视频运动估计
- 格式:ppt
- 大小:1.05 MB
- 文档页数:32
1 引言高效视频编码(HEVC)作为新一代标准,沿用了上一代标准H.264/ AVC的编码框架[1]。
但是针对不同部分,H.265/HEVC都分别提出了新技术。
比如H.264/AVC是以宏块作为编码单元,而在H.265/HEVC中采用了编码树单元(CTU),其往下划分的结构有编码单元( CU)、预测单元(PU)和变换单元(TU)[2]。
CU的尺寸不再局限于16×16,而可以根据深度划分,从64×64分割到8×8大小。
而在实际编码过程中,计算量最大的是帧间预测部分,这是由于视频图像时间冗余大于空间冗余的特性所造成的。
在模式选择的整个迭代过程中,以运动估计为例,不同尺寸的PU块都需要经过搜索、插值来找到各自最佳的匹配块。
这是一个繁琐且非常耗时的过程。
目前已有很多学者对帧间预测模式选择提出了一些简化算法,文献[3]提出了一种扩展和迭代搜索(S&IS)以及低密度和迭代搜索(LD&IS)的运动估计算法,这种方式因为在遍历每个PU时具有规则的周期数,所以在硬件电路的设计上更加友好,但是运动估计所消耗的周期数受视频序列特点影响大,如果周期数较为固定,可能会对编码性能造成一定影响。
文献[4]提出了用基于运动矢量相似性的运动估计快速终止算法。
利用率宏块内子块运动矢量一致的特点,通过计算排除掉不可能的划分方式,从而达到提前终止运动估计的目的。
文献[5]也是采用基于划分深度的先粗选再细选的搜索方式,但是采用的搜索步长、下采样比例以及搜索方式均和本文不同,且最终结果对编码性能造成比特率增加较大。
文献[6]采用了一种快速中心搜索算法,通过发现一帧图像中,静止宏块、慢速运动宏块和快速运动宏块的比例关系,改变全搜索的遍历顺序,并设置提前终止规则,达到快速中心搜索的目的。
文献[7]采用了一种易于硬件实现的整像素运动估计搜索方式,使用并行聚类树搜索方式同时处理各个PU,并在搜索之后将相同MV候选的PU汇聚成一组,下一次的搜索将以这些组为单位进行统一搜索。
文章编号:1002—8692(2008)S1-0027-03I ,i gi t al vi deo r ]…一……————————————————-——H —…———————————....-—二=二●■■■i :”基于视频序列特性的运动估计算法比较与改进论文俞呈阳。
周密(宁渡市江北区广播电视中心,浙江宁波315032)【摘要】对比分析了主流H .264运动估计算法,并针对U M H exagonS 算法提出了更为有效的改进意见。
实验表明,在编码后的失真度损失较小的情况下,该算法比U M H exagonS 算法减少了搜索运算量。
【关键词】H .264/标准;运动估计;整数搜索;U M H exagonS 算法【中图分类号】TPgl 9.81【文献标识码】AC om pa r i s on a nd I m pr ovem ent of Mot i on E st i m at i on B a se d o nV i de o Seq uenc esC har act er i s t i csY U C heng-yang ,ZH O UM i(Rod 如and Tel evi si on C enter of J i ans b ei D i st ri c t of m n#o Ci ty,Zh ej i ang N i n #o 315032)【A bs t ra ct 】C hi naI n t hi sar ti cle ,are c om pa r ed ,a ndam or e ef f ect i ve i m pr ove m e ntsugge st i ont oU M H exagonS al g or i t hmf or w ar d i spa t .Exper i m e nt al r esul t s show t h at ,com par e d wi t h U M H exagonS al gor i t hm ,t hepm pos ed me t hod c al ls avesear ch t i m egr ea dy a ndt he P SN R l o s equi t e l i t t le .【K ey w or ds 】H 264;M E(m ot i on est i m at i on);f asti nt eger s e ar c h ;UM H exa go nS 1引言综合分析H .264各个算法模块发现,运动估计模块的计算量在整个H .264中所占的比例最大(从1个参考帧下的60%到5个参考帧下的80%)Ⅲ。
