材料力学第八章复习题
- 格式:doc
- 大小:278.00 KB
- 文档页数:11
2-1求图中所示各杆指定截面上的轴力,并绘制轴力图。
解:a) b)FFc) d)题2-1图2-2 求下图所示各个轴指定截面上的扭矩,并绘制扭矩图 解:a) b)2kN·m20kN·m题2-2图2-3图中传动轴的转速n=400rpm,主动轮2输入功率P 2=60kW,从动轮1,3,4和5的输出功率分别是P 1=18kW, P 3=12kW, P 4=22kW, P 5=8kW,试绘制该轴的扭矩图. 解:mN T mN T mN T mN T m N T ⋅=⨯=⋅=⨯=⋅=⨯=⋅=⨯=⋅=⨯=191400895492.5254002295495.2864001295494.14324006095497.42940018954922321 题2-3图429.7N·m2-4 求图中所示各梁指定截面上的剪力和弯矩,设q 和F 均为已知.a )b)A qlql 2/2Bc)d)qlF QAM图F Q 图题2-4图2-5试绘制下图所示各梁的剪力图和弯矩图,并求出剪力和弯矩的最大值.设F q l 均为已知.a)b)A F Q2M图F Q 图c)d)F QF Q 图M图e) f)F QM图qlql 2/2ql 2/8F Q M图g)h)F Q M图9ql 2/128F Q M图题2-5图2-6不列方程,绘制下面各梁的剪力图和弯矩图,并求出剪力和弯矩绝对值的最大值.设F 、q 、l 均为已知。
a)b)F Q M图ql 2/2qlF Qc) d)F Q 图M图2FlF Q 图M图e) f)F Q 图M图F Q M图题2-6图2-7绘制下图所示各梁的剪力图和弯矩图,求出|F Q |max 和|M|max ,并且用微分关系对图形进行校核.a) b)F Q 图M图F Q 图M图Flc)d)F Q 图M图2F Q题2-7图2-8试判断图中所示各题的F Q ,M 图是否有错,如有错误清指出错误原因并加以改正。
8-49现用某种黄铜材料制成的标准圆柱形试件做拉伸试验。
已知临近破坏时,颈缩中心部位的主应力比值为113321::::=σσσ;并已知这种材料当最大拉应力达到770MPa 时发生脆性断裂,最大切应力达到313MPa 时发生塑性破坏。
若对塑性破坏采用第三强度理论,试问现在试件将发生何种形式的破坏?并给出破坏时各主应力之值。
解: 令主应力分别为:σσ31=,σσσ==32脆性断裂时,由第一强度理论=1r σσσ31==770MPa所以,塑性破坏时,由第三强度理论 所以故,试件将发生脆性断裂。
破坏时MPa 7701=σ,MPa 25732==σσ8-50 钢制圆柱形薄壁压力容器(参见图8-13),其平均直径mm d 800=,壁厚mm 4=δ,材料的M P a ][120=σ,试根据强度理论确定容器的许可内压p 。
解:在压力容器壁上取一单元体,其应力状态为二向应力状态。
p pd 504'==δσ ,p pd1002"==δσ 其三个主应力为p 100"1==σσ, p 50'2==σσ,03=σ据第三强度理论所以 ,MPa p 2.13≤,许可内压MPa p 2.13= 据第四强度理论所以,MPa p 39.14≤,许可内压MPa p 39.14=8-51 空心薄壁钢球,其平均内径mm d 200=,承受内压MPa p 15=,钢的MPa ][160=σ。
试根据第三强度理论确定钢球的壁厚δ。
解:钢球上任一点应力状态如图示 其三个主应力为:σσσ==21,03=σ而 MPa MPa d p R R p δδδδππσ4342.0152222=⨯=⋅=⋅⋅=据第三强度理论 所以 mm m 69.41069.41601433=⨯=⨯≥-δ 8-52 图8-77所示两端封闭的铸铁圆筒,其直径mm d 100=,壁厚mm 10=δ,承受内压MPa p 5=,且在两端受压力kN F 100=和外扭矩m kN T ⋅=3作用,材料的许用拉应力MPa ][40=+σ,许用压应力MPa ][160=-σ,泊松比250.=ν,试用莫尔强度理论校核其强度。
