对数运算及对数函数习题课
- 格式:pptx
- 大小:2.00 MB
- 文档页数:20
2.1对数的运算性质课后训练·巩固提升1.log242+log243+log244等于()A.1B.2C.24D.12242+log243+log244=log24(2×3×4)=log2424=1.故选A.2.化简12log612-2log6√2的结果为()A.6√2B.12√2C.log6√3D.12=log6√12-log62=log6√122=log6√3.故选C.3.方程(lg x)2+(lg 2+lg 3)lg x+lg 2lg 3=0的两根的积x1x2等于()A.lg 2+lg 3B.lg 2lg 3C.16D.-6lg x1+lg x2=-(lg2+lg3),∴lg(x1x2)=-lg6=lg6-1=lg16,∴x1x2=16.故选C.4.21+12log25的值等于()A.2+√5B.2√5C.2+√52D.1+√521+12log25=2×212log25=2×2log2√5=2√5,选B.5.已知a=log32,那么log38-2log36用a表示为()A.a-2B.5a-2+a)2 D.3a-a2-1log38-2log36=3log32-2(log32+log33)=3a-2(a+1)=a-2.6.已知a 23=49(a>0),则lo g23a=.a 23=49,∴a2=64729,∴a=827=(23)3,∴lo g23a=lo g23(23)3=3.7.计算(lg 14-lg25)÷100-12= .14-lg25)÷100-12=(lg 1100)÷10-1=-2×10=-20.208.lg 0.01+log 216的值是 ..01+log 216=lg 1100+log 224=-2+4=2.(lg x )2+lg x 5-6=0.(lg x )2+5lg x-6=0,即(lg x+6)(lg x-1)=0,所以lg x=-6或lg x=1,解得x=10-6或x=10.经检验x=10-6和x=10都是原方程的解,所以原方程的解为x=10-6或x=10.1.计算log 3√2743+lg 25+lg 4+7log 72的值为( ) A.-14B.4C.-154D.154=log 3√274-log 33+lg52+lg22+2=14log 333-1+2lg5+2lg2+2=34-1+2+2=154.2.已知函数f (x )满足:当x ≥4时,f (x )=(12)x ;当x<4时,f (x )=f (x+1),则f (2+log 23)=( ) A.124 B.112 C.18 D.382+log 23<2+log 24=4,3+log 23>3+log 22=4,故f (2+log 23)=f (2+log 23+1)=f (3+log 23)=(12)3+log 23=(12)3·12log 23=18×13=124.3.若lg a ,lg b 是方程2x 2-4x+1=0的两个实根,则(lg a b )2的值为( ) A.2B.12C.4D.14a b )2=(lg a-lg b )2=(lg a+lg b )2-4lg a lg b=22-4×12=2.4.若lg 2=a ,lg 3=b ,则用a ,b 表示lg √45= .√45=12lg45=12lg(5×9)=12lg5+12lg9=12(1-lg2)+lg3=-12lg2+lg3+12=-12a+b+12. -12a+b+125.已知2x =9,log 283=y ,则x+2y 的值为 .2x =9,得log 29=x ,所以x+2y=log 29+2log 283=log 29+log 2649=log 264=6.6.求下列各式的值:(1)log 535+2log 5√2-log 515-log 514; (2)〖(1-log 63)2+log 62·log 618〗÷log 64;(3)lg 5(lg 8+lg 1 000)+(lg 2√3)2+lg 0.06+lg 16.原式=log 535+log 52-log 515-log 514=log 535×215×14=log 535014=log 525=2. (2)原式=[(log 663)2+log 62·log 6362]÷log 64=〖(log 62)2+log 62(log 636-log 62)〗÷log 64=〖(log 62)2+2log 62-(log 62)2〗÷log 64=2log 62÷log 64=log 64÷log 64=1.(3)原式=lg5(3lg2+3)+3(lg2)2+lg 6100-lg6=lg5(3lg2+3)+3(lg2)2+lg6-2-lg6=3·lg5·lg2+3lg5+3·(lg2)2-2=3lg2(lg2+lg5)+3lg5-2=3lg2+3lg5-2=3(lg2+lg5)-2=3-2=1. f (x )=x 2+(lg a+2)x+lg b ,f (-1)=-2,方程f (x )=2x 至多有一个实根,求实数a ,b 的值.f (-1)=-2得,1-(lg a+2)+lg b=-2,所以lg b a =-1=lg 110,所以b a =110,即a=10b.又因为方程f (x )=2x 至多有一个实根,即方程x 2+(lg a )x+lg b=0至多有一个实根,所以(lg a )2-4lg b ≤0,即〖lg(10b )〗2-4lg b ≤0,所以(1-lg b )2≤0,所以lg b=1,b=10,从而a=100. 故实数a ,b 的值分别为100,10.a>1,若对于任意的x ∈〖a ,2a 〗,都有y ∈〖a ,a 2〗满足方程log a x+log a y=3,求a 的取值范围.log a x+log a y=3,∴log a (xy )=3.∴xy=a 3.∴y=a 3x . ∵函数y=a 3x (a>1)在(0,+∞)上是减函数,又当x=a 时,y=a 2,当x=2a 时,y=a 32a =a 22,∴[a 22,a 2]⊆〖a ,a 2〗.∴a 22≥a.又a>1,∴a ≥2.∴a的取值范围为〖2,+∞).。
§2.2.1 对数与对数运算(一)¤知识要点:1. 定义:一般地,如果x a N =(0,1)a a >≠,那么数 x 叫做以a 为底 N 的对数(logarithm ).记作 log a x N =,其中a 叫做对数的底数,N 叫做真数2. 我们通常将以10为底的对数叫做常用对数(common logarithm ),并把常用对数10log N 简记为lg N 在科学技术中常使用以无理数e=2.71828……为底的对数,以e 为底的对数叫自然对数,并把自然对数log e N 简记作ln N3. 根据对数的定义,得到对数与指数间的互化关系:当0,1a a >≠时,log b a N b a N =⇔=.4. 负数与零没有对数;log 10a =, log 1a a = ,log a a N N = ¤例题精讲:【例1】将下列指数式化为对数式,对数式化为指数式:(1)712128-=; (2)327a =; (3)1100.1-=; (4)12log 325=-; (5)lg0.0013=-; (6)ln100=4.606.【例2】计算下列各式的值:(1)lg 0.001; (2)4log 8; (3)第14练 §2.2.1 对数与对数运算(一)※基础达标1.log (0,1,0)b N a b b N =>≠>对应的指数式是( ). A. b a N = B. a b N = C. N a b = D. N b a = 2.下列指数式与对数式互化不正确的一组是( ). A. 01ln10e ==与 B. 1()381118log 223-==-与 C. 123log 9293==与 D. 17log 7177==与 3.设lg 525x =,则x 的值等于( ).A. 10B. 0.01C. 100D. 10004.设13log 82x=,则底数x 的值等于( ). A. 2 B. 12 C. 4 D. 145.已知432log [log (log )]0x =,那么12x -等于( ).A.13 B. C. D. 6.