中考数学临考冲刺专题练测:函数与几何图形综合题
- 格式:docx
- 大小:228.27 KB
- 文档页数:21
中考压轴训练---二次函数与几何图形综合1.如图,二次函数y1=a(x−m)2+n,y2=6ax2+n(a<0,m>0,n>0)的图象分别为C1,C2,C1交y轴于点P,点A在C1上,且位于y轴右侧,直线PA与C2在y轴左侧的交点为B.(1) 若P点的坐标为(0,2),C1的顶点坐标为(2,4),求a的值;(2) 设直线PA与y轴所夹的角为α.①当α=45∘,且A为C1的顶点时,求am的值;②若α=90∘,试说明:当a,m,n各自取不同的值时,PA的值不变;PB(3) 若PA=2PB,试判断点A是否为C1的顶点?请说明理由.2.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)交x轴于点A(2,0),B(−3,0),交y轴于点C,且经过点D(−6,−6),连接AD,BD.(1) 求该抛物线的函数关系式;(2) 若点M为X轴上方的抛物线上一点,能否在点A左侧的x轴上找到另一点N,使得△AMN与△ABD相似?若相似,请求出此时点M、点N的坐标;若不存在,请说明理由;(3) 若点P是直线AD上方的抛物线上一动点(不与A,D重合),过点P作PQ∥y轴交直线AD于点Q,以PQ为直径作⊙E,则⊙E在直线AD上所截得的线段长度的最大值等于(直接写出答案).3.如图,已知点A(−2,4)和点B(1,0)都在抛物线y=mx2+2mx+n上.(1) 求m,n的值;(2) 向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为点B′,若四边形AA′B′B为菱形,求平移后抛物线的解析式;(3) 记平移后抛物线的对称轴与直线AB′的交点为点C,试在x轴上找点D,使得以点B′,C,D为顶点的三角形与△ABC相似.4.如图①,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过点D(2,4),与x轴交于A,B两点,与y轴交于点C(0,4),连接AC,CD,BC,其且AC=5.(1) 求抛物线的解析式.(2) 如图②,点P是抛物线上的一个动点,过点P作x轴的垂线l,l分别交x轴于点E,交直线AC于点M.设点P的横坐标为m.当0<m≤2时,过点M作MG∥BC,MG交x轴于点G,连接GC,则m为何值时,△GMC的面积取得最大值,并求出这个最大值.(3) 当−1<m≤2时,是否存在实数m,使得以P,C,M为顶点的三角形和△AEM相似?若存在,求出相应m的值;若不存在,请说明理由.5.已知二次函数y=ax2+bx−4(a>0)的图象与x轴交于A,B两点,(A在B左侧,且OA<OB),与y轴交于点C.(1) 求C点坐标,并判断b的正负性;(2) 设这个二次函数的图象的对称轴与直线AC相交于点D,已知DC:CA=1:2,直线BD与y轴交于点E,连接BC.①若△BCE的面积为8,求二次函数的解析式;②若△BCD为锐角三角形,请直接写出OA的取值范围.6.如图,抛物线y=ax2+bx+2与x轴交于A,B两点,且OA=2OB,与y轴,D为第一象限内抛物线上一动点,交于点C,连接BC,抛物线对称轴为直线x=12过点D作DE⊥OA于点E,与AC交于点F,设点D的横坐标为m.(1) 求抛物线的表达式;(2) 当线段DF的长度最大时,求D点的坐标;(3) 抛物线上是否存在点D,使得以点O,D,E为顶点的三角形与△BOC相似?若存在,求出m的值;若不存在,请说明理由.7.如图,经过原点的抛物线y=ax2−x+b与直线y=2交于A,C两点,其对称轴是直线x=2,抛物线与x轴的另一个交点为D,线段AC与y轴交于点B.(1) 求抛物线的解析式,并写出点D的坐标;(2) 若点E为线段BC上一点,且EC−EA=2,点P(0,t)为线段OB上不与端点重合的动点,连接PE,过点E作直线PE的垂线交x轴于点F,连接PF,探究在P点运动过程中,线段PE,PF有何数量关系?并证明所探究的结论;(3) 设抛物线顶点为M,求当t为何值时,△DMF为等腰三角形?8.在平面直角坐标系中,抛物线y=−x2+kx−2k的顶点为N.(1) 若此抛物线过点A(−3,1),求抛物线的解析式;(2) 如图1,在(1)的条件下,抛物线与y轴交于点B,连接AB,C为抛物线上一点,且位于线段AB的上方,过点C作CD⊥x轴于点D,交AB于点E,若CE=ED,求点C的坐标;(3) 如图2,无论k取何值,抛物线都经过定点H,且∠OHN=45∘时,求抛物线的解析式.9.已知抛物线y=ax2+bx−5与x轴交于点A(−1,0)和B(−5,0),与y轴交于点C,顶点为P,点N在抛物线对称轴上且位于x轴下方,连AN交抛物线于M,连AC,CM.(1) 求抛物线的解析式;(2) 如图1,当tan∠ACM=2时,求M点的横坐标;(3) 如图2,过点P作x轴的平行线l,过M作MD⊥l于D,若MD=√3MN,求N点的坐标.x2+bx+c与x轴交于A,B两点,点A,B分别位于原10.如图,抛物线y=3+√36点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=√3CD.(1) 求b,c的值;(2) 求直线BD的函数解析式;(3) 点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上,当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.11.如图,二次函数y=−x2+3x+m的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点.(1) m的值为,C点坐标是(,);(2) 在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由.