕着点D 旋转90︒得到DE ,可得()EDH DBO AAS ∆≅∆,从而可得(2,)E n n --,把(2,)E n n --代入123y x =-+即可得(6,4)E -,当D 在B 右侧时,同理可得(3,1)E ',即可得答案.(1)解:设直线AB 解析式为y kx b =+,把(6,0)A 、(0,2)B 代入得:602k b b +=⎧⎨=⎩, 解得132k b ⎧=-⎪⎨⎪=⎩, ∴直线AB 解析式为123y x =-+, 故答案为:123y x =-+; (2)解:(6,0)A 、(0,2)B ,AB ∴=设(0,)C m ,则22(2)BC m =-,2236AC m =+,BC AC =,22(2)36m m ∴-=+,解得8m =-,22(82)100BC ∴=--=,2236(8)100AC =+-=,10BC ∴=,10AC =,ABC ∴∆的周长为101020AB BC AC ++=+=;(3)解:当D 在B 左侧时,过E 作EH x ⊥轴于H ,如图:设OD n =,将线段DB 绕着点D 旋转90︒得到DE ,90EDB ∴∠=︒,ED BD =,90EDH BDO DBO ∴∠=︒-∠=∠,90EHD DOB ∠=︒=∠,EDH DBO ∴∆∆≌(AAS ),2HD OB ∴==,HE OD n ==,2OH n ∴=+,(2,)E n n ∴--,把(2,)E n n --代入123y x =-+得: 1(2)23n n =---+, 解得4n =,(6,4)E ∴-,当D 在B 右侧时,同理可得(3,1)E ',综上所述,E 的坐标为(6,4)-或(3,1).【点拨】本题考查一次函数综合应用,涉及待定系数法,三角形周长,全等三角形判定与性质等知识,解题的关键是作辅助线,构造全等三角形.24.(1)△BD BC ⊥;△12AF CD =,证明见分析;(2 【分析】(1)△先证明△BAD =△CAE ,△ABC =△ACB =45°, 再证明△BAD △△CAE ,利用全等三角形的性质可得结论;△ 延长BA 至点G ,使AG =AB ,连接GE ,证明△ADC △△AEG ,可得CD =GE .延长F A 至点Q ,使AQ =AF ,连接GQ ,证明△ABF △△AGQ ,可得△BF A =△GQA ,BF =GQ ,证明四边形EFQG 是平行四边形,可得QF =GE .从而可得结论;(2)如图,连接DE 、DG ,证明△BAE △△DAG ,△DAG 可以由△BAE 绕点A 逆时针旋转90°得到.可得CE =1,CD =4.17,DE 延长AB 至N ,使AN =AB ,连接NG ,延长HA 至Q ,使AQ =AH ,连接NQ ,同理:由(1)中△可知12AH DE =,从而可得答案. 解:(1)△△将△ABD 绕点A 逆时针旋转90°得到△ACE ,△△DAE =△BAC =90°,AE =AD ,AC =AB△△BAD =△CAE ,△ABC =△ACB =45°,在△BAD 和△CAE 中,BA CABADCAE AD AE ,△△BAD △△CAE ,△△ABC =△ACE =45°,△△BCE =45°+45°=90°, 即BD CE ⊥ △12AF CD =,理由如下: 延长BA 至点G ,使AG =AB ,连接GE ,△将△ABD 绕点A 逆时针旋转90°得到△ACE ,△△DAE =△BAC =90°,AE =AD ,AC =AB =AG ,又△DAC =90°-△CAE =△GAE ,△△ADC △△AEG ,△CD =GE .延长F A 至点Q ,使AQ =AF ,连接GQ ,△AG =AB ,△BAF =△GAQ ,△△ABF △△AGQ ,△△BF A =△GQA ,BF =GQ ,△BE GQ ∥,即EF GQ ∥.△点F 为BE 的中点,△EF =BF =GQ ,△四边形EFQG 是平行四边形,△QF =GE .△12AF QF =,CD =GE , △12AF CD =. (2)如图,连接DE 、DG ,△四边形ABCD 和四边形AEFG 为正方形,△AB =AD=BC=CD ,AE =AG ,△BAD =△EAG =90°,又△BAE =90°-△EAD =△DAG ,△△BAE △△DAG ,△△DAG 可以由△BAE 绕点A 逆时针旋转90°得到.△AB =4,BE =3,△CE =1,CD =4. 221417,DE延长AB 至N ,使AN =AB ,连接NG ,延长HA 至Q ,使AQ =AH ,连接NQ ,同理:由(1)中△可知12AH DE =,△12AH DE ==. 【点拨】本题考查的是全等三角形的判定与性质,平行四边形的判定与性质,正方形的性质,勾股定理的应用,旋转的性质,作出合适的辅助线,构建全等三角形与平行四边形是解本题的关键.。
专题24.2 圆及有关概念(专项练习)一、单选题1.如图所示,在⊙O 中,点A ,O ,D 以及点B ,O ,C 分别在一条直线上,则图中的弦有( )A .2条B .3条C .4条D .5条2.⊙O 的半径为5cm ,点A 到圆心O 的距离OA =3cm ,则点A 与⊙O 的位置关系为( ) A .点A 在⊙O 上 B .点A 在⊙O 内C .点A 在⊙O 外D .无法确定3.如图,一枚圆形古钱币的中间是一个正方形孔,已知圆的直径与正方形的对角线之比为3:1,则圆的面积约为正方形面积的( )A .27倍B .14倍C .9倍D .3倍4.把地球看成一个表面光滑的球体,假设沿地球赤道绕紧一圈钢丝,然后把钢丝加长,使钢丝圈沿赤道处处高出球面16cm ,那么钢丝大约需要加长A .102cmB .104cmC .106cmD .108cm5.在平面直角坐标系xOy 中,已知点A (4,3),以原点O 为圆心,5为半径作⊙O ,则( )A .点A 在⊙O 上B .点A 在⊙O 内C .点A 在⊙O 外D .点A 与⊙O 的位置关系无法确定6.已知,3,4ABC AC CB ==,以点C 为圆心r 为半径作圆,如果点A 、点B 只有一个点在圆内,那么半径r 的取值范围是( )A .3r >B .34r <<C .34r <≤D .34r ≤≤7.下列4个说法中:⊙直径是弦;⊙弦是直径;⊙任何一条直径所在的直线都是圆的对称轴;⊙弧是半圆; 正确的有( )A .1个B .2个C .3个D .4个8.一个圆的周长是10π,它的面积是( ) A .25πB .5πC .100πD .10π9.矩形ABCD 中,AB =8,BC =P 在边AB 上,且BP =3AP ,如果圆P 是以点P 为圆心,PD 为半径的圆,那么下列判断正确的是( ).A .点B 、C 均在圆P 外;B .点B 在圆P 外、点C 在圆P 内; C .点B 在圆P 内、点C 在圆P 外;D .点B 、C 均在圆P 内.10.若⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,那么点A 与⊙O 的位置关系是A .点A 在圆外B .点A 在圆上C .点A 在圆内D .不能确定11.如图,四边形ABCD 为矩形,3AB =,4BC =.点P 是线段BC 上一动点,点M 为线段AP 上一点.ADM BAP ∠=∠,则BM 的最小值为( )A .52B .125C 32D 212.已知:等腰直角三角形ABC 的腰长为4,点M 在斜边AB 上,点P 为该平面内一动点,且满足PC =2,则PM 的最小值为( )A.2 B .﹣2C .D .二、填空题13.已知O 的面积为25π.PO=,则点P在________;(1)若 5.5PO=,则点P在________;(2)若4(3)若PO=_________,则点P在O上.14.如图,⊙M的半径为4,圆心M的坐标为(5,12),点P是⊙M上的任意一点,P A⊙PB,且P A、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为_______.15.连接圆上任意两点的线段(如图中的______)叫做弦,经过圆心的弦(如图中的_____)叫做直径.【注意】凡直径都是弦,是圆中最长的弦,但弦____是直径.16.圆上任意两点间的部分叫做________,简称___.以A、B为端点的弧,记作__________,读作“圆弧AB”或“弧AB”.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做_______.17.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC于点D,连接AD.若⊙B=40°,⊙C=36°,则⊙DAC的大小为_____度.18.点P 是非圆上一点,若点P 到O 上的点的最小距离是4cm ,最大距离是9cm ,则O 的半径是______.19.如图,OA 、OB 是O 的半径,点C 在O 上,30AOB ∠=︒,40OBC ∠=︒,则OAC ∠=______︒.20.我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点(2,1)A 到以原点为圆心,以1为半径的圆的距离为_____.21.如图,用等分圆的方法,在半径为OA 的圆中,画出了如图所示的四叶幸运草,若OA =2,则四叶幸运草的周长是________.22.如图,在Rt ABC 中,⊙ACB=90°,AC=BC=2,以BC 为直径的半圆交AB 于D ,P是CD上的一个动点,连接AP,则AP的最小值是_____.23.如图,在△ABC中,⊙ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是________.24.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是__________.三、解答题25.如图所示,AC BC⊥,试证明:A、B、C、D在同一圆上.⊥,AD BD26.