点动控制电路原理图
- 格式:ppt
- 大小:609.00 KB
- 文档页数:8
电动机的点动与连续控制电路图解
方法一:用复合按钮
点动控制控制过程相同
连续运行控制过程相同
此种控制缺点:动作不够可靠,有可能点动启动按钮SB3的常闭接点和常开接点不能同时返回而造成所带动的机械不能到达预定位置(具体情况是:点动停止时,常开已经返回,而常闭不能或未及时返回,导致电动机多运行一段时间或停不下来)。
方法二:加中间继电器
连续运行控制过程相同
SB:点动启动
SB2:连续运行启动
SB1:停止
此种控制方式,用合闸中间继电器常开接点与点动启动按钮SB并联,较好地避免了方法一的缺陷,点动控制和连续运行相对独立。
二、三相异步电动机正、反向点动控制电路。
点动控制电路是在需要设备动作时按下控制按钮SB,接触器KM线圈得电主触点闭合设备开始工作,松开按钮后接触器线圈断电,主触头断开设备停止。
此种控制方法多用于小型起吊设备的电动机控制。
电动机正、反向点动控制电路电气原理图三相异步电动机点动控制电路的检查和试车常规检查有1、对照原理图,接线图逐线检查,核对线号。
防止导线错接和漏接。
2、检查所有端子接线接触情况,排除虚接处。
3、用万用表检查不带电进行。
摘下接触器的灭弧罩,以便用手操作来模拟触点分合动作,用万用表测量时,将万用表挡位开关置于R×1挡。
(1)检查主电路;取下辅助电路熔体FU,用万用表表笔分别测量开关下端子U~V、U~W、U、一W:之间的电阻,结果均应为断路,电阻应无穷大(R=∞)。
若某次测量的结果的电阻较小或为零,则说明所测两相之间的接线有短路点,应仔细逐相检查排除短路点。
方法是用手按压接触器触头架,使接触器三极主触点闭合,重复上述测量,可分别测得电动机各相绕的阻值。
若某测量结果为断路(R=∞)则应仔细检查所测两相之间的各段接线。
例如测量V~W之间电阻值R=∞则说明主电路B、C两相之间的接线有断路处。
可将―支表笔接与空气开关QF的V处,另一只表笔依次测V相各段导线两端端子,均应测得R=0,再将表笔移到W相各段导线两端测量,则分别测得电动机―相绕组的阻值,这样即可准确地查出断路点,并予以排除。
(2)检查辅助电路,装好辅助电路的熔体FU,用万用表表笔接开关端子V、W(辅助电路电源线)处,应测得为断路;按下SB1、SB2,应分测得接触器KM1和KM2线圈电阻。
若侧的为断路,应在互锁接点的两端测量,用以判断互锁接点是否接触良好。
4、通电试车完成上述检查后,清点工具材料,清理安装板上的线头杂物,检查三相电源,在有人监护下执行安全规程的有关规定通电试车,拆除与电动机定子绕组的接线。
(1)空载试验:接通电源开关QF,按下SB1按钮,接触器KM1立即动作,松开SB1则K M1应立即断电复位,按下SB2按钮,接触器KM2立即动作,松开SB1或SB2,KM1或KM2应立即断电复位,此时应认真观察KM主触头动作是否正常,细听接触器线圈通电运行声音是否正常。
电动机三种最基本(单控、两地控制、点动控制)接线1 、单控:1.1 控制原理图:1、三相异步电动机自锁起停控制的主回路参考原理图如图 1.1(a)所示。
2、三相异步电动机自锁起停控制的控制回路参考原理图如图1.1(b)所示。
QS1 FU KM FR L NFRM(a)主回路原理图(b)控制回路原理图图1.1 三相异步电动机自锁控制电路参考原理图1.2 工作原理:1、继电-接触控制在各类生产机械中获得了广泛的应用,凡是需要进行前后、上下、左右、进退等运动的生产机械,均采用传统的典型的正、反转继电-接触控制。
交流电动机继电-接触控制电路的主要设备是交流接触器,其主要构造为:(1)电磁系统-铁心、吸引线圈和短路环。
(2)触头系统-主触头和辅助触头,还可按吸引线圈得电前后触头的动作状态,分动合(常开)、动断(常闭)两类。
(3)消弧系统-在切断大电流的触头上装有灭弧罩,以迅速切断电弧。
(4)接线端子,反作用弹簧。
2、在控制回路中常采用接触器的辅助触头来实现自锁和互锁控制,要求接触器线圈得电后能自动保持动作后的状态,这就是自锁,通常用接触器自身的动合触头与起动按钮并联来实现,以达到电动机的长期运行,这一动合触头称为“自锁触头”,使两个电器不能同时得电动作的控制,称为互锁控制,如为了避免正反转两个接触器同时得电而造成三相电源短路事故,必须增设互锁控制环节。
