复合函数求导公式
- 格式:ppt
- 大小:847.61 KB
- 文档页数:28
复合导数求导公式导数是微积分中的重要概念之一,用于描述函数在某一点的变化率。
在计算导数时,我们经常需要使用复合函数,即一个函数作为另一个函数的输入。
复合导数求导公式是用于计算复合函数导数的工具。
在复合函数中,由于函数之间存在依赖关系,因此需要使用链式法则来计算复合导数。
链式法则是指导数的乘积规则,它告诉我们如何计算复合函数的导数。
设有函数f(x)和g(x),其中g(x)是f(x)的内函数。
如果g(x)是可导的,且f(x)在x点可导,则复合函数F(x) = f[g(x)]在x点的导数可以由链式法则得到:F'(x) = f'[g(x)] · g'(x)其中,f'(x)表示f(x)的导数,g'(x)表示g(x)的导数。
这个公式告诉我们,当我们要计算复合函数在某一点的导数时,首先需要计算外函数的导数,然后乘以内函数的导数。
通过这个公式,我们可以计算各种复合函数的导数。
下面将介绍一些常见的例子。
1. 复合函数的求导假设我们要求函数F(x) = (3x^2 + 2x)^3的导数。
首先,我们可以将F(x)表示为复合函数,f(g(x))的形式,其中f(x) = x^3,g(x) = 3x^2 + 2x。
根据链式法则公式,我们可以得到:F'(x) = f'[g(x)] · g'(x)f'(x) = 3x^2 的导数为 6x,g'(x) = (3x^2 + 2x)的导数为 6x + 2。
将这些结果代入公式,我们可以得到复合函数F(x)的导数:F'(x) = 6x · (6x + 2)通过化简运算,我们最终得到F(x)的导数为:F'(x) = 36x^2 + 12x2. 链式法则的推广上述例子介绍了链式法则的基本形式,但实际上,链式法则还可以推广到更高阶的复合函数。
例如,假设我们有一个三次复合函数F(x) = [f(g(h(x)))]^2,其中f(x),g(x),h(x)分别为函数。
复合函数求导公式有哪些
有很多的同学是非常的想知道,复合函数求导公式是什幺,小编整理了
相关信息,希望会对大家有所帮助!
1 复合函数如何求导规则:1、设u=g(x),对f(u)求导得:f’(x)=f’(u)*g’(x);
2、设u=g(x),a=p(u),对f(a)求导得:f’(x)=f’(a)*p’(u)*g’(x);
拓展:
1、设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠Ø,那幺对于Mx∩Du内的任意一个x 经过u;有唯一确定的y 值与之对应,则变量x 与y 之间通过变量u 形成的一种函数关系,这种函数称为复合函数(composite function),记为:y=f[g(x)],其中x 称为自变量,u 为中间变量,y 为因变量(即函数)。
2、定义域:若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数
y=f[g(x)]的定义域是D= {x|x∈A,且g(x)∈B} 综合考虑各部分的x 的取值范围,取他们的交集。
3、周期性:设y=f(u)的最小正周期为T1,μ=φ(x)的最小正周期为T2,则
y=f(μ)的最小正周期为T1*T2,任一周期可表示为k*T1*T2(k 属于R+).