在平面直角坐标系中,作以原点O 为圆心,半径为4的O ,试确定点()2,3(4,2),,(A B C ----与O 的位置关系.27.如图,在图中求作⊙P ,使⊙P 满足以线段MN 为弦且圆心P 到⊙AOB 两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)28.如图,点C 是以AB 为直径的半圆O 内任意一点,连接AC ,BC ,点D 在AC 上,且AD =CD ,请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)在图(1)中,画出ABC 的中线AE ; (2)在图(2)中,画出ABC 的角平分线AF .29.已知A 为O 上的一点,O 的半径为1,O 所在的平面上另有一点P . (1)如果PA P 与O 有怎样的位置关系?(2)如果PA =P 与O 有怎样的位置关系?30.如图,菱形ABCD 的对角线,AC BD 相交于点O ,四条边,,,AB BC CD DA 的中点分别为,,,E F G H .这四个点共圆吗?圆心在哪里?参考答案1.B 【分析】根据弦的定义进行分析,从而得到答案. 解:图中的弦有AB ,BC ,CE 共三条, 故选B .【点拨】本题主要考查了弦的定义,熟知定义是解题的关键:连接圆上任意两点的线段叫弦.2.B解:将点到圆心的距离记为d ,圆的半径记为r ,⊙d =OA =3,⊙d <r , ⊙点A 在圆内, 故选:B . 3.B 【分析】设OB =x ,则OA =3x ,BC =2x ,根据圆的面积公式和正方形的面积公式,求出面积,进而即可求解.解:由圆和正方形的对称性,可知:OA =OD ,OB =OC ,⊙圆的直径与正方形的对角线之比为3:1, ⊙设OB =x ,则OA =3x ,BC =2x , ⊙圆的面积=π(3x )2=9πx 2,正方形的面积=()2122x =2x 2, ⊙9πx 2÷2x 2=9142π≈,即:圆的面积约为正方形面积的14倍,故选B .【点拨】本题主要考查圆和正方形的面积以及对称性,根据题意画出图形,用未知数表示各个图形的面积,是解题的关键.4.A解:设地球半径为:rcm ,则地球的周长为:2πrcm ,假设沿地球赤道绕紧一圈钢丝,然后把钢丝加长,使钢丝圈沿赤道处处高出球面16cm ,故此时钢丝围成的圆形的周长变为:2π(r+16)cm ,⊙钢丝大约需要加长:2π(r+16)﹣2πr≈100(cm )=102(cm ). 故选:A . 5.A 【分析】先求出点A 到圆心O 的距离,再根据点与圆的位置依据判断可得.解:⊙点A (4,3)到圆心O 的距离5OA ,⊙OA =r =5, ⊙点A 在⊙O 上, 故选:A .【点拨】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r ,点到圆心的距离为d ,则有:当dr 时,点在圆外;当d r =时,点在圆上,当d r <时,点在圆内,也考查了勾股定理的应用.6.C 【分析】由于3AC =,4CB =,当以点C 为圆心r 为半径作圆,如果点A 、点B 只有一个点在圆内时,那么点A 在圆内,而点B 不在圆内.当点A 在圆内时点A 到点C 的距离小于圆的半径,点B 在圆上或圆外时点B 到圆心的距离应该不小于圆的半径,据此可以得到半径的取值范围.解:当点A 在圆内时点A 到点C 的距离小于圆的半径,即:3r >;点B 在圆上或圆外时点B 到圆心的距离应该不小于圆的半径,即:4r ; 即34r <. 故选:C .【点拨】本题考查了点与圆的位置关系,解题的关键是明确半径的大小与位置关系的关系.7.B【分析】根据弧的分类、圆的性质逐一判断即可.解:⊙直径是最长的弦,故正确;⊙最长的弦才是直径,故错误;⊙过圆心的任一直线都是圆的对称轴,故正确;⊙半圆是弧,但弧不一定是半圆,故错误,正确的有两个,故选B.【点拨】本题考查了对圆的认识,熟知弦的定义、弧的分类是本题的关键.8.A【分析】根据圆的周长公式,由已知的周长求出圆的半径,利用圆的面积公式即可求出所求圆的面积.解:设圆的半径为r,⊙圆的周长为10π,⊙2πr=10π,即r=5,则圆的面积S=πr2=25π.故选:A.【点拨】此题考查了圆的周长公式,以及圆的面积公式,根据周长求出圆的半径是解本题的关键.同时要求学生熟练掌握圆中的有关计算公式.9.C解:⊙AB=8,点P在边AB上,且BP=3AP⊙AP=2,⊙根据勾股定理得出,,,⊙PB=6<r,PC=9>r⊙点B在圆P内、点C在圆P外,故选C.【点拨】点与圆的位置关系的判定,难度系数中等,此题应根据点与圆心之间的距离和圆的半径的大小关系作出判断10.C【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内判断出即可.解:⊙⊙O的半径为5cm,点A到圆心O的距离为4cm,⊙d<r,⊙点A与⊙O的位置关系是:点A在圆内,故选C.11.D【分析】证明=90AMD︒∠,得出点M在O点为圆心,以AO为半径的园上,从而计算出答案.解:设AD的中点为O,以O点为圆心,AO为半径画圆⊙四边形ABCD为矩形⊙+=90BAP MAD︒∠∠⊙ADM BAP∠=∠⊙+=90MAD ADM︒∠∠⊙=90AMD︒∠⊙点M在O点为圆心,以AO为半径的园上连接OB交圆O与点N⊙点B为圆O外一点⊙当直线BM过圆心O时,BM最短⊙222 BO AB AO=+,1==22AO AD⊙29413 BO=+=⊙BO=⊙2BN BO AO=-=故选:D.【点拨】本题考查直角三角形、圆的性质,解题的关键是熟练掌握直角三角形和圆的相关知识.12.B【分析】根据等腰直角三角形的性质得到斜边AB=,由已知条件得到点P在以C为圆心,PC为半径的圆上,当点P在斜边AB的中线上时,PM的值最小,于是得到结论.解:⊙等腰直角三角形ABC的腰长为4,⊙斜边AB=⊙点P为该平面内一动点,且满足PC=2,⊙点P在以C为圆心,PC为半径的圆上,当点P在斜边AB的中线上时,PM的值最小,⊙⊙ABC是等腰直角三角形,⊙CM=1AB=,2⊙PC=2,⊙PM=CM﹣CP=﹣2,故选:B.【点拨】本题考查线段最小值问题,涉及等腰三角形的性质和点到圆的距离,解题的关键是能够画出图形找到取最小值的状态然后求解.13.圆外圆内5【分析】(1)先求出O的半径,再根据PO的长度和圆的半径进行比较即可得;(2)根据PO的长度和圆的半径进行比较即可得;(3)根据点在圆上得点到圆心的距离等于半径,即可得.解:设O的半径为r,225=,rππr,=5(1)⊙PO=5.5>5,⊙点P在圆外;(2)⊙PO=4<5,⊙点P在圆内;(3)若要点P在O上,则PO=r=5;故答案为:(1)圆外;(2)圆内;(3)5.【点拨】本题考查了点与圆的位置关系,解题的关键是判断点与圆的位置关系的方法.14.18【分析】△中AB=2PO,若要使AB取得最小值,则PO 连接OP,因为P A⊙PB,所以在Rt APB需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,据此求解即可得.解:如图所示,连接OP,⊙P A⊙PB,⊙⊙APB=90°,⊙AO=BO,⊙AB=2PO,若要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,过点M作MQ⊙x轴于点Q,则OQ =5,MQ =12,在Rt MQB 中,根据勾股定理,得13OM =,又⊙MP ′=4,⊙OP ′=9,⊙AB =2OP ′=18,故答案为:18.【点拨】本题考查了点与圆的位置关系,关于圆点对称的点的坐标和勾股定理,解题的关键是根据直角三角形斜边上的中线等于斜边的一半得出AB 取得最小值时点P 的位置.15. AC AB 不一定略16. 圆弧 弧 AB 半圆略17.34【分析】先根据同圆的半径相等可得AB BD =,再根据等腰三角形的性质可得70BAD BDA ∠=∠=︒,然后根据三角形的外角性质即可得.解:由同圆的半径相等得:AB BD =,11(180)(18040)7022BAD BDA B ∴∠=∠=︒-∠=⨯︒-︒=︒, 36C ∠=︒,34DAC BDA C ∴∠=∠-∠=︒,故答案为:34.【点拨】本题考查了圆的性质、等腰三角形的性质等知识点,熟练掌握同圆的半径相等是解题关键.18.6.5cm 或2.5cm【分析】分点P 在O 外和O 内两种情况分析;设O 的半径为xcm ,根据圆的性质列一元一次方程并求解,即可得到答案.解:设O 的半径为xcm当点P 在O 外时,根据题意得:429x +=⊙ 2.5x cm =当点P 在O 内时,根据题意得:294x =+⊙ 6.5x cm =故答案为:6.5cm 或2.5cm .【点拨】本题考查了圆、一元一次方程的知识;解题的关键是熟练掌握圆的性质,从而完成求解.19.25【分析】连接OC ,根据等腰三角形的性质和三角形内角和定理得到⊙BOC =100°,求出⊙AOC ,根据等腰三角形的性质计算.解:连接OC ,⊙OC =OB ,⊙⊙OCB =⊙OBC =40°,⊙⊙BOC =180°-40°×2=100°,⊙⊙AOC =100°+30°=130°,⊙OC =OA ,⊙⊙OAC =⊙OCA =25°,故答案为:25.【点拨】本题考查的是圆的基本性质、等腰三角形的性质,三角形内角和定理,掌握三角形内角和等于180°是解题的关键.201【分析】连接OA ,与圆O 交于点B ,根据题干中的概念得到点到圆的距离即为OB ,再求出OA ,结合圆O 半径可得结果.解:根据题意可得:点到圆的距离为:该点与圆上各点的连线中,最短的线段长度,连接OA,与圆O交于点B,可知:点A和圆O上点B之间的连线最短,⊙A(2,1),⊙圆O的半径为1,⊙AB=OA-1,⊙点(2,1)A到以原点为圆心,以11,1.【点拨】本题考查了圆的新定义问题,坐标系中两点之间的距离,勾股定理,解题的关键是理解题意,利用类比思想解决问题.21..【分析】由题意得出:四叶幸运草的周长为4个半圆的弧长=2个圆的周长,求出圆的半径,由圆的周长公式即可得出结果.