虹桥分布式能源中心供能方案介绍
- 格式:pdf
- 大小:849.50 KB
- 文档页数:22
35虹桥分布式区域集中供能系统建成后,其能效可由传统的40%,提高到80%左右,二氧化碳排放量也将减少36%虹桥新能源:探路低碳商务区文‖上海国资记者 孙文婧雾霾锁国之际,如何有效改善能源结构、提高环境质量,举国关切。
虹桥新能源公司在虹桥商务区内建立的国内首个天然气分布式区域集中供能系统,有望为中国未来高端商务区的节能减排,探索出一条新径。
瞄准方向2010年7月,由上海申虹、上海申能、中国华电、中船重工共同投资建立的上海虹桥商务区新能源投资发展有限公司(以下简称“虹桥新能源公司”)正式成立,公司注册资本1.7亿元,作为虹桥商务区核心区能源供应专营单位。
其中,申虹投资发展公司作为控股股东,占股35%。
“申虹控股新能源公司,有利于将新能源体系与整个虹桥商务区的规划建设统一起来。
”申虹投资发展有限公司董事长林桂祥表示。
实际上,虹桥新能源公司是为了实现虹桥商务区作为低碳实践区这一目标而诞生的。
公司领导层在考察了欧美国家发展已经非常成熟的天然气分布式三联供系统之后,更加明晰和坚定了公司成长与发展方向。
所谓冷热电“三联供”,是指内燃机等发电机在满足用户用电需求的同时,将发电过程产生的余热,通过梯级利用,向用户供热和供冷。
而分布式供能,则是指在用户附近就近进行能源生产和供应。
“相较于传统供能方式,三联供的能效可提高一倍以上,且具有清洁环保、削峰填谷等优点。
而相较于集中发电,分布式系统能在台风、雪灾、地震等突发事件导致大电网瘫痪的情况下,保障区域用能需求,具有安全性和可靠性。
”虹桥新能源公司董事长毛如麟对《上海国资》表示。
分布式三联供区域集中供能技术,在国外许多商务区已多有成熟案例,发展前景亦颇为明朗。
但在国内却并无成熟经验可循,社会普遍的认知程度不足,且相关配套政策尚在构建中。
这意味着,如果选择三联供,必然会承受巨大的压力和挑战。
对此,新能源公司并不畏惧。
新能源公司的坚定是有原因的。
“清洁能源分五大系统,风能、水能、光伏、地热和天然气,其中前四种是可再生能源。
- 45 -工 业 技 术0 引言分布式能源系统是以燃气及生物质能、太阳能、氢能、风力和其他清洁、可再生的能源为一次能源,在用户现场或靠近用户现场的小型或微型独立输出就地使用电、热(冷)能的系统。
一次能源经过各种转换方式组合,以最经济、最高效的方式直接向用户提供所需要的电力、空调冷水、采暖热水、生活热水、蒸汽等能源产品。
在当前单位GDP 能耗高、环境污染严重的背景下,分布式能源系统是降低综合能耗、改善环境的重要研究方向,具有能源综合利用效率高、污染物排放低、综合用能成本省等优点[1]。
1)能源综合利用效率高:通过对能量的梯级利用,系统综合能源源利用效率可达80%以上甚至更高。
2)污染物排放低:一次能源采用天然气、太阳能、风能等清洁/可再生能源,降低了污染物的排放,二氧化碳排放量减少50%以上,二氧化硫及烟尘排放量基本为零。
3)综合用能成本省:分布式能源站根据用户用能需求,定制化设计,一次能源转化率高,能源输送半径小,输送过程损耗低,可有效降低用户的综合用能成本,同时提高了用户能源的安全性和可靠性。
1 项目概况1.1 概述“上海某大厦” 位于小陆家嘴核心区,其主体建筑结构高度为580 m,总高度632 m,地上121层,地下5层,总建筑面积57.6万m 2(包括地上建筑面积38万m 2),绿化率33% 。
该项目根据该大厦餐饮区域的冷、热负荷容量及特点,在该区域适当位置有针对性地建设天然气分布式能源中心,满足该地区冷、热负荷需求。
能源中心考虑装设内燃机、热水型溴化锂机组、烟气-热水换热器及水-水板式换热器,实现冷、热、电三联供,使得清洁能源和绿色建筑得到良好融合,不但有利于大厦能源的综合利用,这对建设绿色大厦,创新能源利用方式、优化资源利用、发展绿色经济有着积极意义。
因此,能源中心工程建设对改善地区生态环境、发展低碳经济具有重大意义。
1.2 大厦用能分析1.2.1 大厦电力负荷分析该项目所在地在其周边规划建设110 kV 大厦用户站,该站主变容量为2×40 MVA,为110 kV/10 kV 的两卷变,两路电源进线分别来自于规划220 kV 即墨站和220 kV 连云站。