若21log 3x =,则x = ; 若log 32x =-,则x = .7.计算:= ; 6l g 0.1= . ※能力提高8.求下列各式的值:(1)8; (2)9log9.求下列各式中x 的取值范围:(1)1log (3)x x -+; (2)12log (32)x x -+.※探究创新10.(1)设log 2a m =,log 3a n =,求2m n a +的值.(2)设{0,1,2}A =,{log 1,log 2,}a a B a =,且A B =,求a 的值.第15讲 §2.2.1 对数与对数运算(二)¤知识要点:1. 对数的运算法则:log ()log log a a a M N M N =+,log log log aa a MM N N=-,log log n a a M n M =,其中0,1a a >≠且,0,0,M N n R >>∈. 三条法则是有力的解题工具,能化简与求值复杂的对数式.2. 对数的换底公式log log log b a b N N a =. 如果令b =N ,则得到了对数的倒数公式1log log a b b a=. 同样,也可以推导出一些对数恒等式,如log log n n a a N N =,log log m n a a nN N m=,log log log 1a b c b c a =等. ¤例题精讲:【例2】若2510a b ==,则11a b+= .【例4】(1)化简:532111log 7log 7log 7++; (2)设23420052006log 3log 4log 5log 2006log 4m ⋅⋅⋅=,求实数m 的值.第15练 §2.2.1 对数与对数运算(二)※基础达标 1.). A. 1B. -1C. 2D. -2 2.25log ()a -(a ≠0)化简得结果是( ).A. -aB. a 2C. |a |D. a3.化简3log 1的结果是( ). A.12B. 1C. 24.已知32()log f x x =, 则(8)f 的值等于( ). A. 1 B. 2 C. 8 D. 125.化简3458log 4log 5log 8log 9⋅⋅⋅的结果是 ( ).A .1 B.32C. 2D.3 6.计算2(lg5)lg2lg50+⋅= .7.若3a =2,则log 38-2log 36= .第16讲 §2.2.2 对数函数及其性质(一)¤知识要点:1. 定义:一般地,当a >0且a ≠1时,函数a y=log x 叫做对数函数(logarithmic function). 自变量是x ; 函数的定义域是(0,+∞).2. 由2log y x =与12log y x =的图象,可以归纳出对数函数的性质:定义域为(0,)+∞,值域为R ;当1x =时,0y =,即图象过定点(1,0);当01a <<时,在(0,)+∞上递减,当1a >时,在(0,)+∞上递增.¤例题精讲:【例1】比较大小:(1)0.9log 0.8,0.9log 0.7,0.8log 0.9; (2)3log 2,2log 3,41log 3.【例2】求下列函数的定义域:(1)y (2)y【例4】求不等式log (27)log (41)(0,1)a a x x a a +>->≠且中x 的取值范围.第16练 §2.2.2 对数函数及其性质(一)※基础达标1.下列各式错误的是( ).A. 0.80.733>B. 0.10.10.750.75-<C. 0..50..5log 0.4log 0.6>D. lg1.6lg1.4>.2.当01a <<时,在同一坐标系中,函数log x a y a y x -==与的图象是( ).AC3.下列函数中哪个与函数y =x 是同一个函数( )A.log (0,1)a xy a a a =>≠ B. y =2x xC. log (0,1)x a y a a a =>≠D. y4.函数y ).A. (1,)+∞B. (,2)-∞C. (2,)+∞D. (1,2]5.若log 9log 90m n <<,那么,m n 满足的条件是( ).A. 1 m n >>B. 1n m >>C. 01n m <<<D. 01m n <<<6.函数y = . (用区间表示)7.比较两个对数值的大小:ln 7 ln12 ; 0.5log 0.7 0.5log 0.8. ※能力提高8.求下列函数的定义域:(1) ()()3log 1f x x =++; (2)y9.已知函数2()3log ,[1,4]f x x x =+∈,22()()[()]g x f x f x =-,求: (1)()f x 的值域; (2)()g x 的最大值及相应x 的值.第17讲 §2.2.2 对数函数及其性质(二)¤知识要点:1. 当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function ). 互为反函数的两个函数的图象关于直线y x =对称.2. 函数(0,1)x y a a a =>≠与对数函数log (0,1)a y x a a =>≠互为反函数.3. 复合函数(())y f x ϕ=的单调性研究,口诀是“同增异减”,即两个函数同增或同减,复合后结果为增函数;若两个函数一增一减,则复合后结果为减函数. 研究复合函数单调性的具体步骤是:(i )求定义域;(ii )拆分函数;(iii )分别求(),()y f u u x ϕ==的单调性;(iv )按“同增异减”得出复合函数的单调性.¤例题精讲:【例1】讨论函数0.3log (32)y x =-的单调性.【例2】(05年山东卷.文2)下列大小关系正确的是( ). A. 30.440.43log 0.3<< B. 30.440.4log 0.33<< C. 30.44log 0.30.43<< D. 0.434log 0.330.4<<第17练 §2.2.2 对数函数及其性质(二)※基础达标 1.函数1lg1xy x+=-的图象关于( ). A. y 轴对称 B. x 轴对称 C. 原点对称D. 直线y =x 对称2.函数212log (617)y x x =-+的值域是( ).A. RB. [8,)+∞C. (,3]-∞-D. [3,)+∞3.(07年全国卷.文理8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ).A.B. 2C.D. 44.图中的曲线是log a y x =的图象,已知a的值为43,310,15,则相应曲线1234,,,C C C C 的a 依次为( ).A.43,15,310B. 43,310,15C. 15,310,43D. 43,310,155.下列函数中,在(0,2)上为增函数的是( ). A. 12log (1)y x =+B. 2log y = C. 21log y x= D.20.2log (4)y x =-6.函数())f x x =是 函数. (填“奇”、“偶”或“非奇非偶”)7.函数x y a =的反函数的图象过点(9,2),则a 的值为 . ※能力提高8.已知6()log ,(0,1)a f x a a x b=>≠-,讨论()f x 的单调性.0 x C 1C 2C 4C 3 1y第18讲 §2.3 幂函数¤学习目标:通过实例,了解幂函数的概念;结合函数y=x, y=x 2, y=x 3, y =1/x , y=x 1/2 的图像,了解它们的变化情况.知识要点:1. 幂函数的基本形式是y x α=,其中x 是自变量,α是常数. 要求掌握y x =,2y x =,3y x =,1/2y x =,1y x -=这五个常用幂函数的图象. 2. 观察出幂函数的共性,总结如下:(1)当0α>时,图象过定点(0,0),(1,1);在(0,)+∞上是增函数.(2)当0α<时,图象过定点(1,1);在(0,)+∞上是减函数;在第一象限内,图象向上及向右都与坐标轴无限趋近.3. 幂函数y x α=的图象,在第一象限内,直线1x =的右侧,图象由下至上,指数α由小到大. y 轴和直线1x =之间,图象由上至下,指数α由小到大.¤例题精讲:【例1】已知幂函数()y f x =的图象过点(27,3),试讨论其单调性. 