解:由题意得:四叶幸运草的周长为4个半圆的弧长=2个圆的周长,⊙四叶幸运草的周长=π×2=;故答案为.【点拨】本题考查了正多边形和圆、正方形的性质以及圆周长公式;由题意得出四叶幸运草的周长=2个圆的周长是解题的关键.221.【分析】找到BC 的中点E ,连接AE ,交半圆于P 2,在半圆上取P 1,连接AP 1,EP 1,可见,AP 1+EP 1>AE ,即AP 2是AP 的最小值,再根据勾股定理求出AE 的长,然后减掉半径即可.解:找到BC 的中点E ,连接AE ,交半圆于P 2,在半圆上取P 1,连接AP 1,EP 1,可见,AP 1+EP 1>AE ,即AP 2是AP 的最小值,⊙AEP 2E =1,⊙AP 21.1.23.1试题分析:在Rt⊙ABC 中,由勾股定理可知:,由轴对称的性质可知:BC=CB′=3,⊙CB′长度固定不变,⊙当AB′+CB′有最小值时,AB′的长度有最小值.根据两点之间线段最短可知:A 、B′、C 三点在一条直线上时,AB′有最小值,⊙AB′=AC ﹣B′C=4﹣3=1.故答案为1.【点拨】1.翻折变换(折叠问题);2.动点型;3.最值问题;4.综合题.24.35r <<.试题分析:根据勾股定理可求得BD=5,三个顶点A 、B 、C 中至少有一个点在圆内,点A 与点D 的距离最近,点A 应该在圆内,所以r>3,三个顶点A 、B 、C 中至少有一个点在圆外,点B 与点D 的距离最远,点B 应该在圆外,所以r<5,所以r 的取值范围是35r <<.【点拨】勾股定理;点和圆的位置关系.25.见分析【分析】利用直角三角形斜边上的中线等于斜边的一半,得出AE BE CE DE ===进而得出答案.解:如图,取AB 的中点E ,连接CE ,DE ,⊙AC BC ⊥,AD BD ⊥,⊙ABC 和ABD △为直角三角形, ⊙12CE AB AE BE ===,12DE AB =, ⊙AE BE CE DE ===,⊙A ,B ,C ,D 四点都在以点E 为圆心,AE 长为半径的圆上.【点拨】本题主要考查了四点共圆和直角三角形的性质,得出AE BE CE DE ===是解题的关键.26.点A 在O 内;点B 在O 外;点C 在O 上.【分析】连接OA 、OB 、OC ,根据点的坐标,分别求出OA 、OB 、OC 的长,和⊙O 的半径4比较即可得出答案.解:连接OA 、OB 、OC ,⊙()2,3A --,由勾股定理得 OA =4,⊙点A 与O 的位置关系是点A 在O 内;⊙(4,2)B -,由勾股定理得OB=4,⊙点B与O的位置关系是点B在O外;⊙(2)C-,由勾股定理得OC4=4,⊙点C与O的位置关系是点C在O上.【点拨】本题考查了点与圆的位置关系,勾股定理.点与圆的位置关系有三种:⊙当d=r 时,点在圆上;⊙当d>r时,点在圆外;⊙当d<r时,点在圆内.27.见分析.试题分析:先做出⊙AOB的角平分线,再求出线段MN的垂直平分线就得到点P.试题解析:【点拨】尺规作图角平分线和线段的垂直平分线、圆的性质.28.(1)见分析(2)见分析【分析】(1)连接CO、BD,CO交BD于点G,连接AG并延长交BC于E,线段AE即为所求作;(2)利用(1)的中点E,过点E作半径OH,连接AH交BC于点F,则线段AF即为所求作.(1)解:如图(1),线段AE即为△ABC的中线;;根据三角形三条中线交于一点即可证明;(2)解:如图(2),线段AF即为△ABC的角平分线;证明:⊙OA=OH,⊙⊙HAO=⊙H,⊙点O是AB的中点,点E是BC的中点,⊙OE是⊙ABC的中位线,⊙OE⊙AC,⊙⊙CAH=⊙H,⊙⊙CAF=⊙BAF,⊙AF为⊙ABC的角平分线.【点拨】本题考查了作图-复杂作图,三角形中位线定理,三角形三条中线交于一点,圆的半径相等,等边对等角,平行线的性质,解题的关键是灵活运用所学知识解决问题.29.(1)点P在O外;(2)点P可能在O外,也可能在O内,还可能在O上,实际上,点P位于以A【分析】(1)点P和圆的位置关系有:⊙在圆外,⊙在圆上,⊙在圆内,再逐个判断即可;(2)点P和圆的位置关系有⊙在圆外,⊙在圆上,⊙在圆内,再逐个判断即可.解:(1)5PA=O的直径为2∴点P的位置只有一种情况在圆外,即点P与O的位置关系是点在圆外.(2)3PA=O的直径为2∴点P的位置有三种情况:⊙在圆外,⊙在圆上,⊙在圆内.即点P可能在O外,也可能在O内,还可能在O上,实际上,点P位于以A为圆【点拨】本题考查了圆的认识的应用,解题的关键是做注意多种情况的考虑,注意:点和圆有三种位置关系:点在圆外,点在圆上,点在圆内.30.共圆,圆心在点O处【分析】根据三角形中位线的性质,证出四边形EFGH是平行四边形,根据菱形性质证出四边形EFGH是矩形,根据矩形性质可得E,F,G,H到矩形中心的距离相等,从而得出结论.解:点E,F,G,H四点共圆,圆心在点O处.理由如下:连接HE,EF,FG,GH,OH,OE,OF,OG.⊙E,F,G,H分别是AB,BC,CD,DA的中点,⊙EF平行且等于12AC, HG平行且等于12AC,⊙EF平行且等于GH⊙四边形EFGH是平行四边形,////,HE GF BD∴又⊙四边形ABCD是菱形⊙AC BD⊥⊙⊙AOB=90°∴⊙HEF=90°,⊙四边形EFGH是矩形,⊙E,F,G,H到矩形中心的距离相等⊙这个矩形的四个顶点在同一个圆上,圆心即为点O.【点拨】考核知识点:点和圆的位置关系.理解矩形、菱形的判定和性质和点和圆的位置关系是解题关键.。
九年级数学上册同步测试:2.2 用配方法求解一元二次方程一、选择题(共15小题)1.已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.有两个实数根2.已知关于=0有两个实数根,则m的取值范围是()A.m≥﹣B.m≥0 C.m≥1 D.m≥23.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x﹣6=﹣4 B.x﹣6=4 C.x+6=4 D.x+6=﹣44.用配方法解方程x2﹣2x﹣1=0时,配方后得的方程为()A.(x+1)2=0 B.(x﹣1)2=0 C.(x+1)2=2 D.(x﹣1)2=25.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1 B.(x﹣3)2=1 C.(x+3)2=19 D.(x﹣3)2=196.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=157.用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是()A.(x﹣6)2=﹣4+36 B.(x﹣6)2=4+36 C.(x﹣3)2=﹣4+9 D.(x﹣3)2=4+98.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=99.若一元二次方程式a(x﹣b)2=7的两根为±,其中a、b为两数,则a+b之值为何?()A.B.C.3 D.510.一元二次方程x2﹣2x﹣1=0的解是()A.x1=x2=1 B.x1=1+,x2=﹣1﹣C.x1=1+,x2=1﹣D.x1=﹣1+,x2=﹣1﹣11.用配方法解方程x2+10x+9=0,配方后可得()A.(x+5)2=16 B.(x+5)2=1 C.(x+10)2=91 D.(x+10)2=10912.用配方法解一元二次方程ax2+bx+c=0(a≠0),此方程可变形为()A.(x+)2= B.(x+)2=C.(x﹣)2=D.(x﹣)2=13.若一元二次方程式4x2+12x﹣1147=0的两根为a、b,且a>b,则3a+b之值为何?()A.22 B.28 C.34 D.4014.关于≠0)的解是x1=﹣3,(x+h﹣3)2+k=0的解是()A.x1=﹣6,x2=﹣1 B.x1=0,x2=5 C.x1=﹣3,x2=5 D.x1=﹣6,x2=215.x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,下列说法正确的是()A.x1小于﹣1,x2大于3 B.x1小于﹣2,x2大于3C.x1,x2在﹣1和3之间D.x1,x2都小于3二、填空题(共7小题)16.方程x2=2的解是.17.一元二次方程x2+3﹣2x=0的解是.18.若将方程=.19.将=.20.方程x2﹣2x﹣2=0的解是.21.方程x2﹣2﹣4,则=.三、解答题(共8小题)23.解方程:x2﹣6x﹣4=0.24.有n个方程:x2+2x﹣8=0;x2+2×2x﹣8×22=0;…x2+2nx﹣8n2=0.小静同学解第一个方程x2+2x﹣8=0的步骤为:“①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x1=4,x2=﹣2.”(1)小静的解法是从步骤开始出现错误的.(2)用配方法解第n个方程x2+2nx﹣8n2=0.(用含有n的式子表示方程的根)25.解方程:(2x﹣1)2=x(3x+2)﹣7.26.解方程(1)x2﹣2x﹣1=0(2)=.27.嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:由于a≠0,方程ax2+bx+c=0变形为:x2+x=﹣,…第一步x2+x+()2=﹣+()2,…第二步(x+)2=,…第三步x+=(b2﹣4ac>0),…第四步x=,…第五步嘉淇的解法从第步开始出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a≠O)的求根公式是.用配方法解方程:x2﹣2x﹣24=0.28.(1)解方程:x2﹣2x=1;(2)解不等式组:.29.解方程:x2﹣4x+1=0.30.用配方法解关于x的一元二次方程ax2+bx+c=0.北师大版九年级数学上册同步测试:2.2 用配方法求解一元二次方程参考答案与试题解析一、选择题(共15小题)1.