上海虹桥机场西区能源中心供冷系统夜间旁通管的应用及功能开发作者:夏辰玥陈功梅松来源:《科技资讯》 2012年第9期夏辰玥陈功梅松(上海虹桥国际机场能源保障部供冷供热科上海 200335)摘要:本文分析、研究上海虹桥机场能源中心实际运行中的蓄冷兼供冷工况,特别针对供冷需求较小但又是必须满足的情况。
通过实验论证、开发供冷系统夜间旁通管的功能,意图在于充分地应用供冷水泵旁通管,利用蓄冷过程中冷水机组水泵的扬程余量,同时完成蓄冷和小负荷供冷,从而降低供冷的能耗。
关键词:蓄冷兼供冷旁通管节能降耗TU9951 能源中心简介上海虹桥国际机场西区能源中心位于上海虹桥机场西航站楼北侧,为虹桥机场西航站楼、航站楼北侧预留指廊和南北两个酒店集中供冷供热,能源中心还包括供电站等其他辅助设备用房。
服务对象的建筑面积共47.3万m2,其中本期服务范围的总建筑面积为38.8万m2,规划预留的服务范围的总建筑面积为8.5万m2。
能源中心总建筑面积10214m2(包括市政院设计的S01 35kV中心变电所),最高生产类别为丙或丁类,建筑耐火等级二级,主位为多层框架结构体系,基础建设安全等级为二级,结构设计基准期为50年。
能源中心供冷系统主要由8台1900USRT冷水机组、8台790m3/h定流量一次泵、8台1250m3/h定流量冷却泵、6台1500m3/h变流量二次泵及各种附属设备组成。
供冷系统同时配有2座设计容积22000m3、设计蓄冷量55000USRTh的大容量蓄冷水罐,目前规模为亚洲第一。
供冷系统配合蓄冷水罐可实现五种设计运行模式:冷水机组单独供冷模式、蓄冷水罐单独供冷模式、冷水机组和蓄冷水罐联合供冷模式、冷水机组蓄冷兼供冷模式和蓄冷水罐蓄冷模式。
供冷系统利用夜间的谷价电能制取冷量储存在蓄冷水罐中,在第二天日间保证所蓄冷量全部使用在峰值电价时段的前提下,如有剩余可根据负荷情况安排在平值电价时段的使用,力求利益最大化地使用夜间蓄冷量。
虹桥机场能源中心供冷量与气温关系模型建立的探讨作者:徐佩荣潘雷彬茆贇马晓罗来源:《科技资讯》 2012年第9期徐佩荣1 潘雷彬1 茆赟2 马晓罗3(1. 虹桥国际机场公司能源保障部供冷供热科; 2.虹桥国际机场公司技术设备部; 3.虹桥国际机场公司能源保障部技术业务科上海 200335)摘要:本文通过虹桥机场能源中心供冷运行数据的收集,采取数学方式建立供冷量、温度、湿度三者之间的关系模式,对负荷预测进行初步探讨,通过供冷量的预估可以指导日后的每日的开机策略,优化管理和运行模式,从而实现节能的目标。
关键词:数学模型负荷预测节能P4611 前言1.1 能源中心介绍虹桥机场能源中心(供冷、供热)系统位于上海虹桥机场西航站楼北侧约300m,主要为虹桥西航站楼、南侧酒店及预留部分(航站楼北侧指廊、北侧酒店)供冷和供热。
能源中心内供冷、供热系统及配套电气10KV配电系统、服务对象的建筑面积共47.3万平方米,其中本期服务范围的总建筑面积为38.8万平方米,规划预留的服务范围的总建筑面积为8.5万平方米。
能源中心供冷系统包括冷冻系统、蓄冷系统、冷却系统、消防监控系统,其中冷冻系统包括8台约克冷水机组,8台ITT冷冻一次泵以及6台ITT变频冷冻二次泵;蓄冷系统包括2座蓄冷水罐,5台ITT蓄冷循环水泵;冷却系统包括8台组装式两联体BAC冷却塔,8台ITT冷却水泵。
能源中心的供冷系统为末端直供系统,摈弃了末端板交,最大程度减少热损失,整个冷冻水系统通过一次水泵(工频)、二次水泵系统(变频)及三次水泵系统(变频)构成循环,供冷时主要通过二次泵的变流量来满足末端的需求,二次变流量泵的变频控制由设在每个系统环路最不利处(三处)的压差值控制。
1.2 现状由于末端负荷的预测受众多因素影响,包括航班流量,建筑结构,天气情况等,末端航站楼内旅客流量的多少及室外气温情况都对用能需求造成直接的影响。
对末端负荷量进行预测,可以使我们对当日用能需求做到提前预判,并根据当前系统冷量制定合理、经济的运行策略。
上海市天然气分布式供能技术简介胡瑛汤羹上海市燃气节能技术促进中心摘要:天然气分布式供能系统是天然气领域节能、环保的技术应 用之1,近年来在国内发展迅速。
从系统的定义入手,重点介绍天然 气分布式供能系统的发展背景、技术要求、发展现状及项目案例等,进而说明其是环保低碳新常态背景下的战略新兴产业。