解:设y x α=,代入点(27,3),得327α=,解得13α=, 所以13y x =,在R 上单调递增.【例2】已知幂函数6()m y x m Z -=∈与2()m y x m Z -=∈的图象都与x 、y 轴都没有公共点,且2()m y x m Z -=∈的图象关于y 轴对称,求m 的值.解:∵ 幂函数图象与x 、y 轴都没有公共点,∴{6020m m -<-<,解得26m <<.又 ∵ 2()m y x m Z -=∈的图象关于y 轴对称, ∴ 2m -为偶数,即得4m =. 【例3】幂函数m y x =与n y x =在第一象限内的图象如图所示,则( ). A .101n m -<<<< B .1,01n m <-<<C .10,1n m -<<>D .1,1n m <->解:由幂函数图象在第一象限内的分布规律,观察第一象限内直线1x =的右侧,图象由下至上,依次是n y x =,1y x -=,0y x =,m y x =,1y x =,所以有101n m <-<<<. 选B.点评:观察第一象限内直线1x =的右侧,结合所记忆的分布规律. 注意比较两个隐含的图象1y x =与0y x =.【例4】本市某区大力开展民心工程,近几年来对全区2a m 的老房子进行平改坡(“平改坡”是指在建筑结构许可条件下,将多层住宅平屋面改建成坡屋顶,并对外墙面进行整修粉饰,达到改善住宅性能和建筑物外观视觉效果的房屋修缮行为),且每年平改坡面积的百分比相等. 若改造到面积的一半时,所用时间需10年. 已. (1)求每年平改坡的百分比;(2)问到今年为止,该平改坡工程已进行了多少年?(3)若通过技术创新,至少保留24am 的老房子开辟新的改造途径. 今后最多还需平改坡多少年?解:(1)设每年平改坡的百分比为(01)x x <<,则101(1)2a x a -=,即11011()2x -=,解得11011()0.0670 6.702x =-≈=%.(2)设到今年为止,该工程已经进行了n 年,则(1)na x -=,即110211()()22n =,解得n =5. 所以,到今年为止,该工程已经进行了5年.(3)设今后最多还需平改坡m 年,则 51(1)4m a x a +-=,即521011()()22m +=,解得m =15. 所以,今后最多还需平改坡15年.点评:以房屋改造为背景,从中抽象出函数模型,结合两组改造数据及要求,通过三个等式求得具有实际意义的底数或指数.第※基础达标1.如果幂函数()f x x α=的图象经过点 A. 16 B. 2 C. 116 2.下列函数在区间(0,3) A. 1y x= B. 12y x = C. y 3.设120.7a =,120.8b =,c 3log 0.7= A. c <b <a B. c <a <b C. a <b 4.如图的曲线是幂函数n y x =4c 相应的n 依次为( ).A .112,,,222-- B. 12,,2- C. 11,2,2,22-- D. 12,2--5.下列幂函数中过点(0,0),(1,1) A.12y x = B. 4y x = C. y =6.幂函数()y f x =的图象过点1(4,)27.比较下列各组数的大小: 32(2)a + 32a ; 223(5)a -+ 235-; 0.50.4 0.40.5.※能力提高8.幂函数273235()(1)t t f x t t x +-=-+是偶函数,且在(0,)+∞上为增函数,求函数解析式.9.1992年底世界人口达到54.8亿,若人口的平均增长率为x %,2008年底世界人口数为y (亿).(1)写出1993年底、1994年底、2000年底的世界人口数; (2)求2008年底的世界人口数y 与x 的函数解析式. 如果要使2008年的人口数不超过66.8亿,试求人口的年平均增长率应控制在多少以内?※探究创新10.请把相应的幂函数图象代号填入表格.① 23y x =; ② 2y x -=;③ 12y x =; ④ 1y x -=; ⑤ 13y x =;⑥ 43y x =;⑦ 12y x -=;⑧ 53y x =. 第19讲 第二章 基本初等函数(Ⅰ) 复习¤学习目标:理解掌握指数函数、对数函数和幂函数的性质、图象及运算性质. 突出联系与转化、分类与讨论、数与形结合等重要的数学思想、能力. 通过对指数函数、对数函数等具体函数的研究,加深对函数概念的理解.¤例题精讲:【例1】若()(0,1)x f x a a a =>≠且,则1212()()()22x x f x f x f ++≤. 证明:121212122()()()222x x x x f x f x x x a a f a ++++-=-0==≥. ∴ 1212()()()22x x f x f x f ++≤. (注:此性质为函数的凹凸性) 【例2】已知函数2()(0,0)1bxf x b a ax =≠>+.(1)判断()f x 的奇偶性; (2)若3211(1),log (4)log 422f a b =-=,求a ,b 的值.解:(1)()f x 定义域为R ,2()()1bxf x f x ax --==-+,故()f x 是奇函数.(2)由1(1)12b f a ==+,则210a b -+=.又log 3(4a -b )=1,即4a -b =3.由{21043a b a b -+=-=得a =1,b =1.【例3】(01天津卷.19)设a >0, ()x x e af x a e=+是R 上的偶函数.(1)求a 的值; (2)证明()f x 在(0,)+∞上是增函数.解:(1)∵ ()x x e af x a e=+是R 上的偶函数,∴ ()()0f x f x --=.∴ 110()()x x x x x x e a e a a e a e a e a e a a---+--=⇒-+-10()()0x x a e e a -=⇒--=.e x -e -x 不可能恒为“0”, ∴ 当1a-a =0时等式恒成立, ∴a =1.(2)在(0,)+∞上任取x 1<x 2,1212121212111()()()()x x x x x x x x e f x f x e e e a e e e e -=+--=-+-12121()(1)x x x x e e e e =-- ∵ e >1,x 1<x 2, ∴ 121x x e e >>, ∴12x x e e >1,121212()(1)x x x x x x e e e e e e --<0,∴ 12()()0f x f x -<, ∴ ()f x 是在(0,)+∞上的增函数.点评:本题主要考查了函数的奇偶性以及单调性的基础知识.此题中的函数,也可以看成指数函数xy a =与x a y a x =+的复合,可以进一步变式探讨x ay a x=+的单调性. 【例4】已知1992年底世界人口达到54.8亿.(1)若人口的平均增长率为1.2%,写出经过t 年后的世界人口数y (亿)与t 的函数解析式;(2)若人口的平均增长率为x %,写出2010年底世界人口数为y (亿)与x 的函数解析式. 如果要使2010年的人口数不超过66.8亿,试求人口的年平均增长率应控制在多少以内?解:(1)经过t 年后的世界人口数为 *54.8(1 1.2)54.8 1.012,t t y t N =⨯+%=⨯∈.(2)2010年底的世界人口数y 与x 的函数解析式为 1854.8(1)y x =⨯+%.由1854.8(1)y x =⨯+%≤66.8,解得1001) 1.1x ≤⨯≈. 所以,人口的年平均增长率应控制在1.1%以内.点评:解应用题应先建立数学模型,再用数学知识解决,然后回到实际问题,给出答案. 此题由增长率的知识,可以得到指数型或幂型函数,并得到关于增长率的简单不等式,解决实际中增长率控制问题.第19练 第二章 基本初等函数(Ⅰ) 复习※基础达标 1.(06年全国卷II.文2理1)已知集合{}2{|3},|log 1M x x N x x =<=>,则M N =( ).A. ∅B. {}|03x x <<C. {}|13x x <<D. {}|23x x << 2.(08年北京卷.