已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.有两个实数根【考点】解一元二次方程-直接开平方法.【分析】根据直接开平方法可得x﹣1=±,被开方数应该是非负数,故没有实数根.【解答】解:∵(x﹣1)2=b中b<0,∴没有实数根,故选:C.【点评】此题主要考查了解一元二次方程﹣直接开平方法,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.2.已知关于=0有两个实数根,则m的取值范围是()A.m≥﹣B.m≥0 C.m≥1 D.m≥2【考点】解一元二次方程-直接开平方法.【分析】首先移项把﹣m移到方程右边,再根据直接开平方法可得m的取值范围.【解答】解;(,∵一元二次方程(≥0,故选:B.【点评】本题主要考查了直接开平方法解一元二次方程,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.3.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x﹣6=﹣4 B.x﹣6=4 C.x+6=4 D.x+6=﹣4【考点】解一元二次方程-直接开平方法.【分析】方程两边直接开平方可达到降次的目的,进而可直接得到答案.【解答】解:(x+6)2=16,两边直接开平方得:x+6=±4,则:x+6=4,x+6=﹣4,故选:D.【点评】本题主要考查了直接开平方法解一元二次方程,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.4.用配方法解方程x2﹣2x﹣1=0时,配方后得的方程为()A.(x+1)2=0 B.(x﹣1)2=0 C.(x+1)2=2 D.(x﹣1)2=2【考点】解一元二次方程-配方法.【分析】在本题中,把常数项﹣1移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【解答】解:把方程x2﹣2x﹣1=0的常数项移到等号的右边,得到x2﹣2x=1,方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=1+1配方得(x﹣1)2=2.故选D.【点评】考查了解一元二次方程﹣配方法,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1 B.(x﹣3)2=1 C.(x+3)2=19 D.(x﹣3)2=19【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.【解答】解:方程移项得:x2﹣6x=10,配方得:x2﹣6x+9=19,即(x﹣3)2=19,故选D.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.6.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=15【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程利用配方法求出解即可.【解答】解:方程变形得:x2﹣8x=1,配方得:x2﹣8x+16=17,即(x﹣4)2=17,故选C【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.7.用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是()A.(x﹣6)2=﹣4+36 B.(x﹣6)2=4+36 C.(x﹣3)2=﹣4+9 D.(x﹣3)2=4+9【考点】解一元二次方程-配方法.【分析】根据配方法,可得方程的解.【解答】解:x2﹣6x﹣4=0,移项,得x2﹣6x=4,配方,得(x﹣3)2=4+9.故选:D.【点评】本题考查了解一元一次方程,利用配方法解一元一次方程:移项、二次项系数化为1,配方,开方.8.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=9【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程常数项移到右边,两边加上1变形即可得到结果.【解答】解:方程移项得:x2﹣2x=5,配方得:x2﹣2x+1=6,即(x﹣1)2=6.故选:B【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.9.若一元二次方程式a(x﹣b)2=7的两根为±,其中a、b为两数,则a+b之值为何?()A.B.C.3 D.5【考点】解一元二次方程-直接开平方法.【分析】首先同时除以a得:(x﹣b)2=,再两边直接开平方可得:x﹣b=±,然后把﹣b移到右边,再根据方程的两根可得a、b的值,进而算出a+b的值.【解答】解:a(x﹣b)2=7,两边同时除以a得:(x﹣b)2=,两边直接开平方可得:x﹣b=±,则x=±+b,∵两根为±,∴a=4,b=,∴a+b=4=,故选:B.【点评】此题主要考查了直接开平方法解一元二次方程,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.10.一元二次方程x2﹣2x﹣1=0的解是()A.x1=x2=1 B.x1=1+,x2=﹣1﹣C.x1=1+,x2=1﹣D.x1=﹣1+,x2=﹣1﹣【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程变形后,配方得到结果,开方即可求出值.【解答】解:方程x2﹣2x﹣1=0,变形得:x2﹣2x=1,配方得:x2﹣2x+1=2,即(x﹣1)2=2,开方得:x﹣1=±,解得:x1=1+,x2=1﹣.故选:C.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.11.用配方法解方程x2+10x+9=0,配方后可得()A.(x+5)2=16 B.(x+5)2=1 C.(x+10)2=91 D.(x+10)2=109【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程移项,利用完全平方公式化简得到结果即可.【解答】解:方程x2+10x+9=0,整理得:x2+10x=﹣9,配方得:x2+10x+25=16,即(x+5)2=16,故选:A.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.12.用配方法解一元二次方程ax2+bx+c=0(a≠0),此方程可变形为()A.(x+)2= B.(x+)2=C.(x﹣)2=D.(x﹣)2=【考点】解一元二次方程-配方法.【专题】转化思想.【分析】先移项,把二次项系数化成1,再配方,最后根据完全平方公式得出即可.【解答】解:ax2+bx+c=0,ax2+bx=﹣c,x2+x=﹣,x2+x+()2=﹣+()2,(x+)2=,故选:A.【点评】本题考查了用配方法解一元二次方程的应用,解此题的关键是能正确配方,题目比较好,难度适中.13.若一元二次方程式4x2+12x﹣1147=0的两根为a、b,且a>b,则3a+b之值为何?()A.22 B.28 C.34 D.40【考点】解一元二次方程-配方法.【分析】配方得出(2x+3)2=1156,推出2x+3=34,2x+3=﹣34,求出x的值,求出a、b的值,代入3a+b求出即可.【解答】解:4x2+12x﹣1147=0,移项得:4x2+12x=1147,4x2+12x+9=1147+9,即(2x+3)2=1156,2x+3=34,2x+3=﹣34,解得:x=,x=﹣,∵一元二次方程式4x2+12x﹣1147=0的两根为a、b,且a>b,∴a=,b=﹣,∴3a+b=3×+(﹣)=28,故选B.【点评】本题考查了有理数的混合运算和解一元二次方程的应用,能求出a、b的值是解此题的关键,主要培养学生解一元二次方程的能力,题型较好,难度适中.14.关于≠0)的解是x1=﹣3,(x+h﹣3)2+k=0的解是()A.x1=﹣6,x2=﹣1 B.x1=0,x2=5 C.x1=﹣3,x2=5 D.x1=﹣6,x2=2【考点】解一元二次方程-直接开平方法.【专题】计算题.【分析】利用直接开平方法得方程m(x+h)2+k=0的解x=﹣h±,则﹣h﹣=﹣3,﹣h+=2,再解方程m(x+h﹣3)2+k=0得x=3﹣h±,所以x1=0,(,h,k均为常数,m ≠0)得x=﹣h±,而关于≠0)的解是x1=﹣3,x2=2,所以﹣h﹣=﹣3,﹣h+=2,方程m(x+h﹣3)2+k=0的解为x=3﹣h±,所以x1=3﹣3=0,x2=3+2=5.故选:B.【点评】本题考查了解一元二次方程﹣直接开平方法:形如)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成x2=p的形式,那么可得x=±;如果方程能化成(n=±.15.x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,下列说法正确的是()A.x1小于﹣1,x2大于3 B.x1小于﹣2,x2大于3C.x1,x2在﹣1和3之间D.x1,x2都小于3【考点】解一元二次方程-直接开平方法;估算无理数的大小.【专题】计算题.【分析】利用直接开平方法解方程得出两根进而估计无理数的大小得出答案.【解答】解:∵x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,∴(x﹣1)2=5,∴x﹣1=±,∴x2=1+>3,x1=1﹣<﹣1,故选:A.【点评】此题主要考查了直接开平方法解方程以及估计无理数的大小,求出两根是解题关键.二、填空题(共7小题)16.方程x2=2的解是±.【考点】解一元二次方程-直接开平方法.【分析】利用直接开平方法求解即可.