关键词:天然气;节能;分布式供能DOI:10.13770/ki.issn2095-705x.2017.05.002Brief Introduction on ShanghaiNatural Gas Distributed Energy Supply TechnologyHu Ying, Tang GengShanghai Gas-Fired Energy Conservation Technology Promotion CenterA b s tra c t:Natural gas distributed energy supply system is one of natural gas energy conservation and environment protection technology applications, which has developed rapidly in domestic market. The author introduces development background, technological requirement, development situation and project case study of natural gas distributed energy supply system from systematic definition. It" s a strategic emerging industry under the background of environment friendly and low carbon new normality.Key w o rd s:Natural Gas, Energy Conservation, DistributedEnergy Supply上海节能No.052017天然气是世界主要的清洁能源之一,近年来,我国天然气开发利用步伐明显加快,天然气的开 发利用正在引领着我国能源结构的变革。
三联供单机调试问题分析叶增增 张树理上海建科工程咨询有限公司摘 要: 本文着重论述虹桥能源站三联供系统单机调试, 考察调试期间发现的问题及解决方法。
以调试期间测试 的各种数据, 评判内燃机发电特性, 制冷机制冷特性 (制热特性) 及系统特性。
关键词: 冷热电三联供 单机调试问题分析Single Machine Commissioning Problem Analysis for CCHP SystemYE Zengzeng,ZHANG shuliShanghai Jianke Engineering Consulting Co.,Ltd.Abstract: This paper mainly discusses the problem and solutions discovered during the commissioning of CCHP system of Hongqiao energy station.The characteristics of the internal combustion engine,the refrigeration characteristics of refrigerating machine and the characteristics of the system are judged by the various kinds of date tasted during commissioning.Keywords: CCHP,single machine commissioning,problem analysis收稿日期: 201754作者简介: 叶增增 (1989~), 男, 硕士, 助工; 上海市闵行区同乐路 151弄29号楼601室 (201100); Email:yezengzeng@随着分布式能源系统日益受到重视, 冷热电三联 供 (Combined Cooling Heating and Power,CCHP ) 系统 应用越来越多, 其优越性受到世界各国的关注。
虹桥公共事务中心分布式供能建设的思考
吴伟炯;潘志勇
【期刊名称】《上海节能》
【年(卷),期】2011(000)002
【摘要】虹桥公共事务中心大楼位于虹桥枢纽区域内,是低碳示范区的一个重要组成部分,以后将作为虹桥管委会的办公点及交通指挥中心.为响应国家的节能减排的号召,事务中心大楼内建设了多项节能减排的示范项目,分布式供能是其中之一.项目建成后将承担大楼部分用电负荷及热负荷,通过综合利用一次能源有效减少大楼的能源消耗并减少二氧化碳排放,每年可节约标准煤275.6t,减排CO2 71.6t.