(3) P为抛物线上一点,它关于直线BC的对称点为Q.①当四边形PBQC为菱形时,求点P的坐标;②点P的横坐标为t(0<t<4),当t为何值时,四边形PBQC的面积最大,请说明理由.12.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(−8,3),B(−4,0),C(−4,3),∠ABC=α∘,抛物线y=12x2+bx+c经过点C,且对称轴为x=−45,并与y轴交于点G.(1) 求抛物线的表达式及点G的坐标;(2) 将Rt△ABC沿x轴向右平移m个单位,使点B移到点E,然后将三角形绕点E顺时针旋转α∘得到△DEF.若点F恰好落在抛物线上.①求m的值;②连接CG交x轴于点H,连接FG,过点B作BP∥FG,交CG于点P,求证:PH=GH.13.抛物线y=ax2+bx+3经过点A(−1,0),B(3,0),与y轴交于点C.点D(x D,y D)为抛物线上一个动点,其中1<x D<3.连接AC,BC,DB,DC.(1) 求该抛物线的解析式;(2) 当△BCD的面积等于△AOC的面积的2倍时,求点D的坐标;(3) 在(Ⅱ)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,求出点M的坐标;若不存在,请说明理由.14.如图,已知二次函数y=ax2−4ax+c(a>0)的图象与x轴交于A,B两点,其中A在B的左侧,且OA:OB=1:3;图象与y轴的负半轴交于点C,与一次函数x+m的图象交于A,D两点,且△ABD的面积与△BOC的面积相等.y=13(1) 求这两个函数的关系式;(2) 若P为这个二次函数的图象上的一个动点,问:是否存在这样的P,使得△PAD是以AD为斜边的等腰直角三角形?若存在,请求出所有符合题意的点P的坐标;若不存在请说明理由.15.如图,在平面直角坐标系中,二次函数y=−14x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(0,8),点B的坐标为(−4,0).(1) 求该二次函数的表达式及点C的坐标;(2) 点D的坐标为(0,4),点F为该二次函数在第一象限内图象上的动点,连接CD,CF,以CD,CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S.①求S的最大值;②在点F的运动过程中,当点E落在该二次函数图象上时,请直接写出此时S的值.16.如图,抛物线y=−12x2+2x+52与x轴相交于A,B两点,点B在点A的右侧,与y轴相交于点C.(1) 求点A,B,C的坐标;(2) 在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3) 点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.。
2024年中考数学复习重难点题型训练—二次函数与几何图形综合题(与特殊三角形问题)1.(2023·四川·统考中考真题)如图1,在平面直角坐标系中,已知二次函数24y ax bx =++的图象与x 轴交于点()2,0A -,()4,0B ,与y 轴交于点C.(1)求抛物线的解析式;(2)已知E 为抛物线上一点,F 为抛物线对称轴l 上一点,以B ,E ,F 为顶点的三角形是等腰直角三角形,且90BFE ∠=︒,求出点F 的坐标;【答案】(1)2142y x x =-++;(2)()1,1F 或()1,5F -或()1,3F -;(3)162OM ON +=,理由见解析【分析】(1)待定系数法求解析式即可;(2)先求得抛物线的对称轴为直线1x =,设l 与x 交于点G ,过点E 作ED l ⊥于点D ,证明DFG GBF ≌,设()F 1,m ,则1DE m =+,3DG DF FG GB FG m =+=+=+,进而得出E 点的坐标,代入抛物线解析式,求得m 的值,同理可求得当点F 在x 轴下方时的坐标;当E 点与A 点重合时,求得另一个解,进而即可求解;【详解】(1)解:将点()2,0A -,()4,0B ,代入24y ax bx =++得424016440a b a b -+=⎧⎨++=⎩解得:121a b ⎧=-⎪⎨⎪=⎩,∴抛物线解析式为2142y x x =-++;(2)∵点()2,0A -,()4,0B ,∴抛物线的对称轴为直线l :2412x -+==,如图所示,设l 与x 交于点G ,过点E 作ED l ⊥于点D∵以B ,E ,F 为顶点的三角形是等腰直角三角形,且90BFE ∠=︒,∴EF BF =,∵90DFE BFG GBF ∠=︒-∠=∠,∴DFE GBF ≌,∴,GF DE GB FD ==,设()F 1,m ,则DE m =,3DG DF FG GB FG m=+=+=+∴()1,3E m m ++,∵E 点在抛物线2142y x x =-++上∴()()2131142m m m +=-++++解得:3m =-(舍去)或1m =,∴()1,1F ,如图所示,设l 与x 交于点G ,过点E 作ED l ⊥于点D∵以B ,E ,F 为顶点的三角形是等腰直角三角形,且90BFE ∠=︒,∴EF BF =,∵90DFE BFG GBF ∠=︒-∠=∠,∴DFE GBF ≌,∴,GF DE GB FD ==,设()F 1,m ,则DE m =,3DG DF FG GB FG m=+=+=-∴()1,3E m m --,∵E 点在抛物线2142y x x =-++上∴()()2131142m m m -=--+-+解得:3m =(舍去)或5m =-,∴()1,5F -,当E 点与A 点重合时,如图所示,∵6AB =,ABF △是等腰直角三角形,且90BFE ∠=︒,∴2GF AB 1==3此时()0,3F -,综上所述,()1,1F 或()1,5F -或()1,3F -;【点睛】本题考查了二次函数综合问题,待定系数法求二次函数解析式,等腰直角三角形的性质,一次函数与坐标轴交点问题,熟练掌握二次函数的性质是解题的关键.2.