机舱监测及远程监测系统方案
- 格式:pdf
- 大小:300.10 KB
- 文档页数:12
基于物联网的航空器起动电机远程监测与诊断系统设计随着航空技术的不断发展,航空器的性能和安全要求越来越高。
起动电机作为航空器启动和运行的关键设备之一,其性能的稳定性和可靠性对于航空器的正常运行至关重要。
因此,设计一种基于物联网的航空器起动电机远程监测与诊断系统,可以实时监测起动电机的工作状态,并及时诊断出潜在的故障,对于保障航空器的飞行安全具有重要意义。
一、系统设计目标基于物联网的航空器起动电机远程监测与诊断系统的设计目标是实现以下功能:1. 实时监测:系统能够实时收集和监测起动电机的工作状态参数,如电流、电压、温度等,以及其他可能影响起动电机性能的参数。
2. 数据传输:系统能够通过物联网技术将采集到的起动电机工作状态数据传输到地面终端或云平台,并保证数据的安全性和完整性。
3. 远程诊断:系统能够根据收集到的起动电机工作状态数据,结合预设的故障模型和算法,进行远程诊断,及时发现和识别潜在的故障,并给出相应的提示和建议。
4. 预测性维护:系统能够通过对起动电机工作状态数据的分析和比对,预测起动电机的性能衰退情况,提前采取维护措施,避免意外故障的发生。
二、系统设计方案1. 硬件部分:为了实现系统的数据采集和传输功能,需要设计一个包含传感器和通信模块的硬件设备。
传感器用于采集起动电机的工作状态参数,通信模块负责将采集到的数据传输到地面终端或云平台。
在选择传感器时,需要考虑其对起动电机的影响较小、精度较高、可靠性好等因素。
通信模块则可以选择使用无线通信技术,如蜂窝网络、Wi-Fi或蓝牙等。
此外,为了确保传输的安全性,可以加入数据加密和身份认证等机制。
2. 软件部分:系统的软件设计主要包括数据采集、传输、诊断和预测四个模块。
数据采集模块负责实时采集起动电机工作状态参数,利用传感器将数据转化为电信号,并进行信号滤波和采样。
这一模块需要考虑到大数据量的处理,避免数据丢失和传输延迟。
数据传输模块根据物联网技术将采集到的数据传输到指定地点,可以利用无线通信协议或云平台传输。
船舶智能化系统船舶监控远程操作和自动化控制随着科技的不断进步和人们对船舶运输安全要求的提高,船舶智能化系统的发展成为了当今航运行业的一个重要趋势。
在这篇文章中,我们将探讨船舶智能化系统对船舶监控远程操作和自动化控制的影响。
一、智能化船舶监控系统智能化船舶监控系统是船舶智能化系统中的一个重要组成部分,它通过集成各种传感器和监测设备,对船舶的运行状态进行实时监控和数据采集。
这些传感器可以监测船舶的位置、速度、姿态、温度、湿度等多个参数,并将数据传输到中央控制台进行处理。
在传统的船舶监控系统中,操作人员需要亲自前往各个舱室进行巡视和数据采集,这不仅耗费人力物力,而且可能存在安全隐患。
而有了智能化的船舶监控系统,操作人员可以通过中央控制台实时监测船舶的各项数据,大大提高了船舶的安全性和运行效率。
二、船舶远程操作系统船舶远程操作系统是船舶智能化系统的另一个重要组成部分,它通过网络技术实现对船舶各个系统的远程操作和控制。
借助于船舶智能化系统,船舶的各种设备和系统可以实现远程监视、远程控制和远程调试等功能。
船舶远程操作系统的出现,不仅提高了船舶的操作便利性和工作效率,还减少了操作人员的工作负担和工作风险。
例如,在船舶发生故障时,操作人员可以通过远程操作系统进行诊断和修复,避免了因为操作人员到达现场需要一定的时间和成本。
三、船舶自动化控制系统船舶自动化控制系统是船舶智能化系统中的核心部分,它通过集成各种自动化设备和控制器,实现对船舶各个系统的自动控制和调节。
