网络化控制技术的综述
- 格式:doc
- 大小:76.00 KB
- 文档页数:4
智能控制技术综述院系:自动化工程学院姓名:**班级:**学号:*****智能控制技术综述【摘要】:本文综述了智能工程和控制技术的发展历程及基本问题。
文中着重论述了许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。
【英文摘要】:With the development of information technology, manynew methods and technology into engineering,product phase,this control technology proposed Guang new challenges, promoting intelligent control theory in the application of technology to solve difficult using traditional methods complex system of control。
【关键词】:自动化智能控制应用【正文】:随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出犷新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题.智能控制(intelligent controls)在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。
对许多复杂的系统,难以建立有效的数学模型和用常规的控制理论去进行定量计算和分析,而必须采用定量方法与定性方法相结合的控制方式。
定量方法与定性方法相结合的目的是,要由机器用类似于人的智慧和经验来引导求解过程。
一、智能控制的主要方法智能控制技术的主要方法有模糊控制、基于知识的专家控制、神经网络控制和集成智能控制等,以及常用优化算法有:遗传算法、蚁群算法、免疫算法等。
WiFi技术文献综述摘要:随着网络技术和手机用户对无线通讯的需求与日俱增,出现了越来越多的无线通讯协议,直接带动了全球WiFi设备呈现迅猛增长的态势,WiFi在互联网时代作为一种短距离无线传输的技术应用,以其独有的优势备受各界的关注。
在WiFi的发展中有许多技术用于提升WiFi性能以及解决传输中出现的影响WiFI性能的问题,这些问题在实际的WLAN场景下导致传输性能的下降。
本文通过阅读关于WiFi协议与技术文献,分析了一些解决WiFi 应用性能的技术,其中包括基于TDMA思想的h-MAC,RT-WiFi;对传统IEEE 802.11 DCF 优化的A-DCF以及基于通过控制滑动窗口大小来调控接入概率来弥补TCP在WiFi应用中公平性问题的EF-TCP。
然后着重研究与论述了基于竞争方式MAC层协议的核心实现机制和特点,最后基于这些特点对WiFi性能技术的研究策略和发展趋势进行了展望。
关键字:WiFi;无线局域网;h-MAC;RT-WiFi;A-DCF;EF-TCP1.引言近年来,无线网络迅速发展,在众多无线标准中,无线局域网因为其较低的构建和运营成本、较高的传输速率、较远的传输距离等优点获得了人们的青睐。
随着笔记本电脑、Wi-Fi 手机、PDA等移动终端的广泛使用,用户对无线接入的需求日渐突出。
目前,Wi-Fi以其灵活性和可移动性,在家庭和小型办公网络用户对移动连接的需求是越来越大。
在这几年,无线AP的数量呈迅猛的增长,无线网络的方便与高效使其能够得到迅速的普及。
除了在一些公共地方有AP之外,国外已经有先例以无线标准来建设城域网,因此,Wi-Fi的无线地位将会日益牢固。
美国、日本等发达国家是目前Wi-Fi用户最多的地区。
廉价的Wi-Fi,必将得到更加广泛的应用。
WiFi是由AP ( Access Point ) 和无线网卡组成的无线网络。
AP一般称为网络桥接器或接入点, 它是当作传统的有线局域网络与无线局域网络之间的桥梁, 因此任何一台装有无线网卡的PC均可透过AP去分享有线局域网络甚至广域网络的资源。