(2023·山东烟台·统考中考真题)如图,抛物线25y ax bx =++与x 轴交于,A B 两点,与y 轴交于点,4C AB =.抛物线的对称轴3x =与经过点A 的直线1y kx =-交于点D ,与x 轴交于点E .(1)求直线AD 及抛物线的表达式;(2)在抛物线上是否存在点M ,使得ADM △是以AD 为直角边的直角三角形?若存在,求出所有点M 的坐标;若不存在,请说明理由;【答案】(1)直线AD 的解析式为1y x =-;抛物线解析式为265y x x =-+;(2)存在,点M 的坐标为()4,3-或()0,5或()5,0;【分析】(1)根据对称轴3x =,4AB =,得到点A 及B 的坐标,再利用待定系数法求解析式即可;(2)先求出点D 的坐标,再分两种情况:①当90DAM ∠=︒时,求出直线AM 的解析式为1y x =-+,解方程组2165y x y x x =-+⎧⎨=-+⎩,即可得到点M 的坐标;②当90ADM ∠=︒时,求出直线DM 的解析式为5y x =-+,解方程组2565y x y x x =-+⎧⎨=-+⎩,即可得到点M 的坐标;【详解】(1)解:∵抛物线的对称轴3x =,4AB =,∴()()1,0,5,0A B ,将()1,0A 代入直线1y kx =-,得10k -=,解得1k =,∴直线AD 的解析式为1y x =-;将()()1,0,5,0A B 代入25y ax bx =++,得5025550a b a b ++=⎧⎨++=⎩,解得16a b =⎧⎨=-⎩,∴抛物线的解析式为265y x x =-+;(2)存在点M ,∵直线AD 的解析式为1y x =-,抛物线对称轴3x =与x 轴交于点E .∴当3x =时,12y x =-=,∴()3,2D ,①当90DAM ∠=︒时,设直线AM 的解析式为y x c =-+,将点A 坐标代入,得10c -+=,解得1c =,∴直线AM 的解析式为1y x =-+,解方程组2165y x y x x =-+⎧⎨=-+⎩,得10x y =⎧⎨=⎩或43x y =⎧⎨=-⎩,∴点M 的坐标为()4,3-;②当90ADM ∠=︒时,设直线DM 的解析式为y x d =-+,将()3,2D 代入,得32d -+=,解得5d =,∴直线DM 的解析式为5y x =-+,解方程组2565y x y x x =-+⎧⎨=-+⎩,解得05x y =⎧⎨=⎩或50x y =⎧⎨=⎩,∴点M 的坐标为()0,5或()5,0综上,点M 的坐标为()4,3-或()0,5或()5,0;【点睛】此题是一次函数,二次函数及圆的综合题,掌握待定系数法求函数解析式,直角三角形的性质,勾股定理,相似三角形的判定和性质,求两图象的交点坐标,正确掌握各知识点是解题的关键.3.(2022·山东滨州)如图,在平面直角坐标系中,抛物线223y x x =--与x 轴相交于点A 、B (点A 在点B 的左侧),与y 轴相交于点C ,连接,AC BC .(1)求线段AC 的长;(2)若点Р为该抛物线对称轴上的一个动点,当PA PC =时,求点P 的坐标;(3)若点M 为该抛物线上的一个动点,当BCM 为直角三角形时,求点M 的坐标.【答案】()11,-(3)()14-,或()25-,或1522⎛+ ⎝⎭或1522⎛⎫ ⎪ ⎪⎝⎭【分析】(1)根据解析式求出A ,B ,C 的坐标,然后用勾股定理求得AC 的长;(2)求出对称轴为x=1,设P (1,t ),用t 表示出PA 2和PC 2的长度,列出等式求解即可;(3)设点M (m,m 2-2m-3),分情况讨论,当222CM BC BM +=,222BM BC CM +=,222BM CM BC +=分别列出等式求解即可.(1)223y x x =--与x 轴交点:令y=0,解得121,3x x =-=,即A (-1,0),B (3,0),223y x x =--与y 轴交点:令x=0,解得y=-3,即C (0,-3),∴AO=1,CO=3,∴AC ==(2)抛物线223y x x =--的对称轴为:x=1,设P (1,t ),∴()()22221104PA t t =++-=+,()()()222210313PC t t =-++=++,∴24t +()213t =++∴t=-1,∴P (1,-1);(3)设点M (m,m 2-2m-3),()()()()22222223230323BM m m m m m m =-+---=-+--,()()()222222202332CM m m m m m m =-+--+=+-,()()222300318BC =-++=,①当222CM BC BM +=时,()()()222222218323m m m m m m +-+=-+--,解得,10m =(舍),21m =,∴M (1,-4);②当222BM BC CM +=时,()()()222222323182m m m m m m -+--+=+-,解得,12m =-,23m =(舍),∴M (-2,5);③当222BM CM BC +=时,()()()222222323218m m m m m m -+--++-=,解得,m =,∴M 1522⎛+ ⎪ ⎪⎝⎭或1522⎛⎫ ⎪ ⎪⎝⎭;综上所述:满足条件的M 为()14-,或()25-,或⎝⎭或⎫⎪⎪⎝⎭.【点睛】本题是二次函数综合题,考查了与坐标轴交点、线段求值、存在直角三角形等知识,解题的关键是学会分类讨论的思想,属于中考压轴题.4.(2023·重庆·统考中考真题)如图,在平面直角坐标系中,抛物线214y x bx c =++与x 轴交于点A ,B ,与y 轴交于点C ,其中()3,0B ,()0,3C -.