2024年上学期材料力学(考试)复习资料一、单项选择题1.钢材经过冷作硬化处理后其()基本不变(1 分)A.弹性模量;B.比例极限;C.延伸率;D.截面收缩率答案:A2.在下面这些关于梁的弯矩与变形间关系的说法中,()是正确的。
(1 分)A.弯矩为正的截面转角为正;B.弯矩最大的截面挠度最大;C.弯矩突变的截面转角也有突变;D.弯矩为零的截面曲率必为零。
答案:D3.在利用积分计算梁位移时,积分常数主要反映了:( ) (1 分)A.剪力对梁变形的影响;B.支承条件与连续条件对梁变形的影响;C.横截面形心沿梁轴方向的位移对梁变形的影响;D.对挠曲线微分方程误差的修正。
答案:B4.根据小变形条件,可以认为() (1 分)A.构件不变形;B.构件不变形;C.构件仅发生弹性变形;D.构件的变形远小于其原始尺寸答案:D5.火车运动时,其轮轴横截面边缘上危险点的应力有四种说法,正确的是。
(1 分)A.脉动循环应力;B.非对称的循环应力;C.不变的弯曲应力;D.对称循环应力答案:D6.在下列结论中()是错误的(1 分)A.若物体产生位移则必定同时产生变形;B.若物体各点均无位移则必定无变形;C.若物体产生变形则物体内总有一些点要产生位移;D.位移的大小取决于物体的变形和约束状态答案:B7.在下列三种力(1、支反力;2、自重;3、惯性力)中()属于外力(1 分)B.3和2;C.1和3;D.全部答案:D8.在一截面的任意点处若正应力ζ与剪应力η均不为零则正应力ζ与剪应力η的夹角为() (1 分)A.α=90;B.α=450;C.α=00;D.α为任意角答案:A9.拉压杆截面上的正应力公式ζ=N/A的主要应用条件是() (1 分)A.应力在比例极限以内;B.外力合力作用线必须重合于杆件轴线;C.轴力沿杆轴为常数;D.杆件必须为实心截面直杆答案:A10.构件的疲劳极限与构件的()无关。
(1 分)A.材料;B.变形形式;C.循环特性;D.最大应力。
材料力学第一章复习题1,下列结论中正确的是()A,内力是应力的代数和B,应力是内力的平均值C应力是内力的集度D内力必大于应力2. 一对自平衡的外载产生杆件的哪种基本变形只对杆件的某一局部存在影响。
( )A 拉伸与压缩B 剪切C扭转D弯曲3,已设计好的构件,若制造时仅对其材料进行更换通常不会影响其( )A稳定性 B 强度C几何尺寸D刚度4. 根据均匀性假设,可认为构件的下列各量中的( )在各点处都相同A屈服极限B材料的弹性常数C应力D应变第二章轴向拉伸压缩与剪切挤压的实用计算1.塑性材料的极限应力是A屈服极限B强度极限c比例极限D弹性极限2.脆性材料的极限应力是。
A屈服极限B比例极限C强度极限D弹性极限3.受轴向拉压的杆件内最大切应力为80 Mpa,则杆内最大正应力等于A160Mpa B 80Mpa C40Mpa D20Mpa4.在低碳钢Q235的拉伸试验中,材料暂时失去了抵抗变形能力是发生在哪个阶段A弹性B屈服C强化D缩颈断裂5材料进入强化阶段卸载,在室温中放置几天再重新加载可以获得更高的()。
A比例极限B强度极限C弹性变形D塑性变形6直径为d的圆截面钢杆受轴向拉力作用,已知其纵向线应变为e,弹性模量为E,杆轴力大小为()。
填空题(5.0分)7.在连接件上,剪切面和挤压面分别()于外力方向8.连接件剪切强度的实用计算中去,许用切应力是由( )9.插销穿过水平放置的平板上的圆孔,在其下端受拉力F作用。
该插销的剪切面面积和挤压面面积分别等于( a)。
填空题(5.0分)10.低碳钢拉伸试验中滑移线是( )造成的。
11.外力消失后,变形也消失,这种变形为( )12.当延伸率小于( )时为脆性材料,当延伸率大于( )时为塑性材料13.一个结构中有三根拉压杆,设由这三根杆的强度条件确定的结构许用载荷分别为F1、F2、F3,且F1<F2<F3,则该结构的实际许可载荷[F]为判断题(5.0分)14低碳钢的抗拉能力小于抗剪能力()A对 B 错15. 试求图中1-1,2-2,3-3截面上的轴力,并作轴力图。
材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。