ControlNet工业网络综述摘要:ControlNet作为符合IEC国际标准的现场总线,综合了现有各种网络的能力,提供了控制器与现场测量控制设备之间的高速通信链路。
它是一种高速确定性网络,适用于对时间有苛刻要求的应用场合,在工业控制系统中,ControlNet 网络得到了很好的推广和应用。
关键词:ControlNet;生产者/消费者模式;控制器1.ControlNet总线协议概述ControlNet基础技术是美Rockwell Automation公司自动化技术研究发展起来的,最早于1995年10月面世。
1997年7月由Rockwell等22家企业联合发起成立了ControlNet International 组织,是个非赢利独立组织,主要负责向全世界推广ControlNet技术(包括测试软件)。
随着国际自动化系统网络技术的不断进步,ControlNet International 到目前为止,成员公司已扩展到50多个,其中不乏世界知名的大公司,如ABB Roboties、Honeywell Inc、Toshiba International。
ControlNet可广泛应用于交通运输、汽车制造、冶金、矿山、电力、食品、造纸、水泥、石油化工、娱乐及其它各个领域的工厂自动化和过程自动化。
2.ControlNet物理层ControlNet网络的主要物理介质是同轴电缆。
这种电缆安装简便,价格便宜.广泛用于电视传输。
一个ControINet物理网络是由这种电缆和连接器、接收器和端子设备组成的,每网段最长可达1000m,还可通过中继器延长。
第二种介质是光纤.可用于户外和危险环境,具有本征安全特性,与电缆组合使用可构成长选25km 的系统。
3.通信模式3.1.信息连接在ControlNet上传输的数据可分成非连接(Unconneted) 和连接(Connected)两种。
非连接信息管理器UCMM(UnconnectedMessage Manager)用于在未建立连接的节点间传输信息,这些信息可以是建立连接的请求或简单的非重复性、无时间苛求的数据。
电子信息工程中的网络与通信技术发展综述近年来,随着信息技术的快速发展,电子信息工程中的网络与通信技术也取得了长足的进步。
本文将对网络与通信技术的发展进行综述,以展示其在电子信息工程领域的重要性和应用前景。
一、网络技术的发展1. 互联网技术发展互联网技术是网络技术中最具影响力的一项,它的出现极大地改变了人们的生活方式和工作方式。
互联网的发展经历了从狭义的因特网到广义的互联网的演进过程,现如今已成为人们日常生活的重要组成部分。
互联网的快速发展,推动了电子商务、在线教育、社交媒体等相关产业的繁荣。
2. 无线通信技术的进步随着移动通信技术的不断发展,无线通信已经成为人们日常生活中不可或缺的一部分。
从2G、3G、4G到如今的5G,无线通信技术实现了高速度、低延迟和大容量的数据传输,极大地促进了信息传播和互联互通。
3. 物联网技术的崛起物联网技术是近年来网络技术领域的重要创新,它将各种物体与互联网进行连接,实现了智能化、自动化的管理和控制。
物联网的发展为各行各业带来了巨大的变革,包括智能家居、智慧城市、智能工厂等领域的发展。
二、通信技术的发展1. 光纤通信技术的进步光纤通信技术是目前最快、最可靠的通信传输方式之一。
光纤通信技术以其高带宽、低衰减、抗干扰等优势,广泛应用于电信、广播电视、数据传输等领域。
随着光纤通信技术的不断突破,更高速、更低成本的传输方式将进一步推动通信技术的发展。
2. 卫星通信技术的发展卫星通信技术作为一种远程通信方式,在信息传输、广播电视、天气预报等方面发挥着重要作用。
随着卫星通信技术的不断改进,卫星通信的带宽和数据传输速度逐渐提高,进一步促进了全球通信的无缝连接。
3. 5G通信技术的崛起5G通信技术是近年来通信技术领域的重要突破,具有较低的时延、较高的传输速度和大容量的特点。
5G通信技术的广泛应用将极大地改变人们的生活和工作方式,推动智能交通、远程医疗、虚拟现实等技术的快速发展。
三、网络与通信技术的应用前景1. 智能化生活随着物联网技术的发展和5G通信技术的普及,智能家居、智能交通等智能化生活方式将更加普及。
智能控制综述姓名:杨凡学号:1506006专业:电力电子与电力传动摘要介绍了智能控制的产生、发展和定义,分析了智能控制理论结构,讨论了智能控制的主要方法,列举了智能控制在不同领域成功实施的例子。