【解答】解:x2=2,x=±.故答案为±.【点评】本题考查了解一元二次方程﹣直接开平方法,注意:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)运用整体思想,会把被开方数看成整体.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.17.一元二次方程x2+3﹣2x=0的解是x1=x2=.【考点】解一元二次方程-配方法.【分析】先分解因式,即可得出完全平方式,求出方程的解即可.【解答】解:x2+3﹣2x=0(x﹣)2=0∴x1=x2=.故答案为:x1=x2=.【点评】此题考查了解一元二次方程,熟练掌握求根的方法是解本题的关键.18.若将方程=3.【考点】解一元二次方程-配方法.【分析】此题实际上是利用配方法解方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:在方程x2+6x=7的两边同时加上一次项系数的一半的平方,得x2+6x+32=7+32,配方,得(=3.故答案为:3.【点评】本题考查了解一元二次方程﹣﹣配方法.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.19.将=3.【考点】配方法的应用.【专题】计算题.【分析】原式配方得到结果,即可求出m的值.【解答】解:x2+6x+3=x2+6x+9﹣6=(x+3)2﹣6=(=3,故答案为:3【点评】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.20.方程x2﹣2x﹣2=0的解是x1=+1,x2=﹣+1.【考点】解一元二次方程-配方法.【分析】首先把常数﹣2移到等号右边,再两边同时加上一次项系数一半的平方,把左边配成完全平方公式,再开方,解方程即可.【解答】解:x2﹣2x﹣2=0,移项得:x2﹣2x=2,配方得:x2﹣2x+1=2+1,(x﹣1)2=3,两边直接开平方得:x﹣1=,则x1=+1,x2=﹣+1.故答案为:x1=+1,x2=﹣+1.【点评】此题主要考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.21.方程x2﹣2x﹣1=0的解是x1=1+,x2=1﹣.【考点】解一元二次方程-配方法.【分析】首先把常数项2移项后,然后在左右两边同时加上一次项系数﹣2的一半的平方,然后开方即可求得答案.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,∴x2﹣2x+1=2,∴(x﹣1)2=2,∴x=1±,∴原方程的解为:x1=1+,x2=1﹣.故答案为:x1=1+,x2=1﹣.【点评】此题考查了配方法解一元二次方程.解题时注意配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.22.若一元二次方程a+1与2m﹣4,则=4.【考点】解一元二次方程-直接开平方法.【分析】利用直接开平方法得到x=±,得到方程的两个根互为相反数,所以m+1+2m﹣4=0,解得m=1,则方程的两个根分别是2与﹣2,则有=2,然后两边平方得到=4.【解答】解:∵x2=,∴x=±,∴方程的两个根互为相反数,∴m+1+2m﹣4=0,解得m=1,∴一元二次方程ax2=b的两个根分别是2与﹣2,∴=2,∴=4.故答案为:4.【点评】本题考查了解一元二次方程﹣直接开平方法:形如)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成x2=p的形式,那么可得x=±;如果方程能化成(n=±.三、解答题(共8小题)23.解方程:x2﹣6x﹣4=0.【考点】解一元二次方程-配方法.【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】解:移项得x2﹣6x=4,配方得x2﹣6x+9=4+9,即(x﹣3)2=13,开方得x﹣3=±,∴x1=3+,x2=3﹣.【点评】本题考查了用配方法解一元二次方程,用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.24.有n个方程:x2+2x﹣8=0;x2+2×2x﹣8×22=0;…x2+2nx﹣8n2=0.小静同学解第一个方程x2+2x﹣8=0的步骤为:“①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x1=4,x2=﹣2.”(1)小静的解法是从步骤⑤开始出现错误的.(2)用配方法解第n个方程x2+2nx﹣8n2=0.(用含有n的式子表示方程的根)【考点】解一元二次方程-配方法.【专题】阅读型.【分析】(1)移项要变号;(2)移项后配方,开方,即可得出两个方程,求出方程的解即可.【解答】解:(1)小静的解法是从步骤⑤开始出现错误的,故答案为:⑤;(2)x2+2nx﹣8n2=0,x2+2nx=8n2,x2+2nx+n2=8n2+n2,(x+n)2=9n2,x+n=±3n,x1=2n x2=﹣4n.【点评】本题考查了解一元二次方程的应用,解此题的关键是能正确配方,题目比较好,难度适中.25.解方程:(2x﹣1)2=x(3x+2)﹣7.【考点】解一元二次方程-配方法.【分析】根据配方法的步骤先把方程转化成标准形式,再进行配方即可求出答案.【解答】解:(2x﹣1)2=x(3x+2)﹣7,4x2﹣4x+1=3x2+2x﹣7,x2﹣6x=﹣8,(x﹣3)2=1,x﹣3=±1,x1=2,x2=4.【点评】此题考查了配方法解一元二次方程,掌握配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方是解题的关键,是一道基础题.26.解方程(1)x2﹣2x﹣1=0(2)=.【考点】解一元二次方程-配方法;解分式方程.【专题】计算题.【分析】(1)方程常数项移到右边,两边加上1,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)移项得:x2﹣2x=1,配方得:x2﹣2x+1=2,即(x﹣1)2=2,开方得:x﹣1=±,则x1=1+,x2=1﹣;(2)去分母得:4x﹣2=3x,解得:x=2,经检验x=2是分式方程的解.【点评】此题考查了解一元二次方程﹣配方法,以及解分式方程,利用配方法解方程时,首先将二次项系数化为1,常数项移到右边,然后两边加上一次项系数以一半的平方,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解.27.嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:由于a≠0,方程ax2+bx+c=0变形为:x2+x=﹣,…第一步x2+x+()2=﹣+()2,…第二步(x+)2=,…第三步x+=(b2﹣4ac>0),…第四步x=,…第五步嘉淇的解法从第四步开始出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a≠O)的求根公式是x=.用配方法解方程:x2﹣2x﹣24=0.【考点】解一元二次方程-配方法.【专题】阅读型.【分析】第四步,开方时出错;把常数项24移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【解答】解:在第四步中,开方应该是x+=±.所以求根公式为:x=.故答案是:四;x=;用配方法解方程:x2﹣2x﹣24=0解:移项,得x2﹣2x=24,配方,得x2﹣2x+1=24+1,即(x﹣1)2=25,开方得x﹣1=±5,∴x1=6,x2=﹣4.【点评】本题考查了解一元二次方程﹣﹣配方法.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.28.(1)解方程:x2﹣2x=1;(2)解不等式组:.【考点】解一元二次方程-配方法;解一元一次不等式组.【专题】计算题.【分析】(1)方程两边都加上1,配成完全平方的形式,然后求解即可;(2)先求出两个不等式的解集,再求其公共解.【解答】解:(1)x2﹣2x+1=2,(x﹣1)2=2,所以,x1=1+,x2=1﹣;(2),解不等式①得,x≥﹣2,解不等式②得,x<,所以,不等式组的解集是﹣2≤x<.【点评】(1)考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.(2)主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).29.解方程:x2﹣4x+1=0.【考点】解一元二次方程-配方法.【专题】计算题;配方法.【分析】移项后配方得到x2﹣4x+4=﹣1+4,推出(x﹣2)2=3,开方得出方程x﹣2=±,求出方程的解即可.【解答】解:移项得:x2﹣4x=﹣1,配方得:x2﹣4x+4=﹣1+4,即(x﹣2)2=3,开方得:x﹣2=±,∴原方程的解是:x1=2+,x2=2﹣.【点评】本题考查了用配方法解一元二次方程、解一元一次方程的应用,关键是配方得出(x﹣2)2=3,题目比较好,难度适中.30.用配方法解关于x的一元二次方程ax2+bx+c=0.【考点】解一元二次方程-配方法.【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】解:∵关于x的方程ax2+bx+c=0是一元二次方程,∴a≠0.∴由原方程,得x2+x=﹣,等式的两边都加上,得x2+x+=﹣+,配方,得(x+)2=﹣,当b2﹣4ac>0时,开方,得:x+=±,解得x1=,x2=,当b2﹣4ac=0时,解得:x1=x2=﹣;当b2﹣4ac<0时,原方程无实数根.【点评】本题考查了配方法解一元二次方程.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.。