船舶自动化控制系统可以通过预设参数和逻辑控制,对船舶的运行过程进行自动化管理和调整。
船舶自动化控制系统的引入,不仅提高了船舶运行的稳定性和安全性,还加快了船舶的工作效率和节能减排的能力。
例如,船舶的自动导航系统可以通过卫星导航和自动操纵技术,实现船舶的自动驾驶和路径规划,大大减少了人为操作的错误和能源的浪费。
四、船舶智能化系统的挑战与前景尽管船舶智能化系统在航运行业中具有广阔的前景,但是其发展还面临一些挑战。
航空公司航班管理系统智能监控方案背景航空公司的航班管理系统是其运营的核心系统之一。
为了确保航班的正常运行和旅客的安全,请了解以下智能监控方案。
目标本智能监控方案的目标是提供实时的航班监测和预警功能,以便航空公司能够及时采取措施应对任何潜在的问题和突发情况。
方案概述本方案基于航空公司航班管理系统的现有框架,通过集成智能监控技术,实现以下功能:1. 实时监测: 通过实时数据采集和分析,监测航班的关键指标,包括飞行数据、机组人员状态、机械故障等。
实时监测: 通过实时数据采集和分析,监测航班的关键指标,包括飞行数据、机组人员状态、机械故障等。
2. 异常检测: 基于预设的标准和规则,检测航班中的异常情况,并生成相应的预警信息。
异常情况包括航班延误、取消、紧急情况等。
异常检测: 基于预设的标准和规则,检测航班中的异常情况,并生成相应的预警信息。
异常情况包括航班延误、取消、紧急情况等。
3. 智能分析: 利用机器研究和数据挖掘技术,对航班数据进行分析,识别潜在的问题和趋势。
例如,通过统计历史数据,预测特定条件下航班延误的可能性。
智能分析: 利用机器学习和数据挖掘技术,对航班数据进行分析,识别潜在的问题和趋势。
例如,通过统计历史数据,预测特定条件下航班延误的可能性。
4. 预警通知: 在发现异常情况或潜在问题时,及时发送预警通知给相关人员,包括航班调度人员、机组人员等。
通知方式可以包括短信、电子邮件或即时通讯工具。
预警通知: 在发现异常情况或潜在问题时,及时发送预警通知给相关人员,包括航班调度人员、机组人员等。
通知方式可以包括短信、电子邮件或即时通讯工具。
5. 决策支持: 提供实时的数据报表和可视化分析,帮助航空公司管理层做出决策。
例如,根据航班数据分析,调整航班计划和资源配置,以最大程度地提高运营效率。
决策支持: 提供实时的数据报表和可视化分析,帮助航空公司管理层做出决策。
例如,根据航班数据分析,调整航班计划和资源配置,以最大程度地提高运营效率。
山东交通学院2012届毕业生毕业论文(设计)题目:船舶机舱环境监测系统设计院(系)别信息科学与电气工程学院专业电气工程及其自动化班级电气081学号080819112姓名闫志勇指导教师刘文江2012年4月原创声明本人闫志勇郑重声明:所呈交的论文“船舶机舱环境监测系统设计”,是本人在导师刘文江的指导下开展研究工作所取得的成果。
除文中特别加以标注和致谢的地方外,论文中不包含任何其他个人或集体已经发表或撰写过的研究成果,对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明,本人完全意识到本声明的法律后果,尊重知识产权,并愿为此承担一切法律责任。
论文作者(签字):日期:2012 年 4月 20 日摘要随着船舶制造及船舶航运业的发展,从人性化角度出发,人们越来越重视船上人员工作及生活条件,从船舶的经济性考虑,动力设备的工作环境也至关重要。
在船舶的设计过程中,机舱环境监测系统的设计是非常重要的一个环节。
不管是人员还是机器设备的正常工作都需要适宜的环境。
机舱内的动力装置正常工作,首先需要消耗一定量的新鲜空气,用于动力机械的燃烧,其次要带走机器设备运转、燃烧产生的热量。