在Matlab中实现运动估计和光流分析的技术引言:运动估计和光流分析是计算机视觉中重要的技术,可以用于跟踪和分析视频或图像序列中的动态对象。
在Matlab平台上,我们可以利用丰富的图像处理和计算工具箱来实现这些技术。
本文将介绍如何在Matlab中使用这些工具箱来进行运动估计和光流分析。
一、背景知识1.1 什么是运动估计?运动估计是指通过分析多个连续的图像或视频帧之间的像素变化来估计物体的动作。
这些像素变化可以由物体自身的运动、相机运动或两者共同引起。
1.2 什么是光流?光流是指在图像序列中每个像素点的运动速度。
通过光流分析,我们可以获得图像序列中物体的运动轨迹。
二、Matlab中的运动估计Matlab提供了几种实现运动估计的算法和函数。
其中最常用的是基于光流的方法和基于块匹配的方法。
2.1 光流估计光流估计是一种通过分析图像序列中像素在时间上的变化来估计其运动轨迹的方法。
Matlab提供了光流估计算法光流法(optical flow)。
使用光流法进行运动估计的过程如下:- 对于连续两帧图像,选择一个像素点,标记为(x1,y1);- 在下一帧图像中找到对应像素点(x2,y2);- 通过比较两帧图像中的像素值来计算(x1,y1)和(x2,y2)之间的位移向量;- 重复以上步骤,直到所有像素点都被处理完。
Matlab中的光流估计函数可以通过以下代码调用:```matlabopticFlow = opticalFlowLK;flow = estimateFlow(opticFlow,I);```2.2 基于块匹配的运动估计除了光流法,Matlab还提供了基于块匹配的运动估计算法。
基于块匹配的方法通过将图像分割为小块,然后在连续帧图像中寻找相应的块来估计物体的运动。
使用基于块匹配的方法进行运动估计的过程如下:- 对于连续两帧图像,将其分割为大小相同的块;- 对于每个块,在下一帧图像中寻找与之最匹配的块;- 通过比较两个块之间的相似度来计算运动向量。
如何应对视频编码中的运动模糊问题随着互联网的普及和流媒体技术的进步,我们生活中越来越多的时间都花费在观看各种视频上。
从电视剧到电影,从直播到短视频,我们对于视频质量的要求也越来越高。
然而,由于视频编码中的运动模糊问题,我们经常会遇到画面不清晰、不流畅的情况。
本文旨在探讨如何应对视频编码中的运动模糊问题,并提出一些解决方案。
一、运动模糊问题的原因及表现形式1. 原因:运动模糊是由于视频中的物体在运动过程中导致图像模糊的现象。
在高速运动或摄像机移动的情况下,物体的快速移动会造成图像细节丧失,导致画面模糊。
2. 表现形式:运动模糊通常表现为物体轮廓模糊、图像细节丧失、移动物体的尾状模糊等。
这些现象会对观看体验造成一定的影响。
二、减少运动模糊问题的方法1. 选择适当的帧率:帧率是指每秒钟显示的图像帧数。
提高帧率可以减少运动模糊。
通常情况下,电影使用的帧率为24帧/秒,而电视剧和视频直播则使用的帧率为30帧/秒或60帧/秒。
选择适当的帧率可以在保证流畅度的前提下减少运动模糊问题。
2. 调整快门速度:快门速度是指摄像机曝光时间的长短。
减少曝光时间可以减少运动模糊。
在拍摄高速运动物体时,可以选择更快的快门速度来捕捉清晰的图像。
3. 使用防抖功能:现在很多摄像机都内置了防抖功能。
启用防抖功能可以有效减少由于摄像机抖动而导致的运动模糊问题。
4. 提高编码算法的效率:视频编码中的运动估计和补偿算法是减少运动模糊的关键。
通过改进和优化视频编码算法,可以提高图像的清晰度和流畅度。
5. 增加码率:码率是指视频信号传输时的数据流量。
增加码率可以提高图像的清晰度,从而减少运动模糊问题。
然而,增加码率也会导致网络带宽的消耗增大,需要权衡利弊。
三、解决方案案例分析1. 编码标准:是一种广泛使用的视频编码标准。