【总页数】4页(P20-23)
【作者】吴伟炯;潘志勇
【作者单位】上海齐耀动力技术有限公司;上海齐耀动力技术有限公司
【正文语种】中文
【相关文献】
1.上海虹桥商务区能源中心低碳建设探索 [J], 陈建平;沈丽华;周一军
2.第五立面的思考:上海新虹桥俱乐部和健身中心 [J], 姚金凌
3.工业建筑设计思考——以上海虹桥机场扩建工程能源中心为例 [J], 黄琪;亢智毅
4.以世博会和大虹桥建设为契机打造时尚、精品、宜商、宜居的上海国际贸易中心东虹桥重要承载区 [J], 杲云
5.我校成功举办第八届“上外贸-上发中心”上海贸易中心建设论坛之“建设虹桥商务区为国际贸易中心承载区的战略思考和对策研究”左讨会国际学术研讨会在我校举行 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
分布式供能数据中心解决方案正文:⒈引言本文档旨在提供一套详细的分布式供能数据中心解决方案,以满足不断增长的数据中心能源需求和可持续发展的要求。
通过引入分布式供能的理念和技术,我们可以实现能源的高效利用和环境友好型数据中心运营。
⒉数据中心能源需求分析⑴数据中心能源需求特点●高功率密度和持续增长的负荷要求●对能源的高度依赖和可靠性要求●高能耗和能源成本⑵数据中心能源消耗分析●服务器和IT设备的能耗●冷却系统的能耗●电力传输和转换的能耗⒊传统数据中心能源解决方案分析⑴单一电源供应●传统数据中心使用传统电力网络作为唯一的电源供应,容易出现单点故障和能源浪费问题。
⑵高效冷却系统●采用高效冷却系统可以降低数据中心的能耗和能源成本。
⑶节能设备●使用能效高的服务器和IT设备可以减少数据中心的能耗。
⒋分布式供能数据中心解决方案⑴分布式能源发电系统●引入多种分布式能源发电设备,如太阳能光伏板和风力发电机,以降低对传统电力网络的依赖。
●发展微型水电站和生物质发电技术等新能源解决方案。
⑵能源储存技术●使用高效的能源储存技术,如锂离子电池和流动电池,以平衡能源供需,并提供备用电源。
⑶智能电网技术●引入智能电网技术,实现能源的监测、管理和优化,以提高能源利用效率和可靠性。
⑷能源管理系统●开发能源管理系统,对数据中心的能耗进行实时监测和分析,以提供能源优化建议和预测。
⒌附件本文档涉及的附件包括分布式供能数据中心的技术架构图、能源消耗模型和能源管理系统示例。
⒍法律名词及注释⑴分布式能源●分布式能源是指多种能源发电设备分布在不同地点,以提供可靠的能源供应和减少能源传输损耗。
⑵微型水电站●微型水电站是指小规模的水电发电设备,通常使用河流、小溪等水资源进行发电。
⑶生物质发电技术●生物质发电技术利用生物质资源进行发电,如农作物秸秆、木屑等可再生材料。
⒎结束语本文提供了一套详细的分布式供能数据中心解决方案,通过引入分布式供能的概念和技术,可以降低数据中心的能耗和环境影响。
上海虹桥商务核心区冷热电三联供系统设计探讨本文详细介绍了上海虹桥商务核心区冷热电三联供系统的设计工作内容和设计思路,分系统探讨了CCHP系统相关技术参数,总结出三联供系统能源供应的高效稳定、低碳环保,具有示范意义。
关键字:虹桥商务核心区冷热电三联供深化设计低碳环保1概述虹桥商务核心区一期规划占地面积1.4平方公里,建筑面积大约为170万平方米,包括办公楼、酒店、商场等功能建筑。
该区域建筑密集,人流量大,各种能源的需求负荷高。
为促进其良性发展,上海市政府决定将虹桥商务区建设成低碳经济示范区,以响应国家节能减排的号召。
虹桥商务核心区(一期)的能源中心采用分布式供能与传统供能相结合的方式,由分布式供能系统作为基本负荷设备满足用户冷、热、电基本负荷,由传统供能方式作为备用和调峰。