试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。
解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。
1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。
解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。
试问杆件横截面上存在何种内力分量,并确定其大小。
图中之C点为截面形心。
解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。
试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。
解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。
解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。
第二章杆件的内力分析1、梁弯曲时,凡剪力对梁内任一点的力矩是____ __转向的为正。
2、梁弯曲时,凡弯矩使所取梁段产生______ ____变形的为正。
3、梁在某截面处剪力为零,则该截面处弯矩有_________值。
4、同一根梁采用不同的坐标系(如右手坐标系与左手坐标系)时,则对指定截面求得的剪力和弯矩将;两种坐标系所得的剪力方程和弯矩方程是的;由剪力、弯矩方程绘制的剪力、弯矩图是的。
5、若简支梁上的均布荷载用静力等效的集中力来代替,则梁的支反力值将与原梁的支反力值,而梁的最大弯矩值将原梁的最大弯矩值。
6、根据q与剪力、弯矩间的微分关系,若梁段上有均布荷载q作用,则该梁段的剪力图为一条,弯矩图为一条;若剪力图数值由正到负或由负到正经过零处,则弯矩图在该处具有第三章杆件横截面上的应力应变分析1、截面上任一点处的全应力一般可分解为方向和方向的分量。
前者称为该点的,用符号表示;后者称为该点的,用符号表示。
2、横截面面积为A的等直杆两端受轴向拉力F时,杆件内最大正应力为,发生在面上,该截面上的切应力为;最大切应力为,发生在面上,该截面上的正应力为;任意两个相互垂直的斜截面上的正应力之和都等于。
3、各向同性材料有个弹性常数,它们分别是,它们之间的关系是。
因此,各向同性材料独立的弹性常数是个。
4、内、外直径分别为d和D的空心圆轴,则横截面的极惯性矩表达式为____________。
5、变速箱中的高速轴一般较细,低速轴较粗,这是因为6、纯弯曲是指________________ ________。
7、应用叠加原理分析组合变形杆内的应力,应满足的条件为:(1)_________________________ ; (2)_________________ 。
8、当梁只受集中力和集中力偶作用时,最大剪力必发生在。
9、称为切应力互等定理。
10、梁在横向力作用下发生平面弯曲时,横截面上的最大正应力发生在,最大切应力发生在。
第二章 轴向拉伸与压缩1、试求图示各杆1-1和2-2横截面上的轴力,并做轴力图。
(1) (2)2、图示拉杆承受轴向拉力F =10kN ,杆的横截面面积A =100mm 2。
如以α表示斜截面与横截面的夹角,试求当α=10°,30°,45°,60°,90°时各斜截面上的正应力和切应力,并用图表示其方向。
3、一木桩受力如图所示。
柱的横截面为边长200mm 的正方形,材料可认为符合胡克定律,其弹性模量E =10GPa 。
如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力; (3)各段柱的纵向线应变;(4)柱的总变形。
4、(1)试证明受轴向拉伸(压缩)的圆截面杆横截面沿圆周方向的线应变d ε,等于直径方向的线应变d ε。
(2)一根直径为d =10mm 的圆截面杆,在轴向拉力F 作用下,直径减小0.0025mm 。