它通过多种技术手段减少了运动模糊问题。
其中,运动估计和补偿算法可以提高编码的效率,从而减少运动模糊。
2. HEVC编码标准:HEVC是的继任者,也被称为。
ves评估VES(Video Evaluation Standard)是一种对视频质量进行客观评估的指标体系,主要用于评估视频编码和传输质量。
VES评估包括以下几个方面:分辨率、比特率、帧率、压缩编码器效能、视频详细度、运动估计、码率失真表现、变化场景、失真度、编码格式、音视频同步等。
首先,分辨率是用来衡量视频清晰度的一个重要指标。
通常使用像素数量来表示,分辨率越高,视频的细节越丰富,清晰度越高。
在VES评估中,会对视频的分辨率进行检测,以确认视频是否达到了预期的清晰度要求。
其次,比特率是指视频编码过程中每秒传输的数据量。
比特率越高,视频质量越好,但也会造成传输压力增大。
VES评估中会对比特率进行检测,以确认视频是否符合预期的传输质量。
帧率是指视频中每秒显示的图像帧数。
帧率越高,视频显示的动作就越流畅。
在VES评估中,帧率也是一个重要的参考指标,用于评估视频的流畅度和动作表现力。
压缩编码器效能是指编码器在压缩视频时的效率和准确性。
VES评估中,会对不同的编码器进行测试,以确定其在视频压缩方面的表现。
视频详细度是指视频的细节表现能力。
VES评估中,会对视频的细节进行评估,以确定视频的清晰度和细节表现能力。
运动估计是指对视频中的运动进行检测和估计。
VES评估中,会对视频中的运动进行评估,以确定运动估计的准确性和准确性对视频质量的影响。
码率失真表现是指在特定比特率下,视频质量的损失程度。
VES评估中,会对不同比特率情况下的视频质量进行评估,以确定视频的码率失真表现。
变化场景是指视频中场景的变化情况。
VES评估中,会对视频中的场景变化进行检测,以确定视频的场景变化情况对视频质量的影响。
失真度是指视频质量的失真程度。
VES评估中,会对视频的失真度进行评估,以确定视频的失真程度和失真对观看体验的影响。
编码格式是指视频编码时使用的格式。
VES评估中,会对不同的编码格式进行测试,以确定不同格式对视频质量的影响。
svac编解码标准SVAC是中国自主研发的安防视频压缩标准,其编解码标准主要基于运动估计和变换编码等技术,具有较高的压缩效率和可靠性。
下面是对SVAC编解码标准的详细介绍。
一、SVAC编解码标准概述SVAC编解码标准是一种针对安防视频应用的高效压缩标准,其主要目标是提供高清晰度、高帧率、低码率的视频压缩效果。
该标准采用了多种技术手段,如运动估计、变换编码、熵编码等,以实现高效的视频压缩。
二、SVAC编解码标准技术1、运动估计运动估计是SVAC编解码标准的核心技术之一。
它通过分析相邻帧之间的像素变化,来预测当前帧的运动向量。
这种预测可以大幅度减少视频数据的大小,从而实现高效的压缩。
2、变换编码变换编码是另一种重要的技术手段。
它通过将视频帧从时域转换到频域,将信号能量集中到少数的几个变换系数上,从而减少视频数据的冗余信息。
这种编码方式可以进一步压缩视频数据的大小。
3、熵编码熵编码是一种无损的压缩编码方式。
它根据视频数据的统计特性,对数据进行编码,以实现数据的高效存储和传输。
三、SVAC编解码标准的优势1、高压缩效率SVAC编解码标准采用了多种技术手段,能够有效地减少视频数据的冗余信息,从而实现高效的压缩。
相较于传统的视频压缩标准,SVAC能够提供更高的压缩效率。
2、高清晰度、高帧率、低码率SVAC编解码标准的目标是提供高清晰度、高帧率、低码率的视频压缩效果。
这意味着在保证视频质量的同时,能够减少存储空间和网络带宽的需求。
3、自主知识产权SVAC是中国自主研发的安防视频压缩标准,具有自主知识产权。
这使得中国在安防领域具有更强的竞争力,也为中国安防产业的发展提供了有力的支持。
视频编码中的运动估计算法探索视频编码是指将连续的视频信号转换为数字形式,以便于存储、传输和处理的过程。
视频编码的核心任务之一是压缩视频数据,以减小文件大小或减少带宽需求。
其中,运动估计是视频编码中一个关键的环节,它能够找到连续视频帧之间的运动信息,并将其利用于压缩算法中。
本文将探索视频编码中常用的运动估计算法及其原理、优缺点以及应用。