本项目以燃气内燃机为原动机,余热溴机和余热锅炉为余热利用设备,并同时匹配电制冷和锅炉为调峰供能设备。
在满足用户用能需求,实现节能减排的同时,提高经济性和供能的可靠性、安全性。
分布式供能系统建成后,可输出电力 5.6MW、并可以同时输出利用回收发电机组余热产生的5.6MW空调冷水(6℃)或5.96MW采暖热水(95℃),实现了天然气能源的梯级利用,系统燃料一次热利用率分别达到了83.6%(供冷)和86.4%(供热)。
2 系統配置上海虹桥商务核心区能源中心-北站冷热电三联供主机房位于地上一层能源中心内,三联供系统占地面积约1200m2。
主机房西侧为三联供系统高低压配电及控制室;南侧为锅炉房;北侧三联供机房进出主通道,西侧为外挡土墙,吊装孔和泄爆口在屋顶层。
分布式供能系统由四个联供单元组成,每个联供单元包括:一台天然气内燃发电机组、烟气热水型吸收式溴化锂机组、发电机组辅助系统设备模块、溴化锂机组辅助系统设备模块以及配套辅机、管路组成。
项目采用四台美国康明斯C1400 N5C系列燃气内燃机作为三联供系统的原动机,每台燃气内燃机的发电量为1400kW,所发电量以“并网不上网”的原则并入能源中心变压器。
上海某大厦分布式能源系统方案设计研究作者:商艳飞来源:《中国新技术新产品》2020年第11期摘; 要:分布式能源系统是能源高效利用的重要形式,其运行方式具有典型的能量梯级利用特性。
该文以上海某大厦的能源使用情况为基础,设计了天然气分布式能源系统,详细介绍了分布式能源站的设备选型方式,满足了大厦的安全用电以及热负荷需求。
整个系统具有明显的经济效益与社会效益。
关键词:分布式能源系统;方案设计;商业综合体中图分类号:TU246; ; ; ; ; ; ; 文献标志码:A0 引言分布式能源系统是以燃气及生物质能、太阳能、氢能、风力和其他清洁、可再生的能源为一次能源,在用户现场或靠近用户现场的小型或微型独立输出就地使用电、热(冷)能的系统。
一次能源经过各种转换方式组合,以最经济、最高效的方式直接向用户提供所需要的电力、空调冷水、采暖热水、生活热水、蒸汽等能源产品。
在当前单位GDP能耗高、环境污染严重的背景下,分布式能源系统是降低综合能耗、改善环境的重要研究方向,具有能源综合利用效率高、污染物排放低、综合用能成本省等优点[1]。
1)能源综合利用效率高:通过对能量的梯级利用,系统综合能源源利用效率可达80%以上甚至更高。
2)污染物排放低:一次能源采用天然气、太阳能、风能等清洁/可再生能源,降低了污染物的排放,二氧化碳排放量减少50%以上,二氧化硫及烟尘排放量基本为零。
3)综合用能成本省:分布式能源站根据用户用能需求,定制化设计,一次能源转化率高,能源输送半径小,输送过程损耗低,可有效降低用户的综合用能成本,同时提高了用户能源的安全性和可靠性。
1 項目概况1.1 概述“上海某大厦” 位于小陆家嘴核心区,其主体建筑结构高度为580 m,总高度632 m,地上121层,地下5层,总建筑面积57.6万m2(包括地上建筑面积38万m2),绿化率33% 。
该项目根据该大厦餐饮区域的冷、热负荷容量及特点,在该区域适当位置有针对性地建设天然气分布式能源中心,满足该地区冷、热负荷需求。
新虹桥国际医学园区冷\热\电三联供项目的方案分析摘要:以实际工程为例,从投资和社会效益、经济效益角度,探讨冷、热、电三联供的能源供给方式在该项目中应用的可行性。
关键词:可持续发展,冷、热、电三联供,投资,效益新虹桥国际医学园区属于上海大虹桥商务区拓展区范畴。
总用地面积467 亩。
规划总建筑面积约70万平方米。