关键词:智能控制;专家控制;模糊控制;神经网络;遗传算法Summary of Intelligent ControlAbstractThe history and development of intelligent control are introduced. The definition of intelligent control is given. The main methods of intelligent control are included. Some successful examples of intelligent control which are successful implemented are shown.Key words: intelligent control; expert control; fuzzy control; neural networks control; genetic algorithms引言控制理论在近一个多世纪的发展过程中,经历了经典控制理论和现代控制理论的两大阶段,形成了控制理论的体系。
科学技术的快速发展和巨大进步对系统和控制科学提出了新的更高的要求,自动控制理论和工程正面临新的发展机遇和严峻挑战。
传统的控制理论在应用中遇到不少难题。
随着人工智能学科的发展,对控制理论研究的深度和广度得到开拓,形成了智能控制理论。
智能控制作为一门新兴学科,也是控制论发展的第三阶段,其研究领域相当广泛,涉及的应用领域也十分丰富。
与传统控制理论相比,智能控制的应用研究十分活跃,能更有效的解决实际应用问题,且取得了很多成功的应用。
智能控制技术呈现出的强大生命已引起世界各国专家学者的关注。
未来网络技术与发展趋势综述一、本文概述随着科技的飞速发展和社会的不断进步,网络技术已成为现代社会不可或缺的重要组成部分。
网络技术不仅改变了人们的生活方式,也极大地推动了经济的发展和社会的进步。
然而,随着网络技术的广泛应用,其面临的挑战和问题也日益凸显。
因此,对未来网络技术及其发展趋势进行深入研究和探讨,具有重要的理论和实践意义。
本文旨在全面综述未来网络技术的主要特点、关键技术和发展趋势,以期为相关领域的研究人员和实践者提供有价值的参考。
文章首先对网络技术的历史发展进行了简要回顾,然后重点分析了未来网络技术的主要特征,包括高速、智能、安全、泛在等方面。
接着,文章深入探讨了支撑未来网络技术发展的关键技术,如5G/6G通信技术、云计算技术、物联网技术、边缘计算技术、技术等。
文章展望了未来网络技术的发展趋势,包括网络融合、网络智能化、网络安全保障等方面。
通过本文的综述,读者可以对未来网络技术的发展有一个清晰、全面的认识,从而更好地把握网络技术的发展方向,为未来的网络建设和应用提供有力支持。
二、未来网络技术的主要特点未来网络技术以其独特的特点和优势,正在塑造一个全新的网络世界。
这些特点主要体现在以下几个方面:超高速度和超大容量:随着科技的不断进步,未来网络技术将实现更高的传输速度和更大的网络容量,以满足日益增长的数据需求。
新的传输技术和协议,如可见光通信、量子通信等,将进一步推动网络速度的提升和容量的扩大。
高度智能化和自动化:人工智能和机器学习等技术的深入应用,将使未来网络具备更强的智能化和自动化特性。
网络将能够自我优化、自我修复,甚至能够预测和应对潜在的问题,大大提升网络的稳定性和可靠性。
高度安全性和隐私保护:随着网络安全威胁的日益严重,未来网络将更加注重安全性和隐私保护。
通过先进的加密技术、身份认证技术和入侵检测技术,未来网络将为用户提供更加安全、私密的网络环境。
全面覆盖和深度融合:未来网络技术将实现更广泛的覆盖,包括偏远地区和深海等难以覆盖的区域。
《人工智能技术发展综述》篇一一、引言随着科技的飞速发展,人工智能()技术已经成为了全球科技领域内最为热门的话题之一。
技术以其强大的计算能力、自我学习和自我优化的特性,正在改变着我们的生活、工作乃至整个社会结构。
本文将对人工智能技术的发展历程、主要领域应用、关键技术、面临挑战与未来趋势等方面进行全面的综述。
二、人工智能技术的发展历程自上世纪五十年代开始,人工智能的发展已经历了数个阶段。