如材料的弹性摸量E =210GPa ,泊松比ν=0.3,试求轴向拉力F 。
(3)空心圆截面钢杆,外直径D =120mm,内直径d =60mm,材料的泊松比ν=0.3。
当其受轴向拉伸时, 已知纵向线应变ε=0.001,试求其变形后的壁厚δ。
5、图示A和B两点之间原有水平方向的一根直径d=1mm的钢丝,在钢丝的中点C加一竖直荷载F。
已知钢丝产生的线应变为ε=0.0035,其材料的弹性模量E=210GPa,钢丝的自重不计。
试求:(1) 钢丝横截面上的应力(假设钢丝经过冷拉,在断裂前可认为符合胡克定律);(2) 钢丝在C点下降的距离∆;(3) 荷载F的值。
6、简易起重设备的计算简图如图所示.一直斜杆AB应用两根63mm×40mm×4mm不等边角钢组[σ=170MPa。
试问在提起重量为P=15kN的重物时,斜杆AB是否满足强度成,钢的许用应力]条件?7、一结构受力如图所示,杆件AB,AD均由两根等边角钢组成。
已知材料的许用应力[σ=170MPa,试选择杆AB,AD的角钢型号。
第一章一、选择题1、均匀性假设认为,材料内部各点的是相同的。
A:应力B:应变 C :位移 D :力学性质2、各向同性认为,材料沿各个方向具有相同的。
A:力学性质B:外力 C :变形 D :位移3、在下列四种材料中,不可以应用各向同性假设。
A:铸钢B:玻璃 C :松木D:铸铁4、根据小变形条件,可以认为:A:构件不变形 B :构件不破坏C:构件仅发生弹性变形 D :构件的变形远小于原始尺寸5、外力包括:A:集中力和均布力B: 静载荷和动载荷C:所有作用在物体外部的力D: 载荷与支反力6、在下列说法中,正确的是。
A:内力随外力的增大而增大;B:内力与外力无关;C:内力的单位是N或KN;D:内力沿杆轴是不变的;7、静定杆件的内力与其所在的截面的有关。
A:形状;B:大小;C:材料;D:位置8、在任意截面的任意点处,正应力σ与切应力τ的夹角α=。
A:α=90O;B:α=45O;C:α=0O;D:α为任意角。
9、图示中的杆件在力偶M的作用下,BC段上。
A:有变形、无位移; B :有位移、无变形;C:既有位移、又有变形;D:既无变形、也无位移;10、用截面法求内力时,是对建立平衡方程而求解的。
A:截面左段B:截面右段C:左段或右段D:整个杆件11、构件的强度是指,刚度是指,稳定性是指。
A:在外力作用下抵抗变形的能力;B:在外力作用下保持其原有平衡态的能力;C:在外力的作用下构件抵抗破坏的能力;答案:1、D2、A3、C4、D5、D6、A7、D8、A9、B10、C11、C、B、A二、填空1、在材料力学中,对变形固体作了,,三个基本假设,并且是在,范围内研究的。
答案:均匀、连续、各向同性;线弹性、小变形2、材料力学课程主要研究内容是:。
答案:构件的强度、刚度、稳定性;3、为保证构件正常工作,构件应具有足够的承载力,固必须满足方面的要求。
答案:构件有足够的强度、足够的刚度、足够的稳定性。
4、下列图示中实线代表变形前,虚线代表变形后,角应变为。
材料力学复习题1.构件在外荷载作用下具有抵抗破坏的能力为材料的(强度);具有一定的抵抗变形的能力为材料的(刚度);保持其原有平衡状态的能力为材料的(稳定性)。
2.构件所受的外力可以是各式各样的,有时是很复杂的。
材料力学根据构件的典型受力情况及截面上的内力分量可分为(拉压)、(剪切)、(扭转)、(弯曲)四种基本变形。
3.轴力是指通过横截面形心垂直于横截面作用的内力,而求轴力的基本方法是(截面法)。
4.工程构件在实际工作环境下所能承受的应力称为(许用应力),工件中最大工作应力不能超过此应力,超过此应力时称为(失效)。
5.在低碳钢拉伸曲线中,其变形破坏全过程可分为(四)个变形阶段,它们依次是(弹性变形)、(屈服)、(强化)、和(颈缩)。
6.用塑性材料的低碳钢标准试件在做拉伸实验过程中,将会出现四个重要的极限应力;其中保持材料中应力与应变成线性关系的最大应力为(比例极限);使材料保持纯弹性变形的最大应力为(弹性极限);应力只作微小波动而变形迅速增加时的应力为(屈服极限);材料达到所能承受的最大载荷时的应力为(强度极限)。