机舱通风用以建立机舱内给定的环境条件,如需要的舱内温度、湿度、空气流速、清洁度及空气成份等,以保证柴油机、锅炉及焚烧炉燃烧时所必须的空气量,同时也要保证机内良好的工作环境,改善轮机人员的工作及卫生条件。
本设计是以单片机(AT89S52)为核心,配合温度传感器(AD590)和湿度传感器(HIH-3610),以及相关的外围电路组成的检测系统,可以接收所测环境的温度、湿度、光照强度和氧气含量信号,检测人员可以通过数码管显示的数据,实时监控环境的温度和湿度情况。
所有的测量操作都可以通过主机控制软件来实现,温度、湿度、光敏和氧气传感器得到的测量信号,经电路转换为电信号,然后通过一定的放大经过芯片TLC549A/D转换送到单片机进行数据处理,经软件分析处理后送显示装置,并控制控制风机的运行。
航空行业空中交通管理与安全监测系统开发方案第一章绪论 (3)1.1 研究背景与意义 (3)1.2 国内外研究现状 (3)1.3 研究目的与内容 (3)第二章空中交通管理与安全监测系统需求分析 (4)2.1 系统功能需求 (4)2.1.1 空中交通管理功能 (4)2.1.2 安全监测功能 (4)2.2 系统功能需求 (4)2.2.1 实时性 (4)2.2.2 可靠性 (5)2.2.3 可扩展性 (5)2.2.4 互操作性 (5)2.3 系统安全性需求 (5)2.3.1 数据安全 (5)2.3.2 系统安全 (5)2.3.3 用户权限管理 (5)2.3.4 应急处置 (5)第三章系统设计 (5)3.1 系统架构设计 (5)3.1.1 硬件层 (5)3.1.2 数据层 (5)3.1.3 业务层 (6)3.1.4 应用层 (6)3.1.5 安全防护层 (6)3.2 模块划分 (6)3.2.1 实时监控模块 (6)3.2.2 飞行计划管理模块 (6)3.2.3 空域管理模块 (6)3.2.4 航空器跟踪模块 (6)3.2.5 通信管理模块 (6)3.2.6 应急处置模块 (6)3.2.7 数据统计分析模块 (7)3.2.8 系统管理模块 (7)3.3 系统接口设计 (7)3.3.1 实时监控模块与飞行计划管理模块接口 (7)3.3.2 实时监控模块与空域管理模块接口 (7)3.3.3 实时监控模块与通信管理模块接口 (7)3.3.4 实时监控模块与应急处置模块接口 (7)3.3.5 各模块与数据统计分析模块接口 (7)3.3.6 各模块与系统管理模块接口 (7)第四章数据采集与处理 (7)4.1 数据采集技术 (7)4.1.1 数据采集原理 (7)4.1.2 数据采集技术手段 (8)4.2 数据预处理 (8)4.2.1 数据清洗 (8)4.2.2 数据归一化 (8)4.3 数据存储与管理 (9)4.3.1 数据存储 (9)4.3.2 数据管理 (9)第五章空中交通管理与安全监测算法研究 (9)5.1 航迹预测算法 (9)5.2 冲突检测与解脱算法 (9)5.3 风险评估与预警算法 (10)第六章系统开发与实现 (10)6.1 系统开发环境与工具 (10)6.1.1 开发环境 (10)6.1.2 开发工具 (10)6.2 系统开发流程 (10)6.2.1 需求分析 (10)6.2.2 系统设计 (11)6.2.3 编码实现 (11)6.2.4 系统集成与测试 (11)6.3 系统测试与优化 (11)6.3.1 测试策略 (11)6.3.2 测试方法 (11)6.3.3 优化策略 (11)第七章系统安全性评估 (12)7.1 安全性评估方法 (12)7.2 安全性指标体系 (12)7.3 安全性评估实施 (13)第八章系统运行与维护 (14)8.1 