早期的人工智能以符号推理为主要研究方向,经历了认知计算、知识处理和知识推理等发展阶段。
近年来,随着大数据和深度学习等技术的发展,人工智能的技术得到了巨大的提升,特别是以机器学习为代表的一系列新技术的崛起,极大地推动了人工智能技术的发展。
三、人工智能技术的主要应用领域1. 智能家居:通过智能设备对家庭环境进行智能化控制,包括照明、温度、安防等方面的智能化管理。
2. 自动驾驶:利用技术实现汽车的自主驾驶,包括对环境感知、路径规划、决策执行等方面的处理。
3. 医疗健康:通过技术实现疾病预测、辅助诊断和治疗决策,同时辅助医学研究和教育等。
4. 金融服务:通过技术进行金融分析、投资决策和风险控制等,大大提高了金融服务的效率和准确性。
5. 工业制造:在制造业中,技术被广泛应用于生产线的自动化控制、设备维护和故障诊断等方面。
四、关键技术及其发展1. 机器学习:机器学习是技术的核心之一,它通过让计算机从数据中学习并发现规律,从而进行预测和决策。
其中深度学习是机器学习的一个重要分支,其强大的处理能力在图像识别、语音识别等领域取得了显著的成果。
2. 自然语言处理:自然语言处理技术使得计算机能够理解和生成人类语言,这为在智能问答、智能客服等领域的应用提供了可能。
3. 神经网络:神经网络是一种模拟人脑神经系统的计算模型,它通过大量的神经元之间的连接和权重调整来处理信息,是机器学习和深度学习的重要基础。
五、面临的挑战与未来发展尽管人工智能技术在许多领域都取得了显著的成果,但仍面临着诸多挑战。
关于智能控制的文献综述一、智能控制概述智能控制,也称为自动化智能控制,是一种将人工智能理论与控制理论相结合的技术。
它通过模拟人类思维模式,实现对复杂系统的智能化控制。
智能控制的目标是提高系统的性能,优化系统的运行状态,以满足各种实际应用的需求。
二、智能控制发展历程智能控制的发展可以分为四个阶段:萌芽期、形成期、成熟期和最新发展阶段。
萌芽期主要是在20世纪50年代,人工智能和控制理论开始被独立研究;形成期是在20世纪70年代,随着计算机技术的发展,人工智能和控制理论开始融合;成熟期是在20世纪90年代,智能控制的相关理论和技术开始应用于各个领域;最新发展阶段是从21世纪初至今,随着物联网、大数据、云计算等新技术的出现,智能控制得到了更广泛的应用和发展。
三、智能控制的主要技术智能控制的主要技术包括专家控制、模糊控制、神经网络控制和遗传算法等。
这些技术通过模拟人类的思维模式,实现对系统的智能化控制。
其中,专家控制是基于专家知识的控制;模糊控制是通过模糊逻辑理论的控制;神经网络控制是通过模拟人脑神经元网络的控制方式;遗传算法是一种基于生物进化理论的优化算法。
四、智能控制在各领域的应用智能控制已被广泛应用于各个领域,如工业自动化、航空航天、医疗保健、农业等。
在工业自动化领域,智能控制可以实现生产线的自动化检测、控制和优化;在航空航天领域,智能控制可用于飞行器的自主导航、自主控制和自主决策;在医疗保健领域,智能控制可用于医疗设备的智能化操作和病人的智能化监护;在农业领域,智能控制可用于智能化灌溉、智能化施肥和智能化养殖等。
五、智能控制面临的挑战与展望智能控制面临的挑战包括如何提高控制的精度和稳定性、如何处理大规模复杂系统的控制问题、如何降低控制成本和提高经济效益等。
展望未来,随着新技术的不断涌现和应用,智能控制将面临更多的挑战和机遇。
未来智能控制的发展方向包括:更加智能化、更加自主化、更加集成化、更加网络化等。
网络化控制技术的综述
姓名:王旭闽学号:预科
网络化控制系统NCS(Networked Control Systems),又称集成通讯与控制系统ICCS (Integrated Communication and Control System)。
一般认为ICCS是一种全分布式、网络化实时反馈控制系统,是将控制系统的传感器、控制器、执行器等单元通过通讯网络连接起来形成闭环的分布式控制系统。
其涵盖了两方面的内容:系统节点的分布化和控制回路的网络化。
这种网络化的控制模式具有信息资源能够共享、连接线数大大减少、易于扩展、易于维护等优点,但由于网络中的信息源很多,信息的传送药分时占用网络通讯资源,而网络的承载能力和通讯带宽有限,必然造成信息的冲撞、重传等现象的发生,使得数据在传输过程中不可避免地存在时延。