一、运动估计的原理及作用运动估计是基于视频序列中的帧间差异进行的。
它通过比较当前帧与参考帧之间的差异来计算运动矢量(Motion Vector,MV)。
运动矢量表示了目标在时域上的运动特征。
在编码时,只需保留运动矢量和差异帧,从而实现视频压缩。
运动估计的作用是找到当前帧与参考帧之间的最佳匹配,以便能够准确描述目标的运动状态。
通过将运动估计的信息传递给解码器,解码器能够使用这些信息来还原出原始视频帧,从而实现视频的连续播放。
二、全局运动估计算法1. 块匹配算法(Block Matching Algorithm,BMA)块匹配算法是最常用的全局运动估计算法之一。
其基本思想是将当前帧划分为若干个块,并在参考帧中寻找与之最佳匹配的块,从而得到对应的运动矢量。
BMA算法简单有效,但在处理快速运动和复杂运动时存在一定的局限性。
2. 平方和差分算法(Sum of Absolute Difference,SAD)平方和差分算法是BMA算法的一种改进。
它通过计算块中像素值的差的平方和来度量差异,从而找到最小差异的块作为最佳匹配。
SAD算法在提高运动估计的精度方面有所帮助,但在速度上相对较慢。
三、局部运动估计算法1. 区域匹配算法(Region Matching Algorithm,RMA)区域匹配算法是一种基于像素的非全局运动估计算法。
它将当前帧的图像划分为不同的区域,并寻找参考帧的区域进行匹配。
RMA算法能够更好地处理复杂运动情况,但计算量和时间复杂度较高。
2. 梯度法梯度法是一种基于局部像素间梯度变化的运动估计方法。
一.视频基础知识1. 视频编码原理视频图像数据有极强的相关性,也就是说有大量的冗余信息。
其中冗余信息可分为空域冗余信息和时域冗余信息。
压缩技术就是将数据中的冗余信息去掉(去除数据之间的相关性),压缩技术包含帧内图像数据压缩技术、帧间图像数据压缩技术和熵编码压缩技术。
1.1去时域冗余信息使用帧间编码技术可去除时域冗余信息,它包括以下三部分:A.运动补偿:运动补偿是通过先前的局部图像来预测、补偿当前的局部图像,它是减少帧序列冗余信息的有效方法。
B.运动表示:不同区域的图像需要使用不同的运动矢量来描述运动信息。
运动矢量通过熵编码进行压缩。
C.运动估计:运动估计是从视频序列中抽取运动信息的一整套技术。
注:通用的压缩标准都使用基于块的运动估计和运动补偿。
1.2去空域冗余信息主要使用帧内编码技术和熵编码技术:A.变换编码:帧内图像和预测差分信号都有很高的空域冗余信息。
变换编码将空域信号变换到另一正交矢量空间,使其相关性下降,数据冗余度减小。
B.量化编码:经过变换编码后,产生一批变换系数,对这些系数进行量化,使编码器的输出达到一定的位率。
这一过程导致精度的降低。
C.熵编码:熵编码是无损编码。
它对变换、量化后得到的系数和运动信息,进行进一步的压缩。
2. 视频编码解码标准2.1 H.264H.264是国际标准化组织(ISO)和国际电信联盟(ITU)共同提出的继MPEG4之后的新一代数字视频压缩格式,它即保留了以往压缩技术的优点和精华又具有其他压缩技术无法比拟的许多优点。
H.264最大的优势是具有很高的数据压缩比率,在同等图像质量的条件下,H.264的压缩比是MPEG-2的2倍以上,是MPEG-4的1.5~2倍。
举个例子,原始文件的大小如果为88GB,采用MPEG-2压缩标准压缩后变成3.5GB,压缩比为25∶1,而采用H.264压缩标准压缩后变为879MB,从88GB到879MB,H.264的压缩比达到惊人的102∶1。
一种新的视频编码的块运动估计算法
骆立俊;邹采荣;何振亚
【期刊名称】《通信学报》
【年(卷),期】2000(021)002
【摘要】本文提出了一种连续判别的非线性预测搜索NPSSD块运动估计算法,可以用于视频压缩的一些国际标准,如H.261,H.263,MPEG1,MPEG2,HDTV
中.NPSSD算法充分利用了序列图像的实际运动矢量与预测矢量之间位移的空间分布特性--中心偏置分布特性和时间上的相关特性,并在搜索过程中采用了中止判别和搜索判别,可以明显地减少运动搜索复杂度.仿真表明这种算法减少了搜索次数,提高了搜索效率,降低了运动估计总的搜索复杂性.本文还详细地给出了NPSSD算法与其它常用快速搜索算法的比较结果.