7.通过低碳钢拉伸破坏试验可测定强度指标(屈服极限)和(强度极限);塑性指标(伸长率)和(断面收缩率)。
8.当结构中构件所受未知约束力或内力的数目n多于静力平衡条件数目m时,单凭平衡条件不能确定全部未知力,相对静定结构(n=m),称它为(静不定结构)。
9 .圆截面杆扭转时,其变形特点是变形过程中横截面始终保持( 平面 ),即符 合( 平面)假设。
非圆截面杆扭转时,其变形特点是变形过程中横截面发生( 翘 曲),即不符合( 平面)假设。
10 .多边形截面棱柱受扭转力偶作用,根据( 切应力互等 )定理可以证明其横 截面角点上的剪应力为(0 )。
11 .以下关于轴力的说法中,哪一个是错误的。
(C )(A )拉压杆的内力只有轴力;(B )轴力的作用线与杆轴重合;(C )轴力是沿杆轴作用的外力;(D )轴力与杆的横截面和材料无关12 .变截面杆AD 受集中力作用,如图所示。
第一章 绪论1. 试求图示结构m-m 和n-n 两截面上的内力,并指出AB 和BC 两杆的变形属于何类基本变形。
2. 拉伸试样上A ,B 两点的距离l 称为标距。
受拉力作用后,用变形仪量出两点距离的增量为mm l 2105-⨯=∆。
若l 的原长为l =100mm ,试求A 与B 两点间的平均应变m ε。
第二章 轴向拉伸和压缩与剪切 一、选择题1.等直杆受力如图,其横截面面积A=1002mm ,则横截面mk上的正应力为( )。
(A)50MPa(压应力); (B)40MPa(压应力); (C)90MPa(压应力); (D)90MPa(拉应力)。
2.低碳钢拉伸经过冷作硬化后,以下四种指标中哪种得到提高( ): (A)强度极限; (B)比例极限;(C)断面收缩率; (D)伸长率(延伸率)。
3.图示等直杆,杆长为3a ,材料的抗拉刚度为EA ,受力如图。
杆中点横截面的铅垂位移为( )。
(A)0;(B)Pa/(EA);(C)2 Pa/(EA);(D)3 Pa/(EA)。
4.图示铆钉联接,铆钉的挤压应力bsσ是( )。
(A )2P/(2d π); (B )P/2dt;(C)P/2bt; (D)4p/(2d π)。
5.铆钉受力如图,其压力的计算有( ) (A )bs σ=p/(td);(B)bs σ=p/(dt/2);(C)bs σ=p/(πdt/2);(D)bs σ=p/(πdt/4)。
6.图示A 和B 的直径都为d,则两面三刀者中最大剪应力为( )(A)4bp/(2d απ);(B)4(αb+)P/(2d απ);(C)4(a b+)P/(2b d π); (D)4αP/(2b d π).7.图示两木杆(I 和II )连接接头,承受轴向拉力作用,错误的是( ).(A )1-1截面偏心受拉; (B )2-2为受剪面;(C )3-3为挤压面; (D )4-4为挤压面。
二、填空题1.低碳钢的应力一应变曲线如图所示。
第八章 应力状态分析
1.矩形截面简支梁受力如图(a )所示,横截面上各点的应力状态如图(b )
所示。
关于他们的正确性,现有种答案: (A )点1、2的应力状态是正确的;(B )点2、3的应力状态是正确的; (C )点3、4的应力状态是正确的;(D )点1、5的应力状态是正确的; 正确答案是 。
2.已知单元体AB 、BC 面上只作用有剪应力 τ ,现关于AC 面上应力有下
列四种答案:
(A )2/ττ=AC ,0=AC σ; (B )2/ττ=AC ,2/3τσ=AC ; (C )2/ττ=AC ,2/3τσ-=AC ;
(D )2/ττ-=AC ,2/3τσ=AC ;
正确答案是 。
3.在平面应力状态下,对于任意两斜截面上的正应力 βασσ= 成立的充分
必要条件,有下列四种答案:
(A )y x σσ=,0≠xy τ; (B )y x σσ=,0=xy τ;
(C )y x σσ≠,0=xy τ; (D )xy y x τσσ==; 正确答案是 。
C τ
(a) (b)
4.对于图示三种应力状态(a )、(b )、(c )之间有下列四种答案 :