(1)求该抛物线的表达式;(2)点P 是直线AC 下方抛物线上一动点,过点P 作PD AC ⊥于点D ,求PD 的最大值及此时点P 的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,Q 为平移后的抛物线的对称轴上任意一点.写出所有使得以QF 为腰的QEF △是等腰三角形的点Q 的坐标,并把求其中一个点Q 的坐标的过程写出来.【答案】(1)211344y x x =+-;(2)PD 取得最大值为45,52,2P ⎛⎫-- ⎪⎝⎭;(3)Q 点的坐标为9,12⎛⎫- ⎪⎝⎭或9,52⎛⎫ ⎪⎝⎭或97,24⎛⎫ ⎪⎝⎭【分析】(1)待定系数法求二次函数解析式即可求解;(2)直线AC 的解析式为334y x =--,过点P 作PE x ⊥轴于点E ,交AC 于点Q ,设211,344P t t t ⎛⎫+- ⎪⎝⎭,则3,34Q t t ⎛⎫-- ⎪⎝⎭,则45PD PQ =,进而根据二次函数的性质即可求解;(3)根据平移的性质得出219494216y x ⎛⎫=-- ⎪⎝⎭,对称轴为直线92x =,点52,2P ⎛⎫-- ⎪⎝⎭向右平移5个单位得到53,2E ⎛⎫- ⎪⎝⎭,()0,2F ,勾股定理分别表示出222,,EF QE QF ,进而分类讨论即可求解.【详解】(1)解:将点()3,0B ,()0,3C -.代入214y x bx c =++得,2133043b c c ⎧⨯++=⎪⎨⎪=-⎩解得:143b c ⎧=⎪⎨⎪=-⎩,∴抛物线解析式为:211344y x x =+-,(2)∵211344y x x =+-与x 轴交于点A ,B ,当0y =时,2113044x x +-=解得:124,3x x =-=,∴()4,0A -,∵()0,3C -.设直线AC 的解析式为3y kx =-,∴430k --=解得:34k =-∴直线AC 的解析式为334y x =--,如图所示,过点P 作PE x ⊥轴于点E ,交AC 于点Q,设211,344P t t t ⎛⎫+- ⎪⎝⎭,则3,34Q t t ⎛⎫-- ⎪⎝⎭,∴223111334444PQ t t t t t ⎛⎫=---+-=-- ⎪⎝⎭,∵AQE PQD ∠=∠,90AEQ QDP ∠=∠=︒,∴OAC QPD ∠=∠,∵4,3OA OC ==,∴5AC =,∴4cos cos =5PD AO QPD OAC PQ AC ∠==∠=,∴()222441141425545555PD PQ t t t t t ⎛⎫==--=--=-++ ⎪⎝⎭,∴当2t =-时,PD 取得最大值为45,()()2211115322344442t t +-=⨯-+⨯--=-,∴52,2P ⎛⎫-- ⎪⎝⎭;(3)∵抛物线211344y x x =+-211494216x ⎛⎫=+- ⎪⎝⎭将该抛物线向右平移5个单位,得到219494216y x ⎛⎫=-- ⎪⎝⎭,对称轴为直线92x =,点52,2P ⎛⎫-- ⎪⎝⎭向右平移5个单位得到53,2E ⎛⎫- ⎪⎝⎭∵平移后的抛物线与y 轴交于点F ,令0x =,则2194924216y ⎛⎫=⨯-= ⎪⎝⎭,∴()0,2F ,∴22251173224EF ⎛⎫=++= ⎪⎝⎭∵Q 为平移后的抛物线的对称轴上任意一点.则Q 点的横坐标为92,设9,2Q m ⎛⎫ ⎪⎝⎭,∴22295322QE m ⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭,()222922QF m ⎛⎫=+- ⎪⎝⎭,当QF EF =时,()22922m ⎛⎫+- ⎪⎝⎭=1174,解得:1m =-或5m =,当QE QF =时,2295322m ⎛⎫⎛⎫-++ ⎪ ⎝⎭⎝⎭=()22922m ⎛⎫+- ⎪⎝⎭,解得:74m =综上所述,Q 点的坐标为9,12⎛⎫- ⎪⎝⎭或9,52⎛⎫ ⎪⎝⎭或97,24⎛⎫ ⎪⎝⎭.【点睛】本题考查了二次函数综合问题,解直角三角形,待定系数法求解析式,二次函数的平移,线段周长问题,特殊三角形问题,熟练掌握二次函数的性质是解题的关键.5.(2023·四川凉山·统考中考真题)如图,已知抛物线与x 轴交于()1,0A 和()5,0B -两点,与y 轴交于点C .直线33y x =-+过抛物线的顶点P .(1)求抛物线的函数解析式;(2)若直线()50x m m =-<<与抛物线交于点E ,与直线BC 交于点F .①当EF 取得最大值时,求m 的值和EF 的最大值;②当EFC 是等腰三角形时,求点E 的坐标.【答案】(1)245y x x =--+;(2)①当52m =-时,EF 有最大值,最大值为254;②()38-,或()45-,或)52-【分析】(1)利用待定系数法求解即可;(2)①先求出()05C ,,进而求出直线BC 的解析式为5y x =+,则()()2455E m m m F m m --++,,,,进一步求出252524EF m ⎛⎫=-++ ⎪⎝⎭,由此即可利用二次函数的性质求出答案;②设直线x m =与x 轴交于H ,先证明BHF 是等腰直角三角形,得到45EFC BFH =∠=︒∠;再分如图3-1所示,当EC FC =时,如图3-2所示,当EF EC =时,如图3-3所示,当EF CF =时,三种情况利用等腰三角形的定义进行求解即可.