系统运行策略 (14)8.1.1 运行环境搭建 (14)8.1.2 系统部署与调试 (14)8.1.3 运行监控与预警 (14)8.2 系统维护策略 (14)8.2.1 定期检查与维护 (14)8.2.2 故障处理 (15)8.2.3 系统备份与恢复 (15)8.3 系统升级与扩展 (15)8.3.1 系统升级 (15)8.3.2 系统扩展 (15)第九章项目管理与组织 (16)9.1 项目管理策略 (16)9.2 项目组织结构 (16)9.3 项目进度与质量控制 (16)第十章总结与展望 (17)10.1 研究成果总结 (17)10.2 不足与改进方向 (17)10.3 未来研究展望 (18)第一章绪论1.1 研究背景与意义我国经济的快速发展,航空运输业已成为国家综合交通运输体系中的重要组成部分。
航空器用发电机的智能监测与远程诊断技术随着航空技术的不断发展和飞机的日益复杂化,保障飞行安全和提高航空器可靠性已成为航空领域的关键问题。
航空器中的发电机作为电力供应系统的核心组件之一,其性能的稳定与可靠对于飞机的正常运行至关重要。
因此,发展航空器用发电机的智能监测与远程诊断技术是目前航空领域的一个研究热点。
航空器用发电机智能监测与远程诊断技术的主要目的是实时获取发电机的运行数据,通过数据分析和故障诊断算法判断发电机的工作状态,并及时采取相应的措施,避免潜在故障的发生,从而保证航空器的安全运行。
首先,发电机的智能监测技术主要通过传感器设备来实现实时数据的采集与传输。
这些传感器设备能够测量发电机的电压、电流、温度、振动等参数,并将数据传输至地面控制站。
同时,通过无线通信技术,将数据传输至地面控制中心进行分析和监测。
通过监测数据的实时采集和传输,可以确保对发电机运行状态的及时监测。
其次,航空器用发电机的远程诊断技术对数据进行分析和诊断,以识别发电机的故障现象和可能的故障原因。
这些诊断算法基于故障数据库和经验知识库,通过比对数据模式和故障特征,进行故障类型的识别和故障原因的推断。
一旦发现异常情况或预测到潜在故障,系统会及时发出警报,提醒飞行员或地面操作人员采取相应的措施。
航空器用发电机的智能监测与远程诊断技术的应用,不仅有助于实时监测发电机的工作状况,还能够提供发电机健康状况的长期趋势分析。
通过大数据分析和机器学习技术,系统能够根据历史数据和样本来预测未来发电机的故障概率,进而提前进行维修和保养。
这种预测性维修模式可以有效地降低航空器维修成本,提高飞机的可靠性和安全性。
值得一提的是,航空器用发电机的智能监测与远程诊断技术还可以应用于远程维修和支持。
通过远程诊断技术,操作人员可以在不需要飞机停场的情况下,远程获取发电机的工作数据和故障信息,并根据远程指导进行故障排除和维修工作。
这种远程支持模式大大缩短了维修时间,提高了维修效率,减少了航空器因维修而停飞的时间。
航空器舱内空气质量监测技术在现代航空运输中,航空器舱内空气质量对于乘客和机组人员的健康与舒适至关重要。
随着人们对空气质量的关注度不断提高,航空器舱内空气质量监测技术也得到了越来越多的研究和应用。
一、航空器舱内空气质量的重要性航空器舱内是一个相对封闭的空间,乘客和机组人员在其中停留的时间可能较长。
良好的空气质量有助于减少呼吸道疾病的传播、提高乘客的舒适度、减轻疲劳感,从而保障飞行安全和服务质量。
然而,如果舱内空气质量不佳,可能会导致一系列问题。
例如,空气中的污染物如灰尘、花粉、细菌、病毒等可能会引发过敏反应和呼吸道感染。
此外,高浓度的二氧化碳、挥发性有机化合物(VOCs)以及异味等也会影响乘客的身心健康和工作效率。