时延由于受到网络所采用的通讯协议、负载状况、网络速率以及数据包大小等情况到影响,呈现出或固定或随机,或有界或无界的特征,从而导致控制系统性能下降甚至不稳定,也给控制系统的分析和设计带来困难。
网络给NCS带来的主要问题包括:时延采样时刻和执行器响应时刻间出现了不可忽略的滞后;在某时间间隔内存在于时间相关的抖动;由于数据包在网络中传输发生丢失或冲突,导致时延增大甚至系统失稳。
NCS的性能不仅依赖于控制策略及控制律器的设计,而且受到网络通讯和网路资源的限制。
信息调度应尽可能避免网络中信息的冲突和拥塞现象的发生,从而大大提高网络化控制系统的服务性能。
网络化控制系统是综合自动化技术发展的必然趋势,是控制技术、计算机技术和通信技术相结合的产物。
本书基于现场总线技术及自动化北京市重点实验室的科研成果,系统地介绍了网络化控制系统的组成原理、控制结构、建模方法,网络拥塞闭环控制机理,网络时延闭环控制方法,现场总线控制技术及应用,基于工业以太网的控制系统设计,基于Internet 和Web的网络远程控制系统设计。
网络化控制系统软件开发技术,以及网络化控制技术在工业加热炉、工业锅炉和电厂锅炉湿法烟气脱硫中的应用。
在传统的计算机控制系统中,传感器和执行器都是与计算机实现点对点的连接,传递信号一般采用电压和电流等模拟信号。
在这种结构模式下,控制系统往往布线复杂,从而增加了系统成本,降低了系统的可靠性、抗干扰性、灵活性和扩展性,特别在地域分散的情况下,传统控制系统的高成本、低可靠性等弊端更加突出。
随着计算机技术和网络通信技术的不断发展,工业控制系统也发生了巨大的技术变革,网络化控制系统(NetworkedControlSystem,NCS)应运而生,其主要标志就是在控制系统中引入了计算机网络,从而使得众多的传感器、执行器、控制器等主要功能部件能够通过网络相连接,相关的信号和数据通过通信网络进行传输和交换,避免了点对点专线的铺设,而且可以实现资源共享、远程操作和控制,增加了系统的灵活性和可靠性。
在控制系统中使用网络并不是一个新的想法,它可以追溯到20世纪70年代末期集散控制系统(DistributedControlSystem,DCS)的诞生。
在DCS出现之前,早期的计算机控制系统是直接数字控制(DirectDigitalControl,DDC),在这种控制结构中,所有传感器和执行器都与同一台计算机点对点的连接。
由于当时计算机昂贵,系统一般采用集中式的体系结构,整个生产过程和控制策略都由一台计算机完成,即使是计算机一个单一的故障也会使整个系统及其所有回路失效。
伴随着计算机成本的下降和网络技术的发展,(计算机)控制网络被首次引入到了控制系统,导致了DCS的产生。
DCS将控制任务分散到若干小型的计算机控制器(也叫做现场控制站)中,每个控制器采用DDC控制结构处理部分控制回路,而在控制器与控制器、控制器与上位机(操作员站或工程师站)之问建立了计算机控制网络,这种控制结构使得操作员在上位机中能够对被控系统的实时运行状态进行监控,某个控制回路的
控制策略的设计也可以在上位机中组态完成,通过控制网络下载到对应的控制器中实时运行。
DCS大大提高了控制系统的可靠性,并实现了集中管理和分散控制。
尽管在DCS中已经引入了控制网络,但由于当时传感器和执行器只能发送和接收模拟量信号,所以在传感器与控制器、控制器与执行器之间仍然采用点对点连接的DDC控制结构。
采用模拟量信号进行信息传输,只是在控制器的输入、输出端进行信号的模拟量/数字量(A/D)和数字量/模拟量(D/A)转换。
通讯网络给NCS系统带来的问题为:
1)控制时延是某个采样时刻和对应的执行期响应时刻之差。
从控制的角度看,时延将导致向卫滞后,恶化系统性能,从信息调度的角度看,时延将使信息不能准时到达,丢失截止期,甚至带来不可预料的通讯多米诺效应。
2)抖动是在任何特定的时间间隔,与时间相关的、突然的、乱真的变化,可以看成一种突发性的故障;表现为控制周期的抖动,时延抖动,采样抖动;从调度的角度看,抖动表现为输出抖动,队列抖动,截止期抖动等。
3)瞬态误差是控制信号在网络中传输时发生丢失或冲突而产生的,会使数据和通讯时延加剧,时序采样值不能准时到达,产生空采样问题以及样本数据拒绝问题。