文2)若372log πlog 6log 0.8a b c ===,,,则( ). A. a b c >> B. b a c >> C. c a b >> D. b c a >>3.(05年福建卷)函数()x b f x a -=的图象如图,其中a 、b 为常数,则下列结论正确的是( ). A. 1,0a b >< B. 1,0a b >> C. 01,0a b <<> D. 01,0a b <<<4.(06年广东卷)函数2()lg(31)f x x =++的定义域是( ). A.1(,)3-+∞ B. 1(,1)3- C. 11(,)33- D. 1(,)3-∞-5.(06年陕西卷)设函数()log ()(0,1)a f x x b a a =+>≠的图像过点(2,1),其反函数的图像过点(2,8),则a b +等于( ).A. 3B. 4C. 5D. 66.(06年辽宁卷.文14理13)设,0(),0x e x g x lnx x ⎧≤=⎨>⎩,则1(())2g g = .7.如图所示,曲线是幂函数y x α=在第一象限内的图象,已知α分别取11,1,,22-四个值,则相应图象依次为 .※能力提高8.已知定义域为R 的函数12()2x x bf x a+-+=+是奇函数. 求,a b 的值.9.已知函数y =24log log 42x x(2≤x ≤4).(1)求输入x =234时对应的y 值; (2)令2log t x =,求y 关于t 的函数关系式及t 的范围.※探究创新10.设121()log 1axf x x -=-为奇函数,a 为常数.(1)求a 的值; (2)证明()f x 在区间(1,+∞)内单调递增;1 () 2x m恒成立,求实数m的取值范围.(3)若对于区间[3,4]上的每一个x值,不等式()f x>。
对数及其运算练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 已知2x=3y=m,且1x +1y=2,则m的值为( )A.√2B.√6C.√22D.62. lg25−2lg12+log2(log2256)=( )A.3B.4C.5D.63. 计算lg2−lg15−e ln2−(14)−12+√(−2)2的值为()A.−1B.−5C.32D.−524. 函数f(x)=lg(x2−1)−lg(x−1)在[2,9]上的最大值为()A.0B.1C.2D.35. 若函数f(x)=|ln x|满足f(a)=f(b),且0<a<b,则4a2+b2−44a+2b的最小值是( )A.0B.1C.32D.2√26. 已知函数f(x)={2x,x≥4,f(x+1),x<4,则f(2+log23)的值为()A.8B.12C.16D.247. 《九章算术》中有如下问题:今有蒲生一日,长三尺,莞生一日,长1尺.蒲生日自半,莞生日自倍.问几何日而长等?意思是:今有蒲第一天长高3尺,莞第一天长高1尺,以后蒲每天长高前一天的一半,莞每天长高前一天的2倍.若蒲、莞长度相等,则所需时间为( )(结果精确到0.1.参考数据:lg2≈0.3010,lg3≈0.4771.)A.2.6天B.2.2天C.2.4天D.2.8天8. 碳14是碳的一种具有放射性的同位素,它常用于确定生物体的死亡年代,即放射性碳定年法.在活的生物体内碳14的含量与自然界中碳14的含量一样且保持稳定,一旦生物死亡,碳14摄入停止,机体内原有的碳14含量每年会按确定的比例衰减(称为衰减期),大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.1972年7月30日,湖南长沙马王堆汉墓女尸出土,该女尸为世界考古史上前所未见的不腐湿尸,女尸身份解读:辛追,生于公元前217年,是长沙国丞相利苍的妻子,死于公元前168年.至今,女尸碳14的残余量约占原始含量的(参考数据:log 20.7719≈−0.3735,log 20.7674≈−0.3820,log 20.7628≈−0.3906)( ) A.75.42% B.76.28% C.76.74% D.77.19%9. 意大利数学家斐波那契以兔子繁殖数量为例,引入数列:1,1,2,3,5,8,⋯,该数列从第三项起,每一项都等于前两项之和,即a n+2=a n+1+a n (n ∈N ∗)故此数列称为斐波那契数列,又称“兔子数列”,其通项公式为a n =√5[(1+√52)n−(1−√52)n].设n是不等式log √2[(1+√5)x −(1−√5)x ]>2x +11的正整数解,则n 的最小值为( ) A.11 B.10 C.9 D.810. 若b >a >1且3log a b +6log b a =11,则a 3+2b−1的最小值为________.11. 计算: log 26−log 23−3log 312+(14)12=________.12. 若函数f(x)=1+|x|+cos x x ,则f(lg 2)+f (lg 12)+f(lg 5)+f (lg 15)=_______.13. 正数x ,y 满足x +4y =2,则log 2x +log 2y 的最大值是________.14. 已知b >a >1,若log a b −log b a =32,且a b =b a ,则a −b =_______.15. 计算:e ln 12+π0−4−12+lg 4+lg 25=_________.16. 已知函数f(x)=log 2(3+x)+log 2(3−x). (1)当x =1时,求函数f(x)的值;(2)判断函数f(x)的奇偶性,并加以证明;(3)若f(x)<0,求实数x 的取值范围.17.(1)化简:4x 14(−3x 14y −13)÷(−6x −12y −23)3;(2)计算:(log 43+log 83)(log 32+log 92).18. 计算下列各题.(1)log 2√748+log 212−12log 242−21+log 23 ;(2)4×(1649)−12−√24×80.25+(−2010)0;(3)已知log 23=a ,3b =7,求log 1256.19. 已知函数f (x )=log a (1−x )+log a (x +3)(0<a <1). (1)求函数f (x )的定义域;(2)若函数f (x )的最小值为−2,求a 的值.20. 已知函数f (x )=lg (2x−1+a) ,a ∈R . (1)若函数f (x )是奇函数,求实数a 的值;(2)在(1)的条件下,判断函数y =f (x )与函数y =lg (2x )的图像的公共点的个数,并说明理由;(3)当x ∈[1,2)时,函数y =f (2x )的图像始终在函数y =lg (4−2x )的图象上方,求实数a 的取值范围.21. 已知f(x)=log a x ,g(x)=2log a (2x +t −2)(a >0, a ≠1, t ∈R). (1)若f(1)=g(2),求t 的值;(2)当t =4,x ∈[1, 2],且F(x)=g(x)−f(x)有最小值2时,求a 的值;(3)当0<a<1,x∈[1, 2]时,有f(x)≥g(x)恒成立,求实数t的取值范围.参考答案与试题解析对数及其运算练习题含答案一、选择题(本题共计 9 小题,每题 3 分,共计27分)1.【答案】B【考点】指数式与对数式的互化对数及其运算【解析】2x=3y=m>0,可得x=log2m,y=log3m.代入利用对数的运算法则即可得出.【解答】解:∵2x=3y=m>0,∴x=log2m,y=log3m.∴2=1x +1y=1log2m+1log3m=logm 2+logm3=logm 6,∴m2=6,解得m=√6.故选B.2.【答案】C【考点】对数及其运算【解析】本题考查对数式四则运算等基本知识,考查运算求解等数学能力.【解答】解:lg25−2lg12+log2(log2256)=lg100+log2(log228)=2+log28=5.故选C.3.【答案】A【考点】对数的运算性质对数及其运算【解析】利用指数,对数的性质和运算法则求解.【解答】解:原式=lg2+lg5−2−2+2 =lg10−2=1−2=−1.故选A.4.