【详解】(1)解:∵抛物线与x 轴交于()1,0A 和()5,0B -两点,∴抛物线对称轴为直线5122x -+==-,在33y x =-+中,当2x =-时,9y =,∴抛物线顶点P 的坐标为()29-,,设抛物线解析式为()229y a x =++,∴()21290a ++=,∴1a =-,∴抛物线解析式为()222945y x x x =-++=--+(2)解:①∵抛物线解析式为245y x x =--+,点C 是抛物线与y 轴的交点,∴()05C ,,设直线BC 的解析式为1y kx b =+,∴11505k b b -+=⎧⎨=⎩,∴15k b =⎧⎨=⎩,∴直线BC 的解析式为5y x =+,∵直线()50x m m =-<<与抛物线交于点E ,与直线BC 交于点F∴()()2455E m m m F m m --++,,,,∴()2455EF m m m =--+-+25m m=--252524m ⎛⎫=-++ ⎪⎝⎭,∵10-<,∴当52m =-时,EF 有最大值,最大值为254;②设直线x m =与x 轴交于H ,∴5BH m =+,5HF m =+,∴BH HF =,∴BHF 是等腰直角三角形,∴45EFC BFH =∠=︒∠;如图3-1所示,当EC FC =时,过点C 作CG EF ⊥于G ,则()5G m ,∴点G 为EF 的中点,由(2)得()()2455E m m m F m m --++,,,,∴245552m m m --+++=,∴230m m +=,解得3m =-或0m =(舍去),∴()38E -,;如图3-2所示,当EF EC =时,则EFC 是等腰直角三角形,∴90FEF =︒∠,即CE EF ⊥,∴点E 的纵坐标为5,∴2455m m --+=,解得4m =-或0m =(舍去),∴()45E -,如图3-3所示,当EF CF =时,过点C 作CG EF ⊥于G ,同理可证CFG △是等腰直角三角形,∴FG CG m ==-,∴22CF CG m ==-,∴252m m m --=-,∴(2520m m +-=,解得25m =-或0m =(舍去),∴()225522EF CF ==-⨯-=-,2HF =,∴622HE =-,∴()25622E --,综上所述,点E 的坐标为()38-,或()45-,或()25622--,【点睛】本题主要考查了二次函数综合,勾股定理,等腰直角三角形的性质与判断,一次函数与几何综合,待定系数法求函数解析式等等,利用分类讨论的思想求解是解题的关键.6.(2022·四川省遂宁市)如图,在平面直角坐标系中,抛物线y=x 2+bx+c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标为(-1,0),点C 的坐标为(0,-3).(1)求抛物线的解析式;(2)如图1,E 为△ABC 边AB 上的一动点,F 为BC 边上的一动点,D 点坐标为(0,-2),求△DEF 周长的最小值;(3)如图2,N 为射线CB 上的一点,M 是抛物线上的一点,M 、N 均在第一象限内,B 、N 位于直线AM 的同侧,若M 到x 轴的距离为d ,△AMN 面积为2d ,当△AMN 为等腰三角形时,求点N 的坐标.【解析】解:(1)∵抛物线y=x2+bx+c经过点A(-1,0),点C(0,-3).∴1−b+c=0c=−3,∴b=−2c=−3,∴抛物线的解析式为y=x2-2x-3;(2)如图,设D1为D关于直线AB的对称点,D2为D关于ZX直线BC的对称点,连接D1E,D2F,D1D2.由对称性可知DE=D1E,DF=D2F,△DEF的周长=D1E+EF+D2F,∴当D1,E.F.D2共线时,△DEF的周长最小,最小值为D1D2的长,令y=0,则x2-2x-3=0,解得x=-1或3,∴B(3,0),∴OB=OC=3,∴△BOC是等腰直角三角形,∵BC垂直平分DD2,且D(-2,0),∴D2(1,-3),∵D,D1关于x轴的长,∴D1(0,2),∴D1D2=D2C2+D1C2=52+12=26,∴△DEF的周长的最小值为26.(3)∵M到x轴距离为d,AB=4,连接BM.∴S△ABM=2d,又∵S△AMN=2d,∴S△ABM=S△AMN,∴B,N到AM的距离相等,∵B,N在AM的同侧,∴AM∥BN,设直线BN的解析式为y=kx+m,则有m=−33k+m=0,∴k=1m=−3,∴直线BC的解析式为y=x-3,∴设直线AM的解析式为y=x+n,∵A(-1,0),∴直线AM的解析式为y=x+1,由y=x+1y=x2−2x−3,解得x=1y=0或x=4y=5,∴M(4,5),∵点N在射线BC上,∴设N(t,t-3),过点M作x轴的平行线l,过点N作y轴的平行线交x轴于点P,交直线l于点Q.∵A(-1,0),M(4,5),N(t,t-3),∴AM=52,AN=(t+1)2+(t−3)2,MN=(t−4)2+(t−8)2,∵△AMN是等腰三角形,当AM=AN时,52=(t+1)2+(t−3)2,解得t=1±21,当AM=MN时,52=(t−4)2+(t−8)2,解得t=6±21,当AN=MN时,(t+1)2+(t−3)2=(t−4)2+(t−8)2,解得t=72,∵N 在第一象限,∴t >3,∴t 的值为72,1+21,6+21,∴点N 的坐标为(72,12)或(1+21,-2+21)或(6+21,3+21).7.(2023·江苏连云港·统考中考真题)如图,在平面直角坐标系xOy 中,抛物线21:23L y x x =--的顶点为P .直线l 过点()()0,3M m m ≥-,且平行于x 轴,与抛物线1L 交于A B 、两点(B 在A 的右侧).将抛物线1L 沿直线l 翻折得到抛物线2L ,抛物线2L 交y 轴于点C ,顶点为D .(1)当1m =时,求点D 的坐标;(2)连接BC CD DB 、、,若BCD △为直角三角形,求此时2L 所对应的函数表达式;(3)在(2)的条件下,若BCD △的面积为3,E F 、两点分别在边BC CD 、上运动,且EF CD =,以EF 为一边作正方形EFGH ,连接CG ,写出CG 长度的最小值,并简要说明理由.【答案】(1)()1,6D ;(2)223y x x =-++或223y x x =-+-;【分析】(1)将抛物线解析式化为顶点式,进而得出顶点坐标()1,4P -,根据对称性,即可求解.(2)由题意得,1L 的顶点()1,4P -与2L 的顶点D 关于直线y m =对称,()1,24D m +,则抛物线()()222:124223L y x m x x m =--++=-+++.进而得出可得()0,23C m +,①当90BCD ∠=︒时,如图1,过D 作DN y ⊥轴,垂足为N .