(A )三种应力状态均相同; (B )三种应力状态均不同; (C )(b )和(c )相同; (D )(a )和(c )相同;
正确答案是 。
5.直径为d 的圆截面杆,两端受扭转力偶m 作用。
设
︒=45α,关于下列结
论(E 、v 分别表示材料的弹性模量和泊松比) 1) 在A 、B 、C 点均有0==y x εε;
2) 在点C 处,()
3
/16d m πσα-=;
3) 在点C 处,)]/(16[]/)1[(3
d m E v πεα⋅+-=; 现有四种答案: (A )1)、2)正确; (B )2)、3)正确; (C )1)、3)正确; (D ) 全正确;
正确答案是 。
6.广义虎克定律适用范围,有下列四种答案:
(A )脆性材料; (B )塑性材料;
(C )材料为各向同性,且处于线弹性范围内; (D )任何材料; 正确答案是 。
τ
(a) (b) (c)
m A
C
7.单元体如图,其中 0,0><y x σσ,则 z ε 值: (A )0>z ε; (B )0<z ε;
(C )0=z ε; (D )不能确定;
正确答案是 。
8.在图示梁的A 点测得梁在弹性范围内的纵横方向的线应变 x ε 、y ε 后,所能算出的材料常数有:
(A )只有E ; (B )只有v ;
(C )只有G ; (D )E 、v 和G 均可算出; 正确答案是 。
9.纯剪切应力状态如图。
设
︒=135α ,求沿n 方向的正应力 ασ 和线应
变 αε 。
E 、v 分别为材料的弹性模量和泊松比,现有四种答案: (A )τσα=,E /τεα=; (B )τσα-=,E /τεα-=; (C )τσα=,E v /)1(+=τεα;
(D )τσα-=,E v /)1(-=τεα;
正确答案是 。
σy σx
y h n
10.图示梁的A 、B 、C 、D 四点中,单向应力状态的点是 ,纯
剪切应力状态的点是 ,在任何截面上应力均为零的点是 。
11.梁的受力情况如图所示, 试从单元体图中找出与梁上各点相对应的单元
体。
点A ,点B ,点C , 点D 。
12.A 、B 两点的应力状态如图所示,已知两点处的主拉应力 1σ 相同,则B
点处的 =xy τ 。
τxy
(8)
13.图示单元体的三个主应力为:=1σ ;
2σ= ;=3σ 。
14.某点的应力状态 如图所示,已知材料的弹性模量E 和泊松比 v ,则该点
沿x 和 ︒=45α 方向的线应变分别为 =x ε ,
=︒45ε 。
15.某点的应力状态如图所示,该点沿y 方向的线应变 =y ε 。
x
τ
σx
16.求图示单元体的主应力,并在单元体上标出其作用面的位置。
17.已知某点的应力状态如图所示。
试求:
(1)主应力的大小和方向; (2)最大剪应力的值。
80MPa
100MPa
18.图示单元体,已知 MPa y 50=σ ,MPa yx 10=τ 。
求ασ 和 ατ 。
19.图示工字形截面梁AB ,截面的惯性矩 46
10
56.72m I z -⨯=,求固定端
截面翼缘和腹板交界处a 点的主应力和最大剪应力。
A
B
30 30
y (mm)
140
20.受力构件边缘上某点处于平面应力状态,过该点处的三个平面上的应力情
况如图所示,其中AB 为自由面。
试求 xy τ ,并求该点处的主应力及最大剪应力。
21.图示圆轴受弯扭组合变形,m N m m ⋅==15021 。
(1)画出A 、B 、C 三点的单元体的应力情况; (2)算出A 、B 点的主应力值。
A
22.一单元体旋转︒45后应力如图所示。
试求旋转前单元体上的应力x σ 、
y σ 、xy τ。
23.受力体某点两平面上的应力如图示,求其主应力大小。
o =100MPa
(σ135o )’ =100MPa
24.某点应力状态如图示。
试求该点在平面内两个主应力均为拉应时xy τ 的取
值范围。
25.一点处两相交平面上的应力如图所示。
求 σ 值。
y
x =40MP a
26.某点应力状态如图示。
试求该点的主应力。
27.一点处两个互成︒45 平面上的应力如图示,
其中 σ 未知,求该点主应
150MPa。