【答案】B【考点】对数函数的单调性与特殊点对数及其运算【解析】此题暂无解析【解答】解:因为f(x)=lg x 2−1x−1=lg(x+1)在[2,9]上单调递增,所以f(x)max=f(9)=lg10=1.故选B.5.【答案】A【考点】基本不等式在最值问题中的应用对数及其运算函数的最值及其几何意义【解析】利用对数函数的性质可知ab=1,进而目标式可转化为2a+b2−42a+b,通过换元令t=2a+b(t≥2√2),进一步转化为t2−4t,利用函数y=t2−4t在[2√2,+∞)上的单调性,即可求得最值.【解答】解:依题意,|ln a|=|ln b|,又0<a<b,∴ln a+ln b=0,即ab=1,且0<a<1<b,又4a 2+b2−44a+2b =(2a+b)2−8ab2(2a+b)=2a+b2−42a+b,令t=2a+b≥2√2ab=2√2,当且仅当“2a=b”时取等号,则4a 2+b2−44a+2b =t2−4t,又函数y=t2−4t在[2√2,+∞)上单调递增,故y min=2√222√2=0,即4a2+b2−44a+2b的最小值为0.故选A.6.【答案】 D【考点】指数式与对数式的互化 对数及其运算 函数的求值【解析】本题考查指数式、对数式的运算. 【解答】解:因为3<2+log 23<4,所以f(2+log 23)=f(3+log 23)=23+log 23=8×3=24. 故选D . 7.【答案】 A【考点】等比数列的前n 项和 数列的应用 对数及其运算 【解析】由题设蒲的长度组成等比数列{a n },其a 1=3,公比为12,其前n 项和为A n ,莞的长度组成等比数列{b n },其b 1=1,公比为2,其前n 项和为B n ,由题意可得:3(1−12n )1−12=2n −12−1,整理后求解即可.【解答】解:由题设蒲的长度组成等比数列{a n },其a 1=3,公比为12,其前n 项和为A n ,莞的长度组成等比数列{b n },其b 1=1,公比为2,其前n 项和为B n , 则A n =3(1−12n )1−12,B n =2n −12−1, 由题意可得:3(1−12n )1−12=2n −12−1,整理得(2n )2−7×2n +6=0, 即(2n −1)(2n −6)=0,解得n =0(舍去)或n =log 26, 故n =log 26=lg 6lg 2=lg 2+lg 3lg 2≈0.3010+0.47710.3010≈2.6,即蒲、莞长度相等,所需时间为2.6天. 故选A . 8. 【答案】 C【考点】对数及其运算指数式与对数式的互化【解析】 无【解答】解:∵ 每经过5730年衰减为原来的一半,∴ 生物体内碳14的含量y 与死亡年数t 之间的函数关系式为y =(12)t 5730.现在是2021年,所以女尸从死亡至今已有2021+168=2189年, 由题意可得,y =(12)21895730≈(12)0.3820=2−0.3820.因为log 20.7674≈−0.3820,所以y ≈2−0.3820≈0.7674=76.74%. 故选C . 9.【答案】 D【考点】 对数及其运算 数列的函数特性 数列与不等式的综合 【解析】首先对不等式进行化简得出a n >√2)11√5,即a n 2>2115,根据数列的单调性,求出满足不等式成立的n 的最小值即可. 【解答】解:∵ n 是不等式log √2[(1+√5)x−(1−√5)x]>2x +11的正整数解, ∴ log √2[(1+√5)n−(1−√5)n ]>2n +11, ∴ log √2[(1+√5)n−(1−√5)n]−2n >11, ∴ log √2[(1+√5)n−(1−√5)n]−log √2(√2)2n>11,∴ log √2[(1+√5)n−(1−√5)n]−log √22n >11, ∴ log √2[(1+√5)n−(1−√5)n2n]>11, ∴ log √2[(1+√52)n−(1−√52)n]>11,∴ (1+√52)n−(1−√52)n>(√2)11,∴√5[(1+√52)n −(1−√52)n]>√2)11√5.令a n=√5[(1+√52)n−(1−√52)n],则数列{a n}即为斐波那契数列,∴a n>√2)11√5,即a n2>2115.∵{a n}为递增数列,∴{a n2}也为递增数列.∵a7=13,a8=21,a72<2115,a82>2115,∴使得a n2>2115成立的n的最小值为8.故选D.二、填空题(本题共计 6 小题,每题 3 分,共计18分)10.【答案】2√2+1【考点】基本不等式在最值问题中的应用对数及其运算【解析】本题考查对数的运算、基本不等式的应用.【解答】解:由b>a>1,得logab>1,b−1>0,又∵logb a=1log a b,∴3loga b+6log a b=11,解得loga b=3或logab=23(舍去),则a3=b,a3+2b−1=b+2b−1=(b−1)+2b−1+1≥2√2+1(当且仅当b−1=√2,即b=√2+1时,取等号),故a3+2b−1的最小值为2√2+1.故答案为:2√2+1.11.【答案】1【考点】有理数指数幂的化简求值对数及其运算【解析】无【解答】解:原式=1+log23−log23−12+12=1.故答案为:1.12.【答案】6【考点】对数及其运算函数的求值【解析】此题暂无解析【解答】解:∵ f(x)=1+|x|+cos xx,∴ f(−x)+f(x)=2+2|x|,∵lg12=−lg2,lg15=−lg5,∴ f(lg2)+f(lg 12)+f(lg5)+f(lg15)=2×2+2(lg2+lg5)=6,故答案为:6.13.【答案】−2【考点】基本不等式在最值问题中的应用对数及其运算【解析】此题暂无解析【解答】解:因为log2x+log2y=log2x+log2y+2−2=log2x+log2y+log24−2=log2(4xy)−2,因为x+4y=2,所以log2(4xy)−2≤log2(x+4y2)2−2=−2,当且仅当x=4y,即x=1,y=14时取等号,故log2x+log2y的最大值是−2.故答案为:−2.14.【答案】−2【考点】对数及其运算 【解析】 无【解答】解: 令log a b =t ,则log b a =1t .∵ b >a >1,则t >0,∴ t −1t =32,解得t =2,或t =−12(舍去), ∴ log b a =12,即b =a 2.∵ a b =b a ,∴ a a 2=(a 2)a ,即a 2=2a , ∴ a =2,b =4, ∴ a −b =−2. 故答案为:−2. 15.【答案】 3【考点】对数的运算性质 对数及其运算【解析】(1)根据题目所给信息进行解题即可. 【解答】解:e ln 12+π0−4−12+lg 4+lg 25 =12+1−12+lg (4×25)=1+2=3 .故答案为:3.三、 解答题 (本题共计 6 小题 ,每题 10 分 ,共计60分 ) 16.【答案】解:(1)f(1)=log 2(3+1)+log 2(3−1)=3; (2)由{3+x >03−x >0,解得:−3<x <3,定义域关于原点对称,而f(−x)=log 2(3−x)+log 2(3+x)=f(x), 故函数f(x)是偶函数; (3)若f(x)<0,则log 2(3+x)+log 2(3−x) =log 2(3+x)(3−x)<0, 即0<9−x 2<1,解得:−3<x <−2√2或2√2<x <3. 【考点】对数函数的图象与性质对数值大小的比较 对数及其运算 函数奇偶性的判断【解析】(1)将x =1的值带入f(x),求出f(1)的值即可; (2)根据函数奇偶性的定义判断即可;(3)根据对数函数的性质,问题转化为0<9−x 2<1,解出即可. 【解答】解:(1)f(1)=log 2(3+1)+log 2(3−1)=3; (2)由{3+x >03−x >0,解得:−3<x <3,定义域关于原点对称,而f(−x)=log 2(3−x)+log 2(3+x)=f(x), 故函数f(x)是偶函数; (3)若f(x)<0,则log 2(3+x)+log 2(3−x) =log 2(3+x)(3−x)<0, 即0<9−x 2<1,解得:−3<x <−2√2或2√2<x <3. 17. 