求得()3,B m m +,代入解析式得出0m =,求得22:23L y x x =-++.②当=90BDC ∠︒时,如图2,过B 作BT ND ⊥,交ND 的延长线于点T .同理可得BT DT =,得出()5,B m m +,代入解析式得出3m =-代入22:223L y x x m =-+++,得22:23L y x x =-+-;③当90DBC ∠=︒时,此情况不存在.【详解】(1)∵2223(1)4y x x x =--=--,∴抛物线1L 的顶点坐标()1,4P -.∵1m =,点P 和点D 关于直线1y =对称.∴()1,6D .(2)由题意得,1L 的顶点()1,4P -与2L 的顶点D 关于直线y m =对称,∴()1,24D m +,抛物线()()222:124223L y x m x x m =--++=-+++.∴当0x =时,可得()0,23C m +.①当90BCD ∠=︒时,如图1,过D 作DN y ⊥轴,垂足为N .∵()1,24D m +,∴()0,24N m +.∵()0,23C m +∴1DN NC ==.∴45DCN ∠=︒.∵90BCD ∠=︒,∴45BCM ∠=︒.∵直线l x ∥轴,∴90BMC ∠=︒.∴45,CBM BCM BM CM ∠=∠=︒=.∵3m ≥-,∴()233BM CM m m m ==+-=+.∴()3,B m m +.又∵点B 在2=23y x x --图像上,∴()()23233m m m =+-+-.解得0m =或3m =-.∵当3m =-时,可得()()0,3,0,3B C --,此时B C 、重合,舍去.当0m =时,符合题意.将0m =代入22:223L y x x m =-+++,得22:23L y x x =-++.②当=90BDC ∠︒时,如图2,过B 作BT ND ⊥,交ND 的延长线于点T .同理可得BT DT =.∵()1,24D m +,∴()244DT BT m m m ==+-=+.∵1DN =,∴()145NT DN DT m m =+=++=+.∴()5,B m m +.又∵点B 在2=23y x x --图像上,∴()()25253m m m =+-+-.解得3m =-或4m =-.∵3m ≥-,∴3m =-.此时()()2,3,0,3B C --符合题意.将3m =-代入22:223L y x x m =-+++,得22:23L y x x =-+-.③当90DBC ∠=︒时,此情况不存在.综上,2L 所对应的函数表达式为223y x x =-++或223y x x =-+-.【点睛】本题考查了二次函数的性质,特殊三角形问题,正方形的性质,勾股定理,面积问题,分类讨论是解题的关键.8.(2023·四川内江·统考中考真题)如图,在平面直角坐标系中,抛物线2y ax bx c =++与x 轴交于()4,0B ,()2,0C -两点.与y 轴交于点()0,2A -.(1)求该抛物线的函数表达式;(2)若点P 是直线AB 下方抛物线上的一动点,过点P 作x 轴的平行线交AB 于点K ,过点P作y 轴的平行线交x 轴于点D ,求与12PK PD +的最大值及此时点P 的坐标;(3)在抛物线的对称轴上是否存在一点M ,使得MAB △是以AB 为一条直角边的直角三角形:若存在,请求出点M 的坐标,若不存在,请说明理由.【答案】(1)211242y x x =--;(2)存在,12PK PD +的最大值为258,335,216P ⎛⎫- ⎪⎝⎭;(3)()1,6或()1,4-【分析】(1)将A 、B 、C 代入抛物线解析式求解即可;(2)可求直线AB 的解析式为122y x =-,设211,242P m m m ⎛⎫-- ⎪⎝⎭(04m <<),可求22111,2242K m m m m ⎛⎫--- ⎪⎝⎭,从而可求21132222PK PD m +=-++,即可求解;(3)过A 作2AM AB ⊥交抛物线的对称轴于2M ,过B 作1BM AB ⊥交抛物线的对称轴于1M ,连接1AM ,设()11,M n ,可求22145AM n n =++,2219BM n =+,由22211AB BM AM +=,可求1M ,进而求出直线1BM 的解析式,即可求解.【详解】(1)解:由题意得16404202a b c a b c c ++=⎧⎪-+=⎨⎪=-⎩,解得:14122a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩,∴抛物线的解析式为211242y x x =--.(2)解:设直线AB 的解析式为y kx b =+,则有402k b b +=⎧⎨=-⎩,解得:122k b ⎧=⎪⎨⎪=-⎩,∴直线AB 的解析式为122y x =-;设211,242P m m m ⎛⎫-- ⎪⎝⎭(04m <<),211122242x m m ∴-=--,解得:212x m m =-,22111,2242K m m m m ⎛⎫∴--- ⎪⎝⎭,212PK m m m ⎛⎫∴=-- ⎪⎝⎭2122m m =-+,21124PK m m ∴=-+,211242PD m m ⎛⎫=--- ⎪⎝⎭211242m m =-++,22111122442PK PD m m m m ∴+=-+-++213222m m =-++21325228m ⎛⎫=--+ ⎪⎝⎭,102-< ,∴当32m =时,12PK PD +的最大值为258,∴21313352422216y ⎛⎫=⨯--=- ⎪⎝⎭,∴335,216P ⎛⎫- ⎪⎝⎭.故12PK PD +的最大值为258,335,216P ⎛⎫- ⎪⎝⎭.