4、单调(增减)性的决定因素:依y=f(u),μ=φ(x)的单调性来决定。
即“增+增=增;减+减=增;增+减=减;减+增=减”,可以简化为“同增异减”。
1 复合函数求导法则Y=f(u),U=g(x),则y′=f(u)′*g(x)′
例1.y=Ln(x),Y=Ln(u),U=x,
y′=f(u)′*g(x)′=[1/Ln(x)]*(x)′=[1/Ln(x)]*(3x)。
复合函数求导公式16个求导是微积分中的一个重要概念,是用来确定函数在其中一点的变化率的工具。
而复合函数则是由多个函数组合而成的新函数,其求导过程相对复杂一些。
下面将介绍16个常见的复合函数求导公式。
1.设有函数y=f(u),u=g(x),则y=f(g(x))。
对这个复合函数求导,可以使用链式法则。
链式法则给出了复合函数求导的一个基本公式:(dy/dx) = (dy/du) * (du/dx)这个公式表示,对于复合函数y=f(g(x)),其导数等于f'(g(x))*g'(x)。
2.平方函数的链式法则:设有函数y=f(u)=u^2,u=g(x),则y=f(g(x))=g(x)^2、求导的结果为:(dy/dx) = 2 * g(x) * g'(x)3.倒数函数的链式法则:设有函数y=f(u)=1/u,u=g(x),则y=f(g(x))=1/g(x)。
求导的结果为:(dy/dx) = -g'(x) / (g(x))^24.指数函数的链式法则:设有函数y=f(u)=e^u,u=g(x),则y=f(g(x))=e^(g(x))。
求导的结果为:(dy/dx) = g'(x) * e^(g(x))5. 对数函数的链式法则:设有函数y=f(u)=ln(u),u=g(x),则y=f(g(x))=ln(g(x))。
求导的结果为:(dy/dx) = g'(x) / g(x)6. 正弦函数的链式法则:设有函数y=f(u)=sin(u),u=g(x),则y=f(g(x))=sin(g(x))。
求导的结果为:(dy/dx) = g'(x) * cos(g(x))7. 余弦函数的链式法则:设有函数y=f(u)=cos(u),u=g(x),则y=f(g(x))=cos(g(x))。
求导的结果为:(dy/dx) = -g'(x) * sin(g(x))8. 正切函数的链式法则:设有函数y=f(u)=tan(u),u=g(x),则y=f(g(x))=tan(g(x))。
高数复合函数求导公式高数复合函数求导公式:一、概念1. 什么是复合函数?复合函数是指有两个或多个函数构成的函数,它的定义域为第一个函数的定义域,把第一个函数的输出作为第二个函数的输入,这样就定义出了新的函数,即复合函数。
2. 什么是求导公式?求导公式是指用来求一个函数的导数的公式,在数学上是表示求微分的方法。
通常使用微积分的基本公式和一些技巧来计算一个函数的一阶、二阶、三阶及以上导数,得出特定函数的导数。
二、求导公式1. 当复合函数中只有两个函数的时候:复合函数的求导公式使用链式法则,为:f’(x)= f(g(x))’=f’(g(x))*g’(x),其中f’(g(x))表示第一个函数的导数,g’(x)表示第二个函数的导数。
2. 当复合函数中有三个或者更多函数时:复合函数的求导公式为f’(x)=f(g(h(x))’=f’(g(h(x))*g’(h(x))*h’(x),其中f’(g(h(x)))表示复合函数第一个函数的导数,g’(h(x))表示复合函数的第二个函数的导数,h’(x)表示复合函数的第三个函数的导数。
三、注意事项1. 求导公式是求复合函数的导数的一种数学方法,它分别通过计算复合函数的各个部分,得出复合函数的导数。
2. 在计算复合函数的求导公式时,必须要清楚不同的函数的定义域,以及函数的各项参数。
3. 要将复合函数分解为不同函数,再分别求每一部分函数的导数,然后将所有的导数求乘积,就能得到复合函数的导数。
4. 如果复合函数的函数部分比较多,那么就要有相应的复杂的求导公式,计算的时候也会很复杂,所以可以使用乘法和傅里叶变换的方法来计算复合函数的导数。
四、总结综上所述,复合函数求导公式一般有两种,对于复合函数中只有两个函数的时候是f’(x)= f(g(x))’=f’(g(x))*g’(x),而如果有三个或者更多函数,则理论上采用f’(x)=f(g(h(x))’=f’(g(h(x))*g’(h(x))*h’(x)。
复合函数求导公式推导
复合函数的求导公式可以通过链式法则进行推导。
设有函数 y = f(u) 和 u = g(x),其中 y 是一个关于 x 的函数。
根据链式法则,y 对 x 的导数可以表示为:
dy/dx = dy/du * du/dx
其中,dy/du 表示函数 y 对中间变量 u 的导数,du/dx 表示中间变量 u 对自变量 x 的导数。