【答案】 解:(1)原式=−12x 12y −13−216x−32y−2=x 12y −1318x−32y−2=x 12y −1318(x −2y −53)x 12y −13=118x −2y −53=1181x 21y 53=x 2y 5318.(2)原式=(lg 32lg 2+lg 33lg 2)(lg 2lg 3+lg 22lg 3) =12+14+13+16=54.【考点】 对数及其运算 分数指数幂【解析】(1)利用指数幂的运算性质即可得出.(2)利用换底公式、对数的运算性质即可得出. 【解答】解:(1)原式=−12x 12y −13−216x−32y−2=x 12y−1318x −32y −2=x 12y −1318(x −2y −53)x 12y −13=118x −2y −53=1181x 21y 53=x 2y 5318.(2)原式=(lg 32lg 2+lg 33lg 2)(lg 2lg 3+lg 22lg 3) =12+14+13+16=54. 18. 【答案】解:(1)log 2√748+log 212−12log 242−21+log 23 =log 2√748+log 212−log 2√42−2⋅2log 23=log √748×12√42−2×3=log 22−12−6=−12−6=−132.(2)4×(1649)−12−√24×80.25+(−2010)0=4×(47)−1−214×234+1=7−2+1 =6.(3)∵ log 23=a ,3b =7, ∴ log 32=1a , b =log 37,∴ log 1256=log 356log312=log 3(23×7)log 3(22×3)=3log 32+log 372log 32+1=3a +b 2a+1=3+ab 2+a.【考点】对数的运算性质根式与分数指数幂的互化及其化简运算 有理数指数幂的化简求值对数及其运算【解析】(1)利用对数的运算法则求解即可; (2)利用有理指数幂的运算求解即可;(3)由题意得到log 32=1a , b =log 37,所以log 1256=log 356log 312=log 3(23×7)log 3(22×3)=3log 32+log 372log 32+1,代入即可. 【解答】解:(1)log 2√748+log 212−12log 242−21+log 23 =log 2√748+log 212−log 2√42−2⋅2log 23=log √748×12√42−2×3=log 22−12−6=−12−6=−132.(2)4×(1649)−12−√24×80.25+(−2010)0=4×(47)−1−214×234+1=7−2+1 =6.(3)∵ log 23=a ,3b =7, ∴ log 32=1a ,b =log 37, ∴ log 1256=log 356log 312=log 3(23×7)log 3(22×3)=3log 32+log 372log 32+1=3a +b 2a+1=3+ab 2+a.19. 【答案】解:(1)要使函数f (x )有意义,则有{1−x >0,x +3>0,解得−3<x <1,∴ 函数f (x )的定义域为(−3,1). (2)f (x )=log a (1−x )+log a (x +3) =log a [(1−x )(x +3)] =log a (−x 2−2x +3) =log a [−(x +1)2+4], ∵ −3<x <1,∴ 0<−(x +1)2+4≤4. ∵ 0<a <1,∴ log a [−(x +1)2+4]≥log a 4, 即f (x )min =log a 4,又∵ 函数f (x )的最小值为−2, ∴ log a 4=−2, ∴ a −2=4, ∴ a =12. 【考点】对数函数的定义域 对数及其运算 对数函数的值域与最值 【解析】 此题暂无解析 【解答】解:(1)要使函数f (x )有意义,则有{1−x >0,x +3>0,解得−3<x <1,∴ 函数f (x )的定义域为(−3,1). (2)f (x )=log a (1−x )+log a (x +3) =log a [(1−x )(x +3)] =log a (−x 2−2x +3) =log a [−(x +1)2+4],∵ −3<x <1,∴ 0<−(x +1)2+4≤4. ∵ 0<a <1,∴ log a [−(x +1)2+4]≥log a 4, 即f (x )min =log a 4,又∵ 函数f (x )的最小值为−2, ∴ log a 4=−2, ∴ a −2=4, ∴ a =12. 20.【答案】解:(1)因为f (x )为奇函数,所以对于定义域内任意x ,都有f (x )+f (−x )=0, 即lg (2x−1+a)+lg (2−x−1+a)=0, 所以(a +2x−1)⋅(a −2x+1)=1,显然x ≠1,由于奇函数定义域关于原点对称,所以必有x ≠−1.上面等式左右两边同时乘以(x −1)(x +1)得: [a (x −1)+2]⋅[a (x +1)−2]=x 2−1,化简得: (a 2−1)x 2−(a 2−4a +3)=0,上式对定义域内任意x 恒成立,所以必有{a 2−1=0a 2−4a +3=0,解得a =1. (2)由(1)知a =1, 所以f (x )=lg (1+2x−1), 即f (x )=lgx+1x−1,由x+1x−1>0得x <−1或x >1,所以函数f (x )定义域D =(−∞,−1)∪(1,+∞),由题意,要求方程lg x+1x−1=lg 2x 解的个数,即求方程: 2x −2x−1−1=0在定义域D 上的解的个数. 令F (x )=2x −2x−1−1,显然F (x )在区间(−∞,−1)和(1,+∞)均单调递增,又F (−2)=2−2−2−3−1=14−13<0,F (−32)=2−32−2−52−1=2√215>0 , 且F (32)=232−212−1=2√2−5<0, F (2)=22−21−1=1>0,所以函数F (x )在区间(−2,−32)和(32,2)上各有一个零点,即方程2x −2x−1−1=0在定义域D 上有2个解,所以函数y =f (x )与函数y =lg 2x 的图象有2个公共点.(3)要使x ∈[1,2)时,函数y =f (2x )的图象始终在函数y =lg (4−2x )的图象的上方, 必须使22x −1+a >4−2x 在x ∈[1,2)上恒成立,令t =2x ,则t ∈[2,4),上式整理得t 2+(a −5)t +6−a >0在t ∈[2,4)恒成立, 分离参数得:a >−t 2+5t−6t−1=−(t−1)2+3(t−1)−2t−1=−(t −1+2t−1)+3, t −1∈[1,3),因为t −1∈[1,3),所以t −1+2t−1∈[2√2,113),所以−(t −1+2t−1)+3∈(−23,3−2√2],所以a >3−2√2,即实数a 的取值范围为(3−2√2,+∞). 【考点】函数奇偶性的性质对数函数图象与性质的综合应用 对数及其运算 函数零点的判定定理 函数的单调性及单调区间 函数的最值及其几何意义 基本不等式在最值问题中的应用 函数恒成立问题 【解析】此题暂无解析 【解答】解:(1)因为f (x )为奇函数,所以对于定义域内任意x ,都有f (x )+f (−x )=0, 即lg (2x−1+a)+lg (2−x−1+a)=0, 所以(a +2x−1)⋅(a −2x+1)=1,显然x ≠1, 由于奇函数定义域关于原点对称,所以必有x ≠−1.上面等式左右两边同时乘以(x −1)(x +1)得: [a (x −1)+2]⋅[a (x +1)−2]=x 2−1, 化简得: (a 2−1)x 2−(a 2−4a +3)=0,上式对定义域内任意x 恒成立,所以必有{a 2−1=0a 2−4a +3=0,解得a =1.(2)由(1)知a =1, 所以f (x )=lg (1+2x−1),即f (x )=lg x+1x−1, 由x+1x−1>0得x <−1或x >1,所以函数f (x )定义域D =(−∞,−1)∪(1,+∞),由题意,要求方程lg x+1x−1=lg 2x 解的个数,即求方程: 2x −2x−1−1=0在定义域D 上的解的个数. 