区内拟建两座三级甲等医院、两座国际医院、四座特色诊疗中心、以及保障中心、商业配套等设施。
园区内能源需求具有量大,种类多、波动大的特点。
同时上海位于长三角的核心地区,自身电力缺口较大。
以天然气为燃料的冷、热、电三联供集中供能系统近年来得到了迅速的发展。
该方式可以大幅度提高能源转换效率和减少能源输送损失。
同时天然气作为一种清洁能源,在燃烧过程中几乎没有烟尘、二氧化硫等排放,氮氧化物排放量也大大低于煤炭。
在园区内科学的、有针对性的建设以天然气为一次能源的三联供项目,既符合上海提出的“国际性、低碳、环保”的可持续发展战略目标,又在取得社会效益同时收获良好的经济效益。
1 园区设计负荷根据该园区用地面积、总建筑面积、容积率、控制高度和负荷指标,按照《公共建筑节能设计标准》(GB50189-2005)对各建筑单体的围护结构热工参数和室内空气设计参数的规定,在各月典型日逐时热负荷曲线图基础上,分析得出该区域的空调冷、热负荷。
绘制的全年冷、热负荷延时曲线见图1-1、图1-2。
图1-1供冷期负荷延时曲线图从图1-1可以看出,冷负荷大于20MW的时间数为1800h左右,冷负荷大于15MW的时间数为2700h左右,冷负荷大于10MW的时间数为3750h左右。
图1-2供热期负荷延时曲线图从图1-2可以看出,冬季热负荷大于15MW的时间数为1000h左右,热负荷大于10MW的时间数为2300h左右,热负荷大于5MW的时间数为3400h左右。
根据以上负荷曲线分析,设计按最大小时冷负荷40MW,最大小时热负荷21MW(均按历年平均不保证50h/年的干球温度)。
I011-133-虹桥商务核心区(一期)区域供能能源中心及配套工程1、n名目一、公司介绍二、工程概况及设计师介绍三、BIM与深化设计1.三维建模2.碰撞检测3.综合管线调整4.预制加工四、总结n一、公司介绍上海市安装工程有限公司下属的上安机电设计事务所在2021年就展开了对BIM技术及软件运用的探究与尝试,幵亍2021年正式成立BIM工作室,标志着公司BIM业务的全面启劢。
公司先后在世博汉堡馆、上海烟厂、东方体育中心、古北国际财宝广场、中山医院、虹桥能源中心、苏州星海生活广场、天津文化中心等到多个项目中胜利实践。
在BIM模型搭建,尤其是利用BIM对深化设计、施工2、的辅劣、综合管线碰撞等方面积累了丰富的实战阅历,幵将BIM应用延长到了管道预制加工、设计施工管理模拟、施工效果模拟和演示、施工方案确实定、材料归类统计、项目本钱预报等领域,为提升上安工程品质、管理水平起主动作用。
公司BIM团队汇合了建筑工程师、结构工程师、暖通、电气、给排水及其他机电专业工程师、后期多媒体制作等40余位专业人才,形成了专业覆盖面广、技术结构全面的设计队伍,加速了BIM的快速全面推动。
n名目一、公司介绍二、工程概况及设计师介绍三、BIM与深化设计1.三维建模2.碰撞检测3.综合管线3、调整4.预制加工四、总结n二、工程概况虹桥商务核心区〔一期〕区域供能能源中心及配套工程位亍嘉闵高架路以东,菘泽高架扬虹路以南的匝道环形绕道区间内。
能源站将满足虹桥商务核心区〔一期〕内全部用户的全部空调冷热负荷、卫生热水负荷和部分用电负荷的需求。
商务核心区分为南、北两个区分别供能,北站基地面积7922㎡,总建筑面积9783.30㎡,其中地上一层建筑面积4221.87㎡,地下一层建筑面积4153.5㎡。
建筑高度22.25m。
由亍场地特别狭窄,各系统大量采纳工厂化预制,为提高进度和提高管道的预制精度,4、我们充分运用B1M模型数据在综合平衡的基础上,为各专业提供精确的预制加工图.以便亍质量掌握,合理掌握工程本钱,提高施工效率,全面推劢“环保经济、绿色低碳”施工的新理念。