首先,求出 dy/du,即函数 y 对中间变量 u 的导数。
这可以通过对函数 y 使用普通的求导方法来得到。
然后,求出 du/dx,即中间变量 u 对自变量 x 的导数。
同样,可以使用普通的求导方法来计算。
最后,将 dy/du 和 du/dx 相乘得到 dy/dx,即函数 y 对自变量 x 的导数。
综上所述,复合函数的求导公式可以表示为:
dy/dx = (dy/du) * (du/dx)
这就是复合函数求导的公式。
复合函数求导法则复合函数是由两个或多个函数构成的函数,形式为f(g(x)),其中g(x)是一个函数,f(u)是一个与u相关的函数。
在求复合函数的导数时,我们可以使用复合函数求导法则,该法则有三个部分:链式法则,反链式法则和迭代法则。
1.链式法则:链式法则适用于复合函数f(g(x)),其中g(x)是一个内层函数,f(u)是一个外层函数。
链式法则的公式如下:[f(g(x))]'=f'(g(x))*g'(x)例如,我们考虑函数f(u) = sin(u^2),其中g(x) = x^2、我们先计算g'(x),然后计算f'(u),最后使用链式法则计算出f(g(x))的导数。
首先,计算g'(x)如下:g'(x)=2x接下来,计算f'(u)如下:f'(u) = cos(u^2) * 2u最后,使用链式法则计算f(g(x))的导数如下:[f(g(x))]'=f'(g(x))*g'(x)= cos((x^2)^2) * 2(x^2)= cos(x^4) * 2x^2所以,f(g(x)) = sin(x^4) 的导数为 cos(x^4) * 2x^22.反链式法则:反链式法则适用于复合函数f(g(x)),其中g(x)是一个外层函数,f(u)是一个内层函数。
反链式法则的公式如下:[f(g(x))]'=f'(u)*u'例如,我们考虑函数f(u) = u^3,其中g(x) = sin(x)。
我们可以直接计算出g'(x)和f'(u),然后使用反链式法则计算出f(g(x))的导数。
首先,计算g'(x)如下:g'(x) = cos(x)接下来,计算f'(u)如下:f'(u)=3u^2最后,使用反链式法则计算f(g(x))的导数如下:[f(g(x))]'=f'(u)*u'= 3(sin(x))^2 * cos(x)= 3sin^2(x) * cos(x)所以,f(g(x)) = sin^3(x) 的导数为 3sin^2(x) * cos(x)。
2)()()()(v v u v u v u u c cu v u v u v u v u v u '-'=''=''+'='⋅'±'='±10;2.(),'();3.()sin ,'()cos ;4.()cos ,'()sin ;5.(),'()ln (0);6.(),'();17.()log ,'()(0,1);ln 8.n n x x x x a f x x f x nx f x x f x x f x x f x x f x a f x a a a f x e f x e f x x f x a a x a -======-==>====>≠公式若则公式若则公式若则公式若则公式若则公式若则且公式若1()ln ,'();f x x f x x==则 二、复合函数的导数若u=u(x),v=v(x)在x 处可导,则三、基础运用举例1 y =e sin x cos(sin x ),则y ′(0)等于( )A 0B 1C -1D 2 2 经过原点且与曲线y =59++x x 相切的方程是( ) A x +y =0或25x +y =0 B x -y =0或25x +y =0 C x +y =0或25x -y =0 D x -y =0或25x -y =0 3 若f ′(x 0)=2,kx f k x f k 2)()(lim 000--→ =_________4 设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=_________5 已知曲线C 1:y =x 2与C 2:y =-(x -2)2,直线l 与C 1、C 2都相切,求直线l 的方程6 求函数的导数(1)y =(x 2-2x +3)e 2x ;(2)y =31xx -四、综合运用举例例1求函数的导数)1()3( )sin ()2( cos )1(1)1(2322+=-=+-=x f y x b ax y xx x y ω 22222(1)(1)cos (1)[(1)cos ](1):(1)cos x x x x x x y x x''-+--+'=+-解 2222222222222222(1)cos (1)[(1)cos (1)(cos )](1)cos (1)cos (1)[2cos (1)sin ](1)cos (21)cos (1)(1)sin (1)cos x x x x x x x x xx x x x x x x x xx x x x x x x x''-+--+++=+-+---+=+--+-+=+(2)解 y =μ3,μ=ax -b sin 2ωx ,μ=av -byv =x ,y =sin γ γ=ωxy ′=(μ3)′=3μ2·μ′=3μ2(av -by )′=3μ2(av ′-by ′)=3μ2(av ′-by ′γ′)=3(ax -b sin 2ωx )2(a -b ωsin2ωx ) 【注】题中三角函数求导较麻烦。