为操作的方便,也为防止因接触器主触头长期大电流的烧蚀而偶发触头粘连后造成三相电源的短路事故,通常在具有正反转控制的线路中采用既有接触器的动断辅助触头的电气互锁,又有复合按钮机械互锁的双重互锁控制环节。
3、控制按钮通常用以短时通、断小电流的控制回路,以实现近、远距离控制电动机等执行部件的起、停或正、反转控制。
按钮是专供人工操作使用。
对于复合按钮,其触点的动作规律是:当按下时,其动断触头先断,动合触头后合;当松手时,则动合触头先断,动断触头后合。
4、在电动机运行过程中,应对可能出现的故障进行保护。
既能点动又能长动的控制电路工作原理好嘞,咱们今天聊聊一个挺有趣的东西——既能点动又能长动的控制电路。
很多小伙伴可能觉得这名词听起来有点高深,其实没那么复杂,就像喝水一样简单。
想象一下,你手里有个开关,这个开关就像你打开电视遥控器的那个按钮,轻轻一按,电视就亮了。
不过,这个开关可不止是亮和灭那么简单,它还能控制电路里的各种“小伙伴”,让它们一起嗨起来,听起来是不是很酷?让我们来谈谈点动。
点动,顾名思义,就是轻轻一按,电路就开始工作。
这个就像你跟朋友打招呼,轻轻一招手,朋友就知道你来了。
这种控制电路通常有一个开关,你可以随时随地按一下,电路就开始转动,简直是方便得不要不要的。
像家里的灯,晚上回家一按开关,灯光瞬间亮起,整个房间都暖和了,真是让人心里一阵舒畅。
而长动呢,就是让这个电路持续工作,就像你在马路上骑自行车,不用一直踩脚踏板,轻轻一推就能保持前进。
长动控制电路里有个定时器或者继电器,能够让电路在你按下开关后,持续一段时间。
比如说你在厨房做饭,想让电饭煲自己慢慢煮饭,你只需要按一下开关,它就会自动工作,等到饭做好了,自己关掉,真是懒人福音啊!生活中,很多电器都是这样工作的,简直让我们省心又省力。
那这种控制电路是怎么工作的呢?其实也没什么神秘的。
电流就像水流,开关就像水龙头,打开水龙头,水流出来,电流通了,电器开始工作;关上水龙头,水流停止,电流也不动了。
点动的时候,电流像个小火箭,瞬间冲出去;而长动的时候,电流就变成了长河,稳稳地流淌。
这个切换过程,就像你切换心情一样简单,有时候想要欢快,有时候又想要平静,都是你的选择。
对于很多电器,尤其是那些日常必备的家电,这种控制电路的应用简直是太常见了。
像冰箱、洗衣机、空调,这些东西都需要这样的电路来保证它们正常运作。
你想象一下,如果冰箱没有这个控制电路,那冰淇淋可就没救了!所以说,这种电路在我们的生活中真是无处不在,犹如空气般重要。
再来说说控制电路的安全性,毕竟在电气设备中,安全可是一件大事。
4个电机控制电路图,搞定所有电机控制设计!点动控制点动控制又称为寸动控制,顾名思义就是按动按钮开关,电动机得电启动运转;当松开按钮开关后,电动机失电停止运转。
点动控制是电路中最基基础的控制电路,广泛应用在电路中。
原理图点动实物接线工作原理:当按下按钮SB,交流接触器工作线圈得电吸合,其主触点瞬间闭合,接通三相电源,电动机得电启动运行;当松开按钮SB,交流接触器工作线圈失电断开,主触点瞬间断开,断开三相电源,电动机失电停止运转。
自锁控制自锁控制就是依靠接触器或者继电器自身的常开辅助触点,而使其工作线圈保持通电的现象。
它与点动控制最大区别是,点动控制是接通接触器线圈电源后,松开启动按钮后接触器线圈立马断电,电机停止;而自锁控制,当接触器线圈得电后,松开启动按钮,接触器线圈依然保持通电。
自锁控制在控制电路中可以起到很好的失压和欠压保护作用,当电路电源由于某种原因,导致电压下降,电压低于85%时,接触器的电磁系统所产生的电磁力克服不了弹簧的反作用力,因而释放,主触点打开,自动切断主电路,达到欠压保护。
当电路断电时,接触器工作线圈失电释放,自锁触点断开,当再次来电时,电机不会立刻启动,必须重新按动启动按钮SB,电机才能再次工作,起到失压保护。
自锁控制原理图自锁实物接线图工作原理:启动时,按动启动按钮SB2,接触器工作线圈得电吸合,主触点闭合,三相电源接通,电机得电运行。
在交流接触器工作线圈得电吸合同时,接触器并联在启动按钮SB2上的辅助触点闭合自锁,在启动按钮SB2松开后,电流经辅助触点保持接触器工作线圈通电吸合,所以主触点不会断开,电机保持正常工作。
互锁控制互锁控制简单理解就是两者相互制约。
比如有一台电机可以左右运行,如果没有相互制约,同时启动势必造成电源短路,因此约定左边运行时右边不能运行,右边运行时左边不能运行,这样的相互制约就是互锁。
互锁一般通过软件编程、接触器或继电器常闭触点、按钮的动断触点来实现。