令F (x )=2x −2x−1−1,显然F (x )在区间(−∞,−1)和(1,+∞)均单调递增,又F (−2)=2−2−2−3−1=14−13<0,F (−32)=2−32−2−52−1=2√215>0 , 且F (32)=232−212−1=2√2−5<0, F (2)=22−21−1=1>0,所以函数F (x )在区间(−2,−32)和(32,2)上各有一个零点,即方程2x −2x−1−1=0在定义域D 上有2个解,所以函数y =f (x )与函数y =lg 2x 的图象有2个公共点.(3)要使x ∈[1,2)时,函数y =f (2x )的图象始终在函数y =lg (4−2x )的图象的上方, 必须使22x −1+a >4−2x 在x ∈[1,2)上恒成立,令t =2x ,则t ∈[2,4),上式整理得t 2+(a −5)t +6−a >0在t ∈[2,4)恒成立, 分离参数得:a >−t 2+5t−6t−1=−(t−1)2+3(t−1)−2t−1=−(t −1+2t−1)+3, t −1∈[1,3),因为t −1∈[1,3),所以t −1+2t−1∈[2√2,113),所以−(t −1+2t−1)+3∈(−23,3−2√2],所以a >3−2√2,即实数a 的取值范围为(3−2√2,+∞). 21. 【答案】解:(1)∵ f(1)=g(2), ∴ 0=2log a (4+t −2), 解得t =−1.(2)当t =4时,F(x)=g(x)−f(x)=log a (2x+2)2x,x ∈[1, 2].令ℎ(x)=(2x+2)2x =4(x +1x +2),x ∈[1, 2].设u =x +1x ,x ∈[1, 2],易知u(x)=x +1x 在[1, 2]上为单调增函数.∴ ℎ(x)在[1, 2]上是单调增函数, ∴ ℎ(x)min =16,ℎ(x)max =18. 当0<a <1时,有F(x)min =log a 18, 令log a 18=2,解得a =3√2>1(舍去); 当a >1时,有F(x)min =log a 16, 令log a 16=2,解得a =4>1, ∴ a =4.(3)当0<a <1,x ∈[1, 2]时,有f(x)≥g(x)恒成立,即当0<a <1,x ∈[1, 2]时,log a x ≥2log a (2x +t −2)恒成立, 由log a x ≥2log a (2x +t −2)可得log a √x ≥log a (2x +t −2), ∴ √x ≤2x +t −2, ∴ t ≥−2x +√x +2. 设u(x)=−2x +√x +2 =−2(√x)2+√x +2 =−2(√x −14)2+178.∵ x ∈[1, 2],∴ √x ∈[1, √2].∴ u(x)max =u(1)=1,∴ 实数t 的取值范围为t ≥1. 【考点】 对数及其运算函数的最值及其几何意义 函数恒成立问题【解析】(1)当t =4,x ∈[1, 2],且F(x)=g(x)−f(x)有最小值2时,求a 的值;(2)当0<a <1,x ∈[1, 2]时,有f(x)≥g(x)恒成立,求实数t 的取值范围. 【解答】解:(1)∵ f(1)=g(2), ∴ 0=2log a (4+t −2), 解得t =−1.(2)当t =4时,F(x)=g(x)−f(x)=log a (2x+2)2x,x ∈[1, 2].令ℎ(x)=(2x+2)2x=4(x +1x +2),x ∈[1, 2].设u =x +1x ,x ∈[1, 2],易知u(x)=x +1x 在[1, 2]上为单调增函数. ∴ ℎ(x)在[1, 2]上是单调增函数, ∴ ℎ(x)min =16,ℎ(x)max =18. 当0<a <1时,有F(x)min =log a 18, 令log a 18=2,解得a =3√2>1(舍去); 当a >1时,有F(x)min =log a 16, 令log a 16=2,解得a =4>1, ∴ a =4.(3)当0<a <1,x ∈[1, 2]时,有f(x)≥g(x)恒成立,即当0<a <1,x ∈[1, 2]时,log a x ≥2log a (2x +t −2)恒成立, 由log a x ≥2log a (2x +t −2)可得log a √x ≥log a (2x +t −2), ∴ √x ≤2x +t −2, ∴ t ≥−2x +√x +2. 设u(x)=−2x +√x +2 =−2(√x)2+√x +2 =−2(√x −14)2+178.∵ x ∈[1, 2],∴ √x ∈[1, √2].∴ u(x)max =u(1)=1,∴ 实数t 的取值范围为t ≥1.。
07课 对数运算1.下列式子中正确的个数是( )①log a (b 2-c 2)=2log a b -2log a c ②(log a 3)2=log a 32③log a (bc)=(log a b)·(log a c) ④log a x 2=2log a xA.0B.1C.2D.3 2.log 22的值为( )A.- 2B. 2C.-12D.123.如果lgx=lga +2lgb -3lgc ,则x 等于( )A.a +2b -3cB.a +b 2-c 3C.ab 2c 3D.2ab 3c4.计算2log 510+log 50.25=( )A.0B.1C.2D.4 5.已知a=log 32,那么log 38-2log 36用a 表示为( )A.a -2B.5a -2C.3a -(1+a)2D.3a -a 2-16.已知f(log 2x)=x ,则f(12)=( )A.14B.12C.22 D. 2 7.设lg2=a ,lg3=b ,则log 512等于( )A.2a +b 1+aB.a +2b 1+aC.2a +b 1-aD.a +2b1-a8.已知log 72=p ,log 75=q ,则lg2用p 、q 表示为( )A.pqB.q p +qC.pp +qD.pq1+pq 9.设方程(lgx)2-lgx 2-3=0的两实根是a 和b ,则log a b +log b a 等于()A.1B.-2C.-103D.-410.计算:log 6[log 4(log 381)]=________.11.使对数式log (x -1)(3-x)有意义的x 的取值范围是________.12.已知5lgx=25,则x=________,已知log x 8=32,则x=________.13.计算:(1)2log 210+log 20.04=________; (2)lg3+2lg2-1lg1.2=________;(3)lg 23-lg9+1=________; (4)13log 168+2log 163=________; (5)log 6112-2log 63+13log 627=________.14.计算:log 23·log 34·log 45·log 56·log 67·log 78= 15.设log 89=a ,log 35=b ,则lg2=________.16.已知log 34·log 48·log 8m=log 416,求m 的值.17.设4a =5b=m ,且1a +2b=1,求m 的值.18.计算(lg 12+lg1+lg2+lg4+lg8+……+lg1024)·log 210.19.已知lg(x +2y)+lg(x -y)=lg2+lgx +lgy ,求xy的值.20.若25a =53b =102c,试求a 、b 、c 之间的关系.21.已知二次函数f(x)=(lga)x 2+2x +4lga 的最大值是3,求a 的值.指数函数练习题1.函数f(x)=ln(x2-x)的定义域为( )A.(0,1)B.[0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0]∪[1,+∞)2.在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是( )3.函数的单调减区间为()A. B.C. D.4.设全集U=R,A={x|<2},B={x|},则右图中阴影部分表示的集合为( )A.{x|1≤x<2}B.{x|x≥1}C.{x|0<x≤1}D.{x|x≤1}5.