复合函数求导公式如何求导函数1.复合函数的定义复合函数是指一个函数的输入是另一个函数的输出。
设函数y=f(u)和u=g(x),则复合函数可以表示为y=f(g(x))。
2.链式法则链式法则描述了复合函数的导数与内外函数的导数之间的关系。
设函数y=f(u)和u=g(x),则复合函数y=f(g(x))的导数可以表示为:dy/dx = dy/du * du/dx3.复合函数的导数计算根据链式法则,求复合函数的导数需要分别计算内外两个函数的导数,并将其乘以一起。
为了方便计算,将内外函数分别用u表示。
假设f(u)的导数为df/du,g(x)的导数为dg/dx,复合函数y=f(g(x))的导数dy/dx可以表示为:dy/dx = (df/du) * (dg/dx)这里有一个例子来帮助理解复合函数的求导过程:4.例子假设有函数y=(x^2+1)^3,将其拆分为内外两部分,即令u=(x^2+1),f(u)=u^3、我们可以看到,y是f(u)的复合函数。
首先,计算内外两个函数的导数。
对于外函数f(u)=u^3,其导数df/du=3u^2对于内函数u=(x^2+1),其导数du/dx=2x。
然后,将内外函数的导数代入链式法则,并将其相乘,得到复合函数的导数。
dy/dx = (df/du) * (du/dx)=(3u^2)*(2x)注意,这里的u实际上是内函数的值,即u=(x^2+1),所以将其代入式子中。
=3(x^2+1)^2*2x最终,我们得到复合函数y=(x^2+1)^3的导数为dy/dx =3(x^2+1)^2 * 2x。
当然,这只是一个简单的例子,实际问题中可能会更加复杂。
不过,不管是什么样的复合函数,都可以通过链式法则来求导。
只需要先计算内外函数的导数,然后将其代入公式即可。
总之,复合函数求导公式通过链式法则,将复合函数的导数化简为内外函数导数的乘积。
通过理解和应用这一公式,可以在实际问题中简化求导计算,提高计算效率。
复合函数如何求导公式求复合函数的导数是很重要的数学技能,它可以帮助研究者深入了解函数的行为,并有助于识别数字模型的结构特性和关系。
复合函数的求导公式是对满足极限定义的复合函数求导的公式,它可以用来帮助我们快速准确地求出复合函数的导数。
当我们遇到超出基本步骤求导知识的复杂函数时,这里可以用到复合函数的求导公式。
基本复合函数求导公式基本复合函数求导公式可以用来快速地求出复合函数的导数,例如,对于复合函数 f(x)=g(h(x)),其具体求导形式如下,`df(x)/dx=df(h(x))/dh(x)*dh(x)/dx`这里,f(x)=g(h(x))是基本复合函数的形式,df(x)表示函数f(x)的导数,dh(x)表示函数h(x)的导数。
在实际运用时,我们需要将f(x)和h(x)分别替换掉,便可以简化此形式的求导。
注意:这里求导不需要考虑函数f(x)和h(x)的解析解,只需要考虑它们的表达式即可,所以用此求导公式时只需要找到它们的对应关系即可,即:f(x)=g(h(x))就可以简化成df(x)/dx=df(h(x))/dh(x)*dh(x)/dx。
推广复合函数求导公式除了基本复合函数的求导公式,还有更复杂的推广复合函数求导公式。
例如对于复合函数f(x)=g(h(k(x))),其具体求导形式如下,`df(x)/dx=df(h(k(x)))/dh(k(x))*dh(k(x))/dk(x)*dk(x)/dx`其中,f(x)=g(h(k(x)))也是复合函数的形式,df(x)与上例相同,dh(x)与dk(x)分别表示函数h(x)和k(x)的导数,这里也可以把f(x)和h(x)、k(x)分别按照要求替换掉,并简化此形式的求导。
嵌套复合函数求导公式当遇到嵌套的复合函数时,例如f(x)=g(h(f(x))),其具体求导形式如下,`df(x)/dx=df(g(h(f(x))))/dg(h(f(x)))*dg(h(f(x))/dh(f(x))*dh(f(x))/df(x)+df(h(f(x)))/dh(f(x))*dh(f(x))/df(x)`意义同上。