【总页数】5页(P55-59)
【作者】骆立俊;邹采荣;何振亚
【作者单位】东南大学无线电工程系,江苏,南京,210096;东南大学无线电工程系,江苏,南京,210096;东南大学无线电工程系,江苏,南京,210096
【正文语种】中文
【中图分类】TN949.17
【相关文献】
1.一种用于AVS视频编码的块运动估计算法 [J], 郑金华;杨平;杨志伟
2.一种用于视频编码的块运动估计算法——块特征匹配预测搜索算法 [J], 何振亚;
邹采荣
3.视频编码中的块运动估计算法 [J], 骆立俊;邹采荣
4.视频编码中的块运动估计算法分析(一) [J], 骆立俊;邹采荣
5.一种用于视频编码的块运动估计新算法 [J], 汪超;彭嘉雄
因版权原因,仅展示原文概要,查看原文内容请购买。
基于MATLAB的视频图像处理技术研究一、简介视频图像处理技术主要是对视频图像进行分析和处理,以提高视频质量、对视觉感知的改善、信息的提取和应用等方面,常用的处理手段有滤波、边缘检测、运动估计等。
MATLAB是一款广泛应用于科学和工程领域的计算机软件,它强大的图像处理功能使其成为视频图像处理的常用软件。
二、视频预处理对视频进行预处理可以增强视频质量、减少视频噪声、增加对视频信息的提取等方面。
常用的预处理手段有图像灰度化、降噪、图像二值化等。
1.图像灰度化图像灰度化是一种将彩色图像转换为灰度图像的处理方式,它可以减少图像信息的跳变,保留图像的主要轮廓和纹理特征。
通常采用公式进行计算,将红色、绿色和蓝色三个通道的像素值进行线性加权,得到灰度图像的像素值。
在MATLAB中,可使用rgb2gray函数将彩色图像转换为灰度图像。
2.降噪处理在视频拍摄和传输过程中,噪声往往会影响到视频的质量,因此需要对噪声进行处理。
降噪可以减少视频噪声,提高视频质量,MATLAB可使用imnoise函数和wiener2函数来进行噪声的添加和降噪。
3.图像二值化处理图像二值化处理是指将图像分为两个部分:黑色和白色,以便于进行进一步的处理和分析。
常见的方法有阈值分割和自适应阈值分割。
MATLAB中有许多二值化函数,如graythresh函数和adaptivethresh函数。
三、视频分析和处理在视频分析和处理方面,主要涉及到视频分段、特征提取、运动估计等技术的应用。
1.视频分段视频通常由多个时间段组成,通过视频分段可以将一个完整的视频分为多个阶段,以便对视频进行更精细的处理和分析。
MATLAB可使用videoreader函数读取视频文件,使用read函数读取视频每一帧,然后根据帧数对视频进行分段。
2.特征提取特征提取是指通过对视频中的像素值、颜色、纹理等进行量化,提取出图像中的关键特征。
通常采用的方法有Haar小波变换、SIFT、SURF等,MATLAB可使用extracthogfeatures函数、extractlbpfeatures函数、extractsurffeatures函数来进行特征提取。
专利名称:视频序列中的可变形状运动估计
专利类型:发明专利
发明人:苗周荣,詹姆斯·J·卡里格,马里奥·帕尼科尼申请号:CN200680034068.5
申请日:20060901
公开号:CN101268623A
公开日:
20080917
专利内容由知识产权出版社提供
摘要:一种创建目标图像中的可变形状区块的方法包括生成目标区块的初始模式,识别目标区块的允许组合,计算每个允许组合的组合值,使用组合值来选择多个允许组合中的一个,以及执行所选的允许组合来创建可变形状区块。
申请人:索尼电子有限公司
地址:美国新泽西州
国籍:US
代理机构:北京东方亿思知识产权代理有限责任公司
代理人:董方源
更多信息请下载全文后查看。