二、航空器舱内空气质量的影响因素1、通风系统航空器的通风系统是影响舱内空气质量的关键因素之一。
合理的通风设计能够有效地引入新鲜空气、排出污浊空气,保持舱内空气的流通和清新。
但如果通风系统出现故障或设计不合理,可能会导致空气循环不畅,污染物积聚。
2、乘客密度在航班高峰期,航空器舱内乘客密度较大,这会增加人体散发的热量、湿气和二氧化碳等,从而对空气质量产生负面影响。
3、外部环境航空器在飞行过程中会受到外部环境的影响,如大气污染、沙尘暴等,这些污染物可能会通过进气口进入舱内,影响空气质量。
4、内饰材料舱内的内饰材料如地毯、座椅面料、塑料等可能会释放出 VOCs 等有害物质,对空气质量造成污染。
三、航空器舱内空气质量监测技术的分类1、物理监测技术物理监测技术主要包括对温度、湿度、压力、风速等物理参数的测量。
这些参数对于评估舱内空气的舒适度和通风效果具有重要意义。
例如,温度和湿度的不适宜可能会导致乘客感到闷热或干燥,而风速的不均匀分布可能会影响空气的流通。
2、化学监测技术化学监测技术用于检测舱内空气中的各种化学污染物,如二氧化碳、VOCs、甲醛、臭氧等。
常用的化学监测方法包括气相色谱法、质谱法、传感器法等。
船舶机舱监测报警系统整体架构需求介绍船舶机舱监测报警系统按从基础底部向上的方式来看,它主要有三大部分,而这三部分都是基于Web船载服务器,他们可以分为采集层主要负责采集船舶内数据参数、传输层主要为机舱数据的构建和监测船舶数据与标准值不同而实现报警。
Kongsberg公司所推出的双CAN总线式全分布网络系统架构具有普遍的通用结构,是现在市场上稳定可靠的监测报警系统适用于船舶,而它的三层式网络结构可分为:管理层一控制层一设备层,在本论文中报警监测系统的整体结构是以B/S系统网络为核心构架,它的整体结构为:传感层一传输层一应用层。
(1)系统数据采集层(传感网)当船舶开始修造的过程中,船舶各舱室中各传感器应该同时运行,例如CPU 主板、GPS定位系统、LED显示系统和各舱室设备中的各类别传感器同时同刻进行工作,这些一个个的传感器构成了船舶机舱的“神经节点”,负责机舱各监测点的数据采集,构成数据采集层(传感网)。
由于传感器的种类过于繁杂,传感器的系统物联网可将这些传感器组成一个个小组,以组为单位对传感器所获得的单位划分不同的区域进行传递输送,例如可以将系统中检测氧气、二氧化碳、一氧化碳、甲烷等浓度的传感器数据收集接进放入到一个节点。
这样可以使整个网络结构更加清晰明了,具有层次的美感。
(2)系统数据传输层传感器完成数据采集后,接下来的主要工作是将已经收获采集的数据及时的传送出去,此时为了保证数据传输的高效性,采用无线传输和有线传输一起进行传输的解决方案。
有线传输主要用RS485,RS232,以及CAN总线为主,在系统的无线传送输出中更多的采用WiFi和以LoRa机制为主要基础的无线数据收集传感器节点为最为重要的部分。
当实时数据输入传送到有线与无线共同组成的传输网络中时,将会迅速对信息进行解析处理,然后将处理过的数据按周期经由最先传输到TCP/IP,从而传进船舱总数据信息库服务器中保存起来,而后被送入具有服务器的功能层,再经由功能层传入Web层服务器,如果修造人员进行操作,发出请求,则Web服务器开始从之前的数据信息库服务器中读入取出数据。
基于物联网的船舶远程监控系统设计与实现随着物联网技术的飞速发展,许多传统行业都开始逐渐向智能化、自动化方向转变。
尤其是在众多物流行业中,物联网技术的应用已经成为了行业发展的必然趋势。
而船舶行业作为物流行业中的一个重要部分,也在着手开发基于物联网的远程监控系统。
本文将介绍基于物联网的船舶远程监控系统的设计与实现。