(3)解:存在,如图,过A 作2AM AB ⊥交抛物线的对称轴于2M ,过B 作1BM AB ⊥交抛物线的对称轴于1M ,连接1AM ,∵抛物线211242y x x =--的对称轴为直线1x =,∴设()11,M n ,()222112AM n ∴=++245n n =++,2222420AB =+=,()222141BM n =-+29n =+,22211AB BM AM += ,2292045n n n ∴++=++,解得:6n =,()11,6M ∴;设直线1BM 的解析式为11y k x b =+,则有1111640k b k b +=⎧⎨+=⎩,解得1128k b =-⎧⎨=⎩,∴直线1BM 解析式为28y x =-+,21AM BM ∥ ,且经过()0,2A -,∴直线2AM 解析式为22y x =--,∴当1x =时,2124y =-⨯-=-,()21,4M ∴-;综上所述:存在,M 的坐标为()1,6或()1,4-.【点睛】本题考查了待定系数法求函数解析式,二次函数中动点最值问题,直角三角形的判定,勾股定理等,掌握解法及找出动点坐标满足的函数解析式是解题的关键.9.(2021·四川广安市·中考真题)如图,在平面直角坐标系中,抛物线2y x bx c =-++的图象与坐标轴相交于A 、B 、C 三点,其中A 点坐标为()3,0,B 点坐标为()1,0-,连接AC 、BC .动点P 从点A 出发,在线段AC上以每秒个单位长度向点C 做匀速运动;同时,动点Q 从点B 出发,在线段BA 上以每秒1个单位长度向点A 做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接PQ ,设运动时间为t 秒.(1)求b、c的值;(2)在P、Q运动的过程中,当t为何值时,四边形BCPQ的面积最小,最小值为多少?(3)在线段AC上方的抛物线上是否存在点M,使MPQ是以点P为直角顶点的等腰直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.【答案】(1)b=2,c=3;(2)t=2,最小值为4;(3)(3174+,23178+)【分析】(1)利用待定系数法求解即可;(2)过点P作PE⊥x轴,垂足为E,利用S四边形BCPQ=S△ABC-S△APQ表示出四边形BCPQ的面积,求出t的范围,利用二次函数的性质求出最值即可;(3)画出图形,过点P作x轴的垂线,交x轴于E,过M作y轴的垂线,与EP交于F,证明△PFM≌△QEP,得到MF=PE=t,PF=QE=4-2t,得到点M的坐标,再代入二次函数表达式,求出t值,即可算出M的坐标.【详解】解:(1)∵抛物线y=-x2+bx+c经过点A(3,0),B(-1,0),则09301b cb c=-++⎧⎨=--+⎩,解得:23 bc=⎧⎨=⎩;(2)由(1)得:抛物线表达式为y=-x 2+2x+3,C (0,3),A (3,0),∴△OAC 是等腰直角三角形,由点P 的运动可知:AP=,过点P 作PE ⊥x 轴,垂足为E ,∴AE=PE=,即E (3-t ,0),又Q (-1+t ,0),∴S 四边形BCPQ =S △ABC -S △APQ =()11433122t t ⨯⨯-⨯--+⎡⎤⎣⎦=21262t t -+∵当其中一点到达终点时,另一点随之停止运动,=,AB=4,∴0≤t≤3,∴当t=2122--⨯=2时,四边形BCPQ 的面积最小,即为2122262⨯-⨯+=4;(3)∵点M 是线段AC 上方的抛物线上的点,如图,过点P 作x 轴的垂线,交x 轴于E ,过M 作y 轴的垂线,与EP 交于F ,∵△PMQ 是等腰直角三角形,PM=PQ ,∠MPQ=90°,∴∠MPF+∠QPE=90°,又∠MPF+∠PMF=90°,∴∠PMF=∠QPE ,在△PFM 和△QEP 中,F QEP PMF QPE PM PQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PFM ≌△QEP (AAS ),∴MF=PE=t ,PF=QE=4-2t ,∴EF=4-2t+t=4-t ,又OE=3-t ,∴点M 的坐标为(3-2t ,4-t ),∵点M 在抛物线y=-x 2+2x+3上,∴4-t=-(3-2t )2+2(3-2t )+3,解得:t=98或98+(舍),∴M点的坐标为(34,23178+).【点睛】本题考查了二次函数综合,涉及到全等三角形的判定和性质,等腰直角三角形的性质,三角形面积,用方程的思想解决问题是解本题的关键.10.(2021·江苏中考真题)如图,抛物线21y 2x bx c =-++与x 轴交于A(-1,0),B(4,0),与y 轴交于点C .连接AC ,BC ,点P 在抛物线上运动.(1)求抛物线的表达式;(2)如图①,若点P 在第四象限,点Q 在PA 的延长线上,当∠CAQ=∠CBA +45°时,求点P 的坐标;(3)如图②,若点P 在第一象限,直线AP 交BC 于点F ,过点P 作x 轴的垂线交BC 于点H ,当△PFH 为等腰三角形时,求线段PH 的长.【答案】(1)213222y x x =-++;(2)(6,-7);(3)PH=5-或1.5或158【分析】(1)根据待定系数法解答即可;(2)求得点C 的坐标后先利用勾股定理的逆定理判断∠ACB=90°,继而可得∠ACO=∠CBA ,在x 轴上取点E (2,0),连接CE ,易得△OCE 是等腰直角三角形,可得∠OCE=45°,进一步可推出∠ACE=∠CAQ ,可得CE ∥PQ ,然后利用待定系数法分别求出直线CE 与PQ 的解析式,再与抛物线的解析式联立方程组求解即可;(3)设直线AP 交y 轴于点G ,如图,由题意可得若△PFH 为等腰三角形,则△CFG 也为等腰三角形,设G (0,m ),求出直线AF 和直线BC 的解析式后,再解方程组求出点F 的坐标,然后分三种情况求出m 的值,再求出直线AP 的解析式,进而可求出点P 的坐标,于是问题可求解.