单元卷旋转基础卷一、单选题(共12小题)1.下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项正确.故选:D.【知识点】轴对称图形、中心对称图形2.点A(2,1)与点A′(﹣2,﹣1)关于()对称.A.x轴B.y轴C.原点D.都不对【解答】解:点A(2,1)与点A′(﹣2,﹣1)关于原点对称.故选:C.【知识点】关于原点对称的点的坐标、关于x轴、y轴对称的点的坐标3.如图,△ABC绕点B顺时针旋转到△EBD位置,若∠A=30°,∠D=15°,A、B、D在同一直线上,则旋转的角度是()A.50°B.45°C.40°D.30°【解答】解:∵△ABC绕点B顺时针旋转到△EBD位置,∴∠C=∠D=15°,∠CBD等于旋转角,∵∠CBD=∠A+∠C=30°+15°=45°,∴旋转角的度数为45°.故选:B.【知识点】旋转的性质4.如图,在△ABC中,∠ACB=α,将△ABC绕点C顺时针方向旋转到△A′B′C的位置,使AA′∥BC,设旋转角为β,则α,β满足关系()A.α+β=90°B.α+2β=180°C.2α+β=180°D.α+β=180°【解答】解:当△ABC绕点C顺时针旋转到△A′B′C的位置,使AA′∥BC,∴∠CAA′=∠ACB=α,AC=A′C,∴∠AA′C=∠A′AC=α;∴∠ACA′=180°﹣∠CAA′﹣∠CA′A=180°﹣2α=β,∴2α+β=180°,故选:C.【知识点】旋转的性质、平行线的判定5.下列各点关于原点对称的是()A.(2,﹣2)→(2,2)B.(0,2)→(﹣2,0)C.(a,﹣b)→(﹣a,b)D.(a,b)→(﹣a,b)【解答】解:根据两个点关于原点对称,则点(a,﹣b)关于原点对称的点的坐标是(﹣a,b).故选:C.【知识点】关于原点对称的点的坐标6.如果|3﹣a|+(b+5)2=0,那么点A(a,b)关于原点对称的点A′的坐标为()A.(3,5)B.(3,﹣5)C.(﹣3,5)D.(5,﹣3)【解答】解:∵|3﹣a|+(b+5)2=0,∴3﹣a=0,b+5=0,解得:a=3,b=﹣5,∴点A(a,b)关于原点对称的点A′的坐标为:(﹣3,5).故选:C.【知识点】非负数的性质:偶次方、关于原点对称的点的坐标、非负数的性质:绝对值7.如图,将△ABC绕点A按逆时针旋转50°后,得到△ADE,则∠ABD的度数是()A.30°B.45°C.65°D.75°【解答】解:∵△ABC绕点A按逆时针旋转50°后,得到△ADC′,∴AB=AD,∠BAD=50°,∴∠ABD=∠ADB,∴∠ABD=(180°﹣50°)=65°.故选:C.【知识点】旋转的性质8.在平面直角坐标系中,点A的坐标是(﹣1,3),将原点O绕点A顺时针旋转90°得到点O′,则点O′的坐标是()A.(3,1)B.(﹣3,﹣1)C.(﹣4,2)D.(2,4)【解答】解:观察图象可知O′(﹣4,2),故选:C.【知识点】坐标与图形变化-旋转9.如图,在Rt△ABC中,AB=AC,D,E是斜边BC上两点,且∠DAE=45°,将△ABE绕点A顺时针旋转90°后,得到△ACF,连接DF,则下列结论中有()个是正确的.①∠DAF=45°②△ABE≌△ACD③AD平分∠EDF④BE2+DC2=DE2A.4B.3C.2D.1【解答】解:由旋转可知:△BAE≌△CAF,∴∠BAE=∠CAF,∴∠EAF=∠BAC=90°,∵∠EAD=45°,∴∠EAD=∠F AD=45°,∴AD平分∠EAF,∵AD=AD,AE=AF,∴△DAE≌△DAF(SAS),故①③正确,∴DE=DF,∵∠ACF=∠B=∠ACB=45°,∴∠DCF=90°,∴DF2=CD2+CF2,∵DF=DE,BE=CF,∴BE2+CD2=DE2,故④正确,无法判断△ABE≌△ACD,故②错误.故选:B.【知识点】勾股定理、全等三角形的判定与性质、旋转的性质、等腰直角三角形10.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,将△ABC绕点C逆时针旋转得到△A′B′C,且B′恰好落在AB上,M是BC的中点,N是A′B′的中点,连接MN,则C到MN的距离()A.1B.C.D.3【解答】解:如图,作CH⊥MN于H,连接NC,作MJ⊥NC交NC的延长线于J.∵∠ACB=90°,BC=4,∠A=30°,∴AB=A′B′=2BC=8,∠B=60°.∵CB=CB′,∴△CBB′是等边三角形,∴∠BCB′=60°,∵BN=NA′,∴CN=NB′=A′B′=4,∵∠CB′N=60°,∴△CNB′是等边三角形,∴∠NCB′=60°,∴∠BCN=120°,在Rt△CMJ中,∵∠J=90°,MC=2,∠MCJ=60°,∴CJ=MC=1,MJ=CJ=,∴MN===2,∵•NC•MJ=•MN•CH,∴CH==,故选:B.【知识点】旋转的性质、含30度角的直角三角形11.如图,将平行四边形ABCD绕点A顺时针旋转,其中B、C、D分别落在点E、F、G处,且点B、E、D、F在同一直线上,若∠CBA=115°,则∠CBD的大小为()A.65°B.55°C.50°D.40°【解答】解:∵平行四边形ABCD绕点A旋转到平行四边形AEFG的位置,∴AB=AE,∠AEF=∠CBA=115°,∴∠AEB=∠ABE=65°,∴∠CBD=∠CBA﹣∠ABE=115°﹣65°=50°;故选:C.【知识点】平行四边形的性质、旋转的性质12.如图,边长为2的正方形ABCD的中心与坐标原点O重合,AB∥x轴,将正方形ABCD绕原点O顺时针旋2019次,每次旋转45°,则顶点B的坐标是()A.(,﹣1)B.(0,﹣)C.(0,﹣1)D.(﹣1,﹣1)【解答】解:由题意旋转8次回到原来位置,2019÷8=252…3,∴将正方形ABCD绕原点O顺时针旋2019次,每次旋转45°,则顶点B在y轴的负半轴上,B(0,﹣),故选:B.【知识点】坐标与图形变化-旋转、规律型:点的坐标二、填空题(共4小题)13.下列4种图案中,是中心对称图形的有个.【解答】解:第1个图形,是中心对称图形,符合题意;第2个图形,不是中心对称图形,不符合题意;第3个图形,是中心对称图形,符合题意;第4个图形,不是中心对称图形,不符合题意.故答案为:2.【知识点】中心对称图形14.已知点(a,8)与点(7,﹣8)关于原点对称,则a=﹣.【解答】解:由题意,得a+7=0,解得a=﹣7,故答案为:﹣7.【知识点】关于原点对称的点的坐标15.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°.将△ABC绕点A按逆时针方向旋转15°后得到△AB1C1,B1C1交AC于点D,如果AD=4,则△ABC的面积等于.【解答】解:∵∠ABC=90°,∠ACB=30°,∵△ABC绕点A按逆时针方向旋转15°后得到△AB1C1,∴AB=AB1,∠B1=∠ABC=90°,∠BAB1=15°,∴∠B1AD=45°,∴△AB1D是等腰直角三角形,∴AB1=AD=×4=4,∴AB=4,∵∠ABC=90°,∠ACB=30°,∴BC=AB=4,∴△ABC的面积=BC•AB=×4×4=8.故答案为:8.【知识点】旋转的性质16.如图,在△ABC中,AC=4+4,∠BAC=45°,∠ACB=30°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1,点E为线段AB中点,点P是线段AC上的动点,将△ABC绕点B按逆时针方向旋转的过程中,点P的对应点是点1,则线段EP1的最大值与最小值之差为.【解答】解:如图,过点B作BD⊥AC,D为垂足,在Rt△ABD中,∵∠ADB=90°,∠A=45°,∴AD=BD,设AD=BD=x,在Rt△BDC中,∵∠BDC=90°,BD=x,∠C=30°,∴CD=BD=x,∵AD+CD=AC,解得x=4,∴AD=BD=4,BC=2BD=8,AB=AD=4当P在AC上运动,BP与AC垂直的时候,△ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小,最小值为:EP1=BP1﹣BE=BD﹣BE=4﹣2.当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大,最大值为:EP1=BC+BE=8+2,∴EP1的最大值与最小值之差为(8+2)﹣(4﹣2)=4+4.故答案为4+4.【知识点】勾股定理、旋转的性质三、解答题(共6小题)17.把三角形绕A点按顺时针方向旋转90°.画出旋转后的图形.【解答】解:如图,△AB′C′为所作.【知识点】作图-旋转变换18.已知点P(2x,y2+4)与Q(x2+1,﹣4y)关于原点对称,求x+y的值.【解答】解:∵点P(2x,y2+4)与Q(x2+1,﹣4y)关于原点对称,∴x2+1+2x=0,y2+4﹣4y=0,∴(x+1)2=0,(y﹣2)2=0,解得:x=﹣1,y=2,∴x+y=1.【知识点】关于原点对称的点的坐标19.如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)哪两个图形成中心对称?(2)已知△ADC的面积为4,求△ABE的面积;(3)已知AB=5,AC=3,求AD的取值范围.【解答】解:(1)图中△ADC和三角形EDB成中心对称;(2)∵△ADC和三角形EDB成中心对称,△ADC的面积为4,∴△EDB的面积也为4,∵D为BC的中点,∴△ABD的面积也为4,所以△ABE的面积为8;(3)∵在△ABD和△CDE中,,∴△ABD≌△CDE(SAS),∴AB=CE,AD=DE∵△ACE中,AC﹣AB<AE<AC+AB,∴2<AE<8,∴1<AD<4.【知识点】中心对称20.四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=3,AB=7,求(1)指出旋转中心和旋转角度;(2)求DE的长度;(3)BE与DF的位置关系如何?