一、系统设计基于物联网的船舶远程监控系统主要由六部分组成,分别是船舶传感器、基站、云平台、手机客户端、Web管理端和数据中心。
1.船舶传感器船舶传感器是整个系统的核心部分,主要负责监测船舶的各项实时数据。
通过设备传感器、气象传感器等多种方式,实现对船舶的航行状态、温度湿度、气压等参数的实时监测。
2.基站基站是船舶传感器和云平台的中转站,是整个系统的关键部分。
通过基站与传感器的通讯,将传感器所收集的各类数据传送到云平台上进行处理。
3.云平台云平台是系统的数据处理中心,主要负责对来自传感器的数据进行清洗、处理、分析,并建立起数据仓库。
同时,云平台还为手机客户端、Web管理端等提供数据接口。
4.手机客户端手机客户端是系统的一个重要组成部分,主要是为船舶船长和货运人员提供便捷的监控方式。
在手机客户端上,用户可以随时了解到船舶状态、货物运输情况等实时数据。
同时,手机客户端还可以提供报警提醒等功能。
5.Web管理端Web管理端主要是给系统管理员、维修人员等提供一个便捷的管理工具。
通过Web管理端,管理员可以对传感器、基站等硬件设施进行远程维护和管理。
同时,Web管理端还可以提供数据分析和报表生成等功能。
6.数据中心数据中心将所有传感器收集到的数据进行归档存储,并为其他部分提供数据支持。
在数据中心上,管理员可以进行数据备份、数据恢复等管理操作。
二、系统实现系统实现主要有四个方面:硬件实现、物联网协议、云计算平台、数据处理等。
1.硬件实现硬件实现主要包括船舶传感器、基站、服务器等。
传感器主要负责数据的采集、处理和传输功能,基站主要负责传感器与云端之间的数据传输,服务器则是数据中心和云平台的核心部分。
基于双CAN总线船舶机舱监测及控制系统田庆林【摘要】该文应用先进的计算机信息技术、通信技术和网络技术,基于双CAN现场总线技术,通过设计模块化、智能化、具有冗余通信功能的远程I/O单元,使系统配置可以满足各种船舶机舱自动化系统监测、报警和控制功能的需要.同时项目还研发了界面友好、操作方便、配置灵活、功能完整的综合人机界面.系统自2013年以来陆续装船50余艘.【期刊名称】《自动化与仪表》【年(卷),期】2016(031)003【总页数】4页(P53-55,76)【关键词】海事版CIA DSP-307;双CAN总线;船舶自动化;检测;报警【作者】田庆林【作者单位】交通运输部天津水运工程科学研究院,天津300456【正文语种】中文【中图分类】TP277目前我国常规船舶国产设备的实际配套率只有30%左右,高新技术船舶国产设备的实际配套率仅20%左右,特别是作为附加值很高的船舶自动化系统本土化率还不到10%。
这与我国造船工业的迅猛发展形成了非常大的反差。
目前每年全球船舶舱室电子设备需求接近300亿元人民币。
其中中国的造船修船市场可为船舶舱室电子设备提供每年将近百亿元人民币的市场,但90%被进口产品垄断。
船舶舱室电子产品的开发制造是我国船舶业中最薄弱的环节之一。
国内船舶舱室电子产品生产厂家自主创新较少,在系统技术性能、质量、品种和规格方面与国外同类产品存在着很大差距,船舶电子国产设备存在缺乏核心技术、技术起点较低、系统性差、工艺落后等突出问题。
基于双CAN总线船舶机舱监测及控制系统就是在这种背景下研发的。
1 系统功能在船舶自动化技术不断向全船综合自动化阶段发展的过程中,各类导航、监控、管理系统运用于船舶。
其中船舶机舱监控系统、电站管理系统、视频监控等系统以及船、岸通讯系统的融合,是船舶机舱自动化未来发展的趋势。
系统基于双CAN现场总线技术,通过设计模块化、智能化、具有冗余通信功能的远程I/O单元,使系统配置可以满足各种船舶机舱自动化监测、报警和控制。