计算所得的结果为()A.1B.2.5C.3.5D.46.设, 则()A. B. C. D.7.设全集,集合,,则 ( )A. B. C. D.8.已知集合,则( )A. B. C. D.9.已知f(x)是定义在R上的偶函数,在区间[0,+∞)上为增函数,且,则不等式的解集为()A. B. C. D.10.已知x, y为正实数, 则( )A.2lg x+lg y=2lg x+2lg yB.2lg(x+y) =2lg x·2lg yC.2lg x·lg y=2lg x+2lg yD.2lg(xy) =2lg x·2lg y11.已知集合A={x|0<log4x<1}, B={x|x≤2}, 则A∩B=( )A.(0,1)B.(0,2]C.(1,2)D.(1,2]12.设a=log36, b=log510, c=log714, 则( )A.c> b> aB.b> c> aC.a> c> bD.a> b> c13.若a=log43,则2a+2-a=________.14.已知4a=2,lg x=a,则x=________.15.函数f(x) =lg(x-2) 的定义域是.16.函数f(x) =的定义域为.17.函数f(x) =log5(2x+1)的单调增区间是.18.函数f (x)=的定义域为.19.关于x的不等式|log2x|>4的解集为.20. 函数的定义域为___________ .21. .22.已知函数.(Ⅰ)当a=3时,求函数在上的最大值和最小值;(Ⅱ)求函数的定义域,并求函数的值域. (用a表示)答案[答案] 1.C[答案] 2.D[答案] 3.D[答案] 4.A[答案] 5.A[答案] 6.C[答案] 7.B[答案] 8.C[答案] 9.C[答案] 10.D[答案] 11.D[答案] 12.D[答案] 13.[答案] 14.[答案] 15. (2,+∞)[答案] 16.[3, +∞)[答案] 17.(-0.5,+∞)[答案] 18.{x|0<x≤}[答案] 19.[答案] 20.[-0.25,0)∪(0.75,1][答案] 21.4。
一.对数的运算指对互化:⇔=N a x ____________对数恒等式:1.___________________2.___________________3._______________4.______________对数的运算性质:1.___________________2.___________________3._______________换底公式:1.___________________2.___________________特殊对数:⑴通常以10为底的对数叫做常用对数,并把10log N 记为_________;⑵通常以e 为底的对数叫做自然对数,并把e log N 记为_________.1.求下列各式的值.(1)355log +212log -1505log -145log ;(2)log 2125×log 318×log 519.2.若()6430log log log x =⎡⎤⎣⎦,则12x -=3.(1)lg12-lg 58+lg12.5-log 89·log 278;(2)log 535+212log -log 5150-log 514;(3)4lg 2lg 5lg 22+-(4)(多选)以下运算中正确的有()A.lg5+lg2=1 B.5⋅−52=0C.2log 23−30= 2D.log 89⋅log 2716=89(5)(多选)下列等式成立的是()A.lg2+lg5−lg8lg50−lg40=1B.lg4+lg5−12lg0.5+lg8=2C.lg14−2lg 73+lg7−lg18=0 D.(lg2)2+lg2lg5+lg5=24.已知log 189=a,18b =5,用a、b 表示log 36455.已知实数x、y、z 满足3x =4y =6z>1,(1)求证:2x +1y =2z;(2)试比较3x、4y、6z 的大小二.对数函数的定义一般地,函数叫做对数函数,其中是自变量,函数定义域是.6.函数()()31f x lg x =+的定义域是7.函数(21)log x y -=的定义域是三.对数函数的性质1a >01a <<图象性质(1)定义域:(2)值域:(3)过点,即时(4)在上是函数(4)在上是函数(5)y<0⇔y=0⇔y>0⇔(6)y<0⇔y=0⇔y>0⇔8.较下列比较下列各组数中两个值的大小:⑴6log 7,7log 6;⑵3log π,2log 0.8;⑶0.91.1, 1.1log 0.9,0.7log 0.8;⑷5log 3,6log 3,7log 39.比较大小⑴8.1log 37.2log 3;⑵5log 67log 610.已知125ln ,log 2,x y z eπ-===,则().A x y z <<.B z x y <<.C z y x <<.D y z x<<11.设2554log 4,(log 3),log 5,a b c ===则().A a c b <<.B b c a <<.C a b c <<.D b a c<<12.函数log (1)2a y x =++的图像必过定点______________.13.函数log (2)21a y x x =++-的图像过定点______________14.解不等式2)1(log 3≥--x x 15.解关于x 的不等式:)1,0(,2log )12(log )34(log 2≠>>---+a a x x x a a a 16.()2211log log 1a a x x -->+,则a 的取值范围为________________17.解关于x 的不等式:2(log 21x )2+9(log 21x )+9≤018.图中的曲线是x y a log =的图像,已知a 的值为51,103,34,2,则相应曲线4321,,,C C C C 的a 依次为()A 、103,51,34,2B 、51,103,342C 、2,34,103,51D 、51,103,2,3419.若函数()(01)x f x a a a -=>≠且是定义域为R 的增函数,则函数()log (1)a f x x =+的图像大致是()20.(多选)已知函数=lg 2−414()A.的最小值为1B.∃∈,1+=2C.l 92>23D.o90.1−12)>o30.18−12)21.设1a >,函数()log a f x x =在区间[],2a a 上的最大值与最小值之差为12,则a =________________22.若函数()log (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的3倍,则a =________________23.函数2log (3)y x =-的定义域为________________24.函数()()2log 31xf x =+的值域为________________四.对数型函数25.已知函数22()log (32)f x x x =+-.⑴求函数()f x 的定义域;⑵求()f x 的单调区间;⑶求函数()f x 的值域.26.已知[]3()2log (1,9)f x x x =+∈,求函数[]22()()()g x f x f x =+的最大值与最小值.27.已知函数()()2lg 21f x ax x =++(1)若()f x 的定义域是R ,求实数a 的取值范围及()f x 的值域(2)若()f x 的值域是R ,求实数a 的取值范围及()f x 的定义域28.已知()x f y =是二次函数,且()80=f 及()()121+-=-+x x f x f ⑴求()x f 的解析式⑵求函数()x f y 3log =的递减区间及值域29.已知:函数2()f x x x k =-+,且(2)22log 2,(log ),(0,1)f f a k a a ==>≠.⑴求,k a 的值;⑵当x 为何值时,函数(log )a f x 有最小值?求出该最小值.30.(多选)已知函数op =lg(1−p ,则A.op 的定义域为(−∞,1) B.op 的值域为C.o −1)+o −4)=1D.=o 2)的单调递增区间为(0,1)。