针对网络的可变因素,目前的假设主要集中在以下方面:
1)驱动方式的假设
传感器都是采用时间驱动,采样周期为,执行器和控制器存在时间驱动和事件驱动两种方式的组合。
2)传输时延τ的假设
通常假设τ为常数、随机分布,或有界或无界。
τ和T满足0#lt;τ#gt;T或。
3) NCS数据传输假设
传输的每一数据包都是一个完整的数据,或者是数据被分成多个数据包,即单包和多包传输问题。
4) NCS数据丢包
数据单元在传输中由于网络拥塞、中断等原因会导致数据包的时序错乱或数据包丢失等问题。
NCS的研究涉及控制和通讯网络两个方面,对同一个问题既可以从控制角度来研究,也可以从信息调度角度来研究,或者综合两方面进行研究。
针对时间驱动的NCS,绝大多
数的文献对NCS进行分析时,都假定传感器、控制器和执行器的采样速率是一致的,即研究的是单率采样系统下的情形。
然而,对于NCS,由于节点的分散化,单一的采样速率不符合实际情况。
多率采样是符合实际系统真实情形的,Salt等人针对多率采样的控制问题进行了研究,传感器和控制器启动时又很小的时间偏差,新的传感器值到达控制器的概率
假定是已知的。
若,则说明是在新的测量数据未知的情况下对控制信号进行计算。
但是对多率采样系统来说,采用时间驱动的采样方式常常会出现很多问题,如过多的冗余信号将使系统的时延、空采样、报文丢失扥变得更加严重,从而导致系统性能恶化。
在NCS中网络传输的信息可以分为两类:实时性信息和非实时性信息。
实时性信息对时间要求非常苛刻,如果在规定时间的上限内信息未能起作用,则该信息将被丢弃,而使用最新的信息。
NCS信息调度策略中主要调度两类数据信息:周期信息和非周期信息。
周期信息是一种实时性信息,也被称为时间出发信息或者同步信息。
非周期信息主要是指节点间的请求服务等信息,其发生时刻是随机的,也被称为事件触发信息、异步信息或者随机性信息。
在NCS中,信息调度发生在应用层,信息调度规定节点的优先发送次序、发送时刻和时间间隔,以避免网络冲突。
如果网络化控制系统的所有数据传输都能在任务时限内完成,则称传输是可调度的。
网络化控制系统中信息调度的研究可分为调度与控制分开设计和调度和控制协同设计两类。
在目前的NCS研究中,一类研究是针对通讯网络,研究提高网络服务质量的信息调度方法;另一类是在给定的网络信息调度方法基础上,研究提高NCS性能的控制方法。
根据信息对实时性的要求,信息调度分为静态调度(离线调度)、动态调度(在线调度)以及混合调度。
1)静态优先即调度
速率单调静态优先级调度(Rate Monotonic Scheduling Model)的调度优先级由任务周期确定,在任务周期等于时限得同步实时任务系统中是最佳静态调度算法。
但该算法调度判定时间复杂度是指数增长的,而且对任务的执行周期限制得过于严格,只能处理具有固定周期任务。
2)动态优先级调度
在动态优先即调度中,任务的时间约束关系并没有完全确定,新任务的到达时间是未知的。
Liu和Layland提出时限最早的任务调度(Earliest Deadline First Scheduling),指出任务优先级是任务时限与任务执行时刻的差,该算法对同步周期任务组是最佳的动态调度算法。
目前,针对时延和丢包情况下NCS的稳定性研究以及带随机噪声的NCS的最优控制问题的研究较多,而针对带有确定性干扰NCS的最优扰动抑制问题和故障诊断问题则不多见,将最优扰动抑制理论应用于带有时延和丢包的NCS实现系统的最优扰动抑制是研究的一个重要方向。
在用Markov链对NCS建模时,都假定状态及其转移概率是已知的,而实际上还存在Markov链中状态未知的情形。
如何通过HMM(Hidden Markov Model)来辨识Markov 状态数及其转移概率是分析和设计NCS必须面临的问题。
基于HMM的估计理论是处理混
杂情况下辨识问题的有力工具,将HMM理论应用于NCS也是研究和设计NCS的重要方向。
NCS信息调度的研究大多限于单控制回路,对共享网络的多个控制回路的优化调度等问题需要进一步的研究。
考虑网络利用率、数据包丢失率、系统稳定性等多重约束,建立NCS 多目标优化的数学模型。
进而考虑NCS的实时性要求,研究NCS分级多目标优化问题的求解方法。