请说明理由.【解答】解:(1)根据正方形的性质可知:△AFD≌△AEB,即AE=AF=3,∠EAF=90°,∠EBA=∠FDA;可得旋转中心为点A;旋转角度为90°或270°;(2)DE=AD﹣AE=7﹣3=4;(3)∵∠EAF=90°,∠EBA=∠FDA,∴延长BE与DF相交于点G,则∠GDE+∠DEG=90°,∴BE⊥DF,即BE与DF是垂直关系.【知识点】旋转的性质、正方形的性质21.如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,3),点B在第一象限,∠OAB的平分线交x轴于点P,把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD,连接DP.求:DP的长及点D的坐标.【解答】解:∵△AOB是等边三角形,∴∠OAB=60°,∵△AOP绕着点A按逆时针方向旋转边AO与AB重合,∴旋转角=∠OAB=∠P AD=60°,AD=AP,∴△APD是等边三角形,∴DP=AP,∠P AD=60°,∵A的坐标是(0,3),∠OAB的平分线交x轴于点P,∴∠OAP=30°,AP==2,∴DP=AP=2,∵∠OAP=30°,∠P AD=60°,∴∠OAD=30°+60°=90°,∴点D的坐标为(2,3).【知识点】坐标与图形变化-旋转22.如图,△ABC是等边三角形,D是BC边的中点,以D为顶点作一个120°的角,角的两边分别交直线AB,AC于M,N两点,以点D为中心旋转∠MDN(∠MDN的度数不变),若DM与AB垂直时(如图①所示),易证BM+CN=BD.(1)如图②,若DM与AB不垂直时,点M在边AB上,点N在边AC上,上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;(2)如图③,若DM与AB不垂直时,点M在边AB上,点N在边AC的延长线上,上述结论是否成立?若不成立,请写出BM,CN,BD之间的数量关系,不用证明.【解答】解:(1)结论BM+CN=BD成立,理由如下:过点D作DE∥AC交AB于E,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵DE∥AC,∴∠BED=∠A=60°,∠BDE=∠C=60°,∴∠B=∠BED=∠BDE=60°,∴△BDE是等边三角形,∠EDC=120°,∴BD=BE=DE,∠EDN+∠CDN=120°,∵∠EDM+∠EDN=∠MDN=120°,∴∠CDN=∠EDM,∵D是BC边的中点,∴DE=BD=CD,在△CDN和△EDM中,,∴△CDN≌△EDM(ASA),∴CN=EM,∴BD=BE=BM+EM=BM+CN;(2)上述结论不成立,BM,CN,BD之间的数量关系为:BM﹣CN=BD;理由如下:过点D作DE∥AC交AB于E,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∴∠NCD=120°,∵DE∥AC,∴∠BED=∠A=60°,∠BDE=∠C=60°,∴∠B=∠BED=∠BDE=60°,∴△BDE是等边三角形,∠MED=∠EDC=120°,∴BD=BE=DE,∠NCD=∠MED,∠EDM+∠CDM=120°,∵∠CDN+∠CDM=∠MDN=120°,∴∠CDN=∠EDM,∵D是BC边的中点,∴DE=BD=CD,在△CDN和△EDM中,,∴△CDN≌△EDM(ASA),∴CN=EM,∴BD=BE=BM﹣EM=BM﹣CN,∴BM﹣CN=BD.【知识点】含30度角的直角三角形、等边三角形的性质、旋转的性质、全等三角形的判定与性质。
24.4.2 圆锥的侧面积和全面积一、选择题(共18小题)1.已知圆锥的底面半径为6cm,高为8cm,则这个圆锥的母线长为()A.12cm B.10cm C.8cm D.6cm2.一个圆锥的母线长是9,底面圆的半径是6,则这个圆锥的侧面积是()A.81πB.27πC.54πD.18π3.用一圆心角为120°,半径为6cm的扇形做成一个圆锥的侧面,这个圆锥的底面的半径是()A.1cm B.2cm C.3cm D.4cm4.若圆锥的侧面展开图为半圆,则该圆锥的母线l与底面半径r的关系是()A.l=2r B.l=3r C.l=r D.5.如图,圆锥形的烟囱底面半径为15cm,母线长为20cm,制作这样一个烟囱帽所需要的铁皮面积至少是()A.1500πcm2B.300πcm2 C.600πcm2 D.150πcm26.在学校组织的实践活动中,小新同学用纸板制作了一个圆锥模型,它的底面半径为1,高为2,则这个圆锥的侧面积是()A.4πB.3πC.2πD.2π7.用一个圆心角为120°,半径为2的扇形作一个圆锥的侧面,则这个圆锥的底面圆半径为()A.B.C.D.8.一个圆锥的侧面展开图是半径为R的半圆,则该圆锥的高是()A.R B.C.D.9.一个几何体的三视图如图所示,这个几何体的侧面积为()A.2πcm2B.4πcm2C.8πcm2D.16πcm210.底面半径为4,高为3的圆锥的侧面积是()A.12πB.15πC.20πD.36π11.已知圆锥的母线长为6cm,底面圆的半径为3cm,则此圆锥侧面展开图的圆心角是()A.30°B.60°C.90°D.180°12.如图,圆锥的侧面积为15π,底面积半径为3,则该圆锥的高AO为()A.3 B.4 C.5 D.1513.如图是一个几何体的三视图,则这个几何体的侧面积是()A.πcm2B.2πcm2C.6πcm2D.3πcm214.如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12πD.(4+4)π15.用一个圆心角为120°,半径为3的扇形作一个圆锥的侧面,则这个圆锥的底面半径为()A.B.1 C.D.216.一个圆锥的高为4cm,底面圆的半径为3cm,则这个圆锥的侧面积为()A.12πcm2B.15πcm2C.20πcm2D.30πcm217.如图,圆锥的母线长为2,底面圆的周长为3,则该圆锥的侧面积为()A.3πB.3 C.6πD.618.如图,圆锥模具的母线长为10cm,底面半径为5cm,则这个圆锥模具的侧面积是()A.10πcm2B.50πcm2C.100πcm2 D.150πcm2二、填空题(共12小题)19.若圆锥的母线长为5cm,底面半径为3cm,则它的侧面展开图的面积为______cm2(结果保留π)20.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为______cm.21.如图,在一张正方形纸片上剪下一个半径为r的圆形和一个半径为R的扇形,使之恰好围成图中所示的圆锥,则R与r之间的关系是______.22.有一圆锥,它的高为8cm,底面半径为6cm,则这个圆锥的侧面积是______cm2.(结果保留π)23.如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为______.24.一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为______.(结果保留π)25.已知圆锥的底面半径是4,母线长是5,则该圆锥的侧面积是______(结果保留π).26.如图,圆锥的底面半径OB长为5cm,母线AB长为15cm,则这个圆锥侧面展开图的圆心角α为______度.27.圆锥的底面半径是2cm,母线长6cm,则这个圆锥侧面展开图的扇形圆心角度数为______度.28.如图,有一直径是米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:(1)AB的长为______米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为______米.29.已知圆锥的底面直径为20cm,母线长为90cm,则圆锥的表面积是______cm2.(结果保留π)30.如图是一个几何体的三视图,这个几何体是______,它的侧面积是______(结果不取近似值).24.4.2 圆锥的侧面积和全面积答案一、选择题(共18小题)1.B;2.C;3.B;4.A;5.B;6.B;7.D;8.D;9.B;10.C;11.D;12.B;13.A;14.C;15.B;16.B;17.B;18.B;二、填空题(共12小题)19.15π;20.6;21.R=4r;22.60π;23.300π;24.24π;25.20π;26.120;27.120;28.1;;29.1000π;30.圆锥;2π;。
第二十五章概率初步__随机事件与概率__25.1.1随机事件第1课时随机事件1.下列事件中,是不可能事件的是(D)A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°2.下列不是必然事件的是(C)A.角平分线上的点到角两边的距离相等B.三角形任意两边之和大于第三边C.面积相等的两个三角形全等D.三角形内心到三边距离相等3.掷一个质地均匀且六个面上分别刻有1到6的点数的正方体骰子,如图25-1-1.观察向上的ー面的点数,下列属必然事件的是(B)图25-1-1A.出现的点数是7B.出现的点数不会是0C.出现的点数是2 D.出现的点数为奇数【解析】A是不可能事件,B是必然事件,C,D是随机事件.4.下列事件:①在足球赛中,弱队战胜强队;②抛掷一枚硬币,落地后正面朝上;③任取两个正整数,其和大于1;④长分别为3厘米,5厘米,9厘米的三条线段能围成一个三角形.其中确定事件的个数是(B)A.1个B.2个C.3个D.4个5.下列事件中,属于不可能事件的是(A)A.某个数的绝对值小于0B.某个数的相反数等于它本身C.某两个数的和小于0D.某两个数的积大于0【解析】A是不可能事件,任何一个实数的绝对值大于或等于0,B,C,D是随机事件.6.有两个事件,事件A:367人中至少有2人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面点数为偶数.下列说法正确的是(D)A.事件A、B都是随机事件B.事件A、B都是必然事件C.事件A是随机事件,事件B是必然事件D.事件A是必然事件,事件B是随机事件【解析】事件A:一年最多有366天,所以367人中至少有2人的生日相同,是必然事件;事件B:抛掷一枚均匀的骰子,朝上的面点数可能为1,2,3,4,5,6共6种情况,点数为偶数是随机事件.7.“a是实数,│a│≥0”这一事件是(A)A.必然事件B.不确定事件C.不可能事件D.随机事件8.下列事件中是随机事件的是(D)A.度量四边形的内角和为180°B.通常加热到100℃,水沸腾C.袋中有2个黄球,3个绿球,共5个球,随机摸出一个球是红球D.抛掷一枚硬币两次,第一次正面向上,第二次反面向上【解析】A选项是不可能事件,故本选项错误;B选项是必然事件,故本选项错误;C选项是不可能事件,故本选项错误;D选项是随机事件,故本选项正确.9.下列事件为必然事件的是(D)A.小王参加本次数学考试,成绩是150分B.某射击运动员射靶一次,正中靶心C.打开电视机,CCTV第一套节目正在播放新闻D.口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球10.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是(D) A.3个B.不足3个C.4个D.5个或5个以上11.下列事件分别是三类事件(必然事件、不可能事件、随机事件)中的哪种事件?(1)小明身高达到6米.__不可能事件__(2)将一个普通玻璃杯用力摔到水泥地上,玻璃杯碎了.__必然事件__(3)袋中有9个球,其中有4个黑球,5个白球,从中任意摸出一球,摸到白球.__随机事件__(4)小明将朋友的电话号码忘了,他随意拨了几个数字,电话通了,正好是他朋友家.__随机事件__12.从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M:“这个四边形是等腰梯形”.下列判断正确的是(B)A.事件M是不可能事件B.事件M是必然事件C.事件M是随机事件D.事件M是不确定事件13.一个不透明的布袋里装着标有1~10的10个完全相同的球,从中随机摸出一个球,下列事件中哪些是必然事件,哪些是不可能事件,哪些是随机事件?A.标号是奇数B.标号大于3C.标号是5的倍数D.标号是7的倍数E.标号既是3的倍数又是5的倍数F.标号是正数G.标号大于10H.标号是负数解:必然事件:F;不可能事件:E,G,H;随机事件:A,B,C,D.14.在一个不透明的口袋中装着大小、外形等一模一样的5个红球,3个蓝球和2个白球,它们在口袋中被搅匀了,请判断以下事件是随机事件,还是必然事件,或是不可能事件,并说明理由.(1)从口袋中任意取出1个球,是一个白球;(2)从口袋中一次任意取出5个球,全是蓝球;(3)从口袋中一次任意取出5个球,只有蓝球和白球,没有红球;(4)从口袋中一次任意取出6个球,恰好红、蓝、白三种颜色的球都齐了;(5)从口袋中一次任意取出9个球,恰好红、蓝、白三种颜色的球都齐了.【解析】注意红球、蓝球、白球的个数分别是5个,3个,2个.解:(1)口袋中有红、蓝、白三种颜色的球,从中任意取出一个,这三种颜色的球都有可能被取出,故是一个白球是随机事件;(2)因为口袋中只有3个蓝球,要从口袋取出5个蓝球是不可能的,故全是蓝球是不可能事件;(3)因为口袋中有3个蓝球、2个白球,如果把这5个球全部取出,则取出的球中就只有蓝球和白球,没有红球,但若是其他情况,则取出的5个球中就不只是蓝球和白球,所以是随机事件;(4)从口袋中取出的6个球中,如果3个红球,2个蓝球,1个白球,则红、蓝、白三种颜色的球都齐了,但如果是5个红球,1个蓝球这种情况,则红、蓝、白三种颜色的球就没有齐,所以这种情况是随机事件;(5)因为口袋中共有10个球,从中取出9个球,只有一个没有取出,这一个球是红、蓝、白三种颜色的球都有可能,而这三种球中任意一种球如果只有一个没有取出,则必然有球已取出,故取出的球中红、蓝、白三种颜色的球都有,所以这种情况是必然事件.15.某超级市场失窃,大量的商品在夜间被罪犯用汽车运走,三个嫌疑犯被警察局传讯,警察局已经掌握了以下事实:(1)罪犯不在A,B,C三人之外;(2)C作案时总得有A作从犯;(3)B不会开车.在此案中能肯定的作案对象是(A) A.嫌疑犯A B.嫌疑犯BC.嫌疑犯C D.不能肯定任何一个【解析】由于B不会开车,则A,C中至少有一人会开车,若C或B作案,则A一定在;其他的情况中A也一定在,所以能肯定的作案对象是A.第2课时随机事件的可能性1.掷一枚均匀的骰子,前5次朝上的点数恰好是1~5,则第6次朝上的点数(D)A.一定是6B.一定不是6C.是6的可能性大于是1~5中的任意一个数的可能性D.是6的可能性等于是1~5中的任意一个数的可能性【解析】掷一枚均匀的骰子是随机事件,与前面次数无关,故是6的可能性等于是1~5中的任意一个数的可能性.2.掷一枚普通的正方体骰子7次,至少有两次的结果一样,这是(C) A.不可能的B.可能的C.必然的D.不太可能的【解析】正方体骰子的点数只有1,2,3,4,5,6,共6种,掷7次,一定至少有两次结果一样,故选C.3.下列说法正确的是(B)A.将冰棒放入温水中,冰棒不会慢慢融化B.抛掷一枚骰子一次,每一面朝上的可能性都一样C.小明上次数学测验在班上排第一名,这次一定又是第一名D.连续四次抛掷硬币,四次都是反面朝上是不可能的4.一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是(D)A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球与摸到白球的可能性相等D.摸到红球比摸到白球的可能性大【解析】A.摸到红球是随机事件,故此选项错误;B.摸到白球是随机事件,故此选项错误;C.摸到红球与摸到白球的可能性不相等,根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故此选项错误;D.根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故此选项正确,故选D.5.下列每一个不透明袋子中都装有若干红球和白球(除颜色外其他均相同).第一个袋子:红球1个,白球1个;第二个袋子:红球1个,白球2个;第三个袋子:红球2个,白球3个;第四个袋子:红球4个,白球10个.分别从中任意摸出一个球,摸到红球可能性最大的是(A)A.第一个袋子B.第二个袋子C.第三个袋子D.第四个袋子【解析】第一个袋子摸到红球的可能性=1 2;第二个袋子摸到红球的可能性=13;第三个袋子摸到红球的可能性=25;第四个袋子摸到红球的可能性=414=2 7.6.下列说法正确的是(C)A.如果一件事发生的可能性达到99.999 9%,说明这件事必然发生B.如果一事件不是不可能事件,说明此事件是不确定事件C.可能性的大小与不确定事件有关D.如果一事件发生的可能性为百万分之一,那么这事件是不可能事件【解析】A、如果一件事发生的可能性达到99.999 9%,说明这件事为随机事件,发生的可能性较大,不一定必然发生,故错误;B、如果一事件不是不可能事件,可能是必然事件,也可能是随机事件,故错误;C、可能性的大小与不确定事件有关,正确;D、如果一事件发生的可能性为百万分之一,那么这个事件发生的可能性较小,是随机事件,故错误.7.如图25-1-2,在一长方形内有对角线长分别为2和3的菱形,边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的可能性较大的是(B)A.落在菱形内B.落在圆内C.落在正六边形内D.一样大图25-1-2【解析】菱形的面积是12×2×3=3;正六边形的面积是6×34=332;圆的面积是π.∵π>3>332,∴圆的面积最大.∴一点随机落在这三个图形内的可能性较大的是落在圆内.8.有6张卡片,每张卡片上都写有一个数字,分别是1,2,3,4,4,4,把它们背面朝上,则摸到写有数字__4__的卡片的可能性最大.【解析】6张卡片中写有数字4的卡片最多.9.有一只蚂蚁在如图25-1-3的圆上爬来爬去,两圆半径分别为1和2,则蚂蚁最终停留在白色区域的可能性__>__(填“>”“<”或“=”)停留在灰色区域的可能性.图25-1-3【解析】灰色区域的面积为π×12=π,白色区域的面积为π×22-π×12=3π.∵3π>π,∴蚂蚁停留在白色区域的可能性大于停留在灰色区域的可能性.10.如图25-1-4是几个转盘,若分别用它们做转盘游戏,你认为每个转盘转出黄色和绿色的可能性相同吗?图25-1-4解:(1)不同,绿色可能性大;(2)相同;(3)相同;(4)不同,绿色可能性大.11.袋子中装有3个白球和2个红球,每个球除颜色外都相同,从袋子中任意摸出一个球,摸到红球的可能性大还是摸到白球的可能性大?解:摸到白球的可能性大.12.如图25-1-5,第一排表示了各盒中球的情况,请你用第二排的数的范围来描述摸到蓝球的可能性大小,并连起来.图25-1-5解:如图所示:0个蓝球,8个红球中摸到蓝球的可能性大小是0;1个蓝球,7个红球中摸到蓝球的可能性大小是1 8;4个蓝球,4个红球中摸到蓝球的可能性大小是1 2;7个蓝球,1个红球中摸到蓝球的可能性大小是7 8;8个蓝球,0个红球中摸到蓝球的可能性大小是1.13.从A,B,C,D四位同学中任选2人参加学校演讲比赛,一共有几种不同的可能性?并列举各种可能的结果.解:一共有6种不同的可能性,分别是AB,AC,AD,BC,BD,CD.14.请用适当的语言来描述以下词语所反映事件的发生情况:①十拿九稳②长生不老③水滴石穿④海枯石烂⑤东边日出西边雨⑥树倒猢狲散⑦大海捞针解:①随机事件(可能性较大)②不可能事件③必然事件④不可能事件⑤随机事件(可能性较小)⑥必然事件⑦随机事件(可能性极小)。