【详解】解:(1)把A(-1,0),B(4,0)代入21y 2x bx c =-++,得102840b c b c ⎧--+=⎪⎨⎪-++=⎩,解得:322b c ⎧=⎪⎨⎪=⎩,∴抛物线的解析式是213222y x x =-++;(2)令x=0,则y=2,即C (0,2),∵222125AC =+=,2222420BC =+=,AB 2=25,∴222AC BC AB +=,∴∠ACB=90°,∵∠ACO+∠CAO=∠CBA+∠CAO=90°,∴∠ACO=∠CBA ,在x 轴上取点E (2,0),连接CE ,如图,则CE=OE=2,∴∠OCE=45°,∴∠ACE=∠ACO+45°=∠CBA+45°=∠CAQ ,∴CE ∥PQ ,∵C (0,2),E (2,0),∴直线CE 的解析式为y=-x+2,设直线PQ 的解析式为y=-x+n ,把点A (-1,0)代入,可得n=-1,∴直线PQ 的解析式为y=-x-1,解方程组2132221y x x y x ⎧=-++⎪⎨⎪=--⎩,得10x y =-⎧⎨=⎩或67x y =⎧⎨=-⎩,∴点P 的坐标是(6,-7);(3)设直线AP 交y 轴于点G ,如图,∵PH ∥y 轴,∴∠PHC=∠OCB ,∠FPH=∠CGF ,∴若△PFH 为等腰三角形,则△CFG 也为等腰三角形,∵C (0,2),B (4,0),∴直线BC 的解析式为122y x =-+,设G (0,m ),∵A (-1,0),∴直线AF 的解析式为y=mx+m ,解方程组122y x y mx m ⎧=-+⎪⎨⎪=+⎩,得4221521m x m m y m -⎧=⎪⎪+⎨⎪=⎪+⎩,∴点F 的坐标是425,2121m m m m -⎛⎫ ⎪++⎝⎭,∴()222222224254252,2,21212121m m m m CG m CF FG m m m m m --⎛⎫⎛⎫⎛⎫⎛⎫=-=+-=+- ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭,当CG=CF 时,()222425222121m m m m m -⎛⎫⎛⎫-=+- ⎪ ⎪++⎝⎭⎝⎭,解得:m =此时直线AF 的解析式为y=12-x+12-,解方程组213222y x x y x ⎧=-++⎪⎪⎨⎪⎪⎩10x y =-⎧⎨=⎩或5112x y ⎧=⎪⎨=⎪⎩,∴点P的坐标是(5),此时点H的坐标是(5),∴PH=111522---=-;当FG=FC 时,2222425425221212121m m m m m m m m m --⎛⎫⎛⎫⎛⎫⎛⎫+-=+- ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭,解得m=12或m=12-(舍)或m=2(舍),此时直线AF 的解析式为y=12x+12,解方程组2132221122y x x y x ⎧=-++⎪⎪⎨⎪=+⎪⎩,得10x y =-⎧⎨=⎩或32x y =⎧⎨=⎩,∴点P 的坐标是(3,2),此时点H 的坐标是(3,12),∴PH=2-12=1.5;当GF=GC 时,()22242522121m m m m m m -⎛⎫⎛⎫-=+- ⎪ ⎪++⎝⎭⎝⎭,解得34m =或m=2(舍去),此时直线AF 的解析式为y=34x+34,解方程组2132223344y x x y x ⎧=-++⎪⎪⎨⎪=+⎪⎩,得10x y =-⎧⎨=⎩或52218x y ⎧=⎪⎪⎨⎪=⎪⎩,∴点P 的坐标是(52,218),此时点H 的坐标是(52,34),∴PH=21315848-=;综上,PH=355或1.5或158.【点睛】本题是二次函数的综合题,主要考查了待定系数法求二次函数的解析式、二次函数图象上点的坐标特征、直线与抛物线的交点以及等腰三角形的判定和性质等知识,具有相当的难度,熟练掌握二次函数的图象和性质、灵活应用数形结合的思想是解题的关键.11.(2021·湖北中考真题)在平面直角坐标系中,抛物线2y ax bx c =++与x 轴交于点()1,0A -和点B ,与y 轴交于点C ,顶点D 的坐标为()1,4-.(1)直接写出抛物线的解析式;(2)如图1,若点P 在抛物线上且满足PCB CBD ∠=∠,求点P 的坐标;(3)如图2,M 是直线BC 上一个动点,过点M 作MN x ⊥轴交抛物线于点N ,Q 是直线AC上一个动点,当QMN 为等腰直角三角形时,直接写出此时点M 及其对应点Q 的坐标【答案】(1)223y x x =--;(2)()14,5P ,257,24P ⎛⎫- ⎪⎝⎭;(3)154,33M ⎛⎫- ⎪⎝⎭,154,93Q ⎛⎫-- ⎪⎝⎭;2134,33M ⎛⎫ ⎪⎝⎭,2134,93Q ⎛⎫- ⎪⎝⎭;()35,2M ,()35,12Q -;()42,1M -,()40,3Q -;()51,2M -,()50,3Q -;()67,4M ,()67,18Q -.【分析】(1)由()1,0A -和D ()1,4-,且D 为顶点列方程求出a 、b 、c ,即可求得解析式;(2)分两种情况讨论:①过点C 作1//CP BD ,交抛物线于点1P ,②在BC 下方作BCF BCE ∠=∠交BG 于点F ,交抛物线于2P ;(3)QMN 为等腰直角三角形,分三种情况讨论:当90QM MN QMN =∠=︒,;②当90QN MN QNM =∠=︒,;③当90QM QN MQN =∠=︒,.【详解】解:(1)将()1,0A -和D ()1,4-代入2y ax bx c=++得04a b c a b c -+=⎧⎨++=-⎩又∵顶点D 的坐标为()1,4-∴12b a-=-∴解得123a b c =⎧⎪=-⎨⎪=-⎩∴抛物线的解析式为:223y x x =--.(2)∵()3,0B 和()1,4D -∴直线BD 的解析式为:26y x =-∵抛物线的解析式为:223y x x =--,抛物线与y 轴交于点C ,与x 轴交于点()1,0A -和点B ,则C 点坐标为()0,3-,B 点坐标为()3,0.①过点C 作1//CP BD ,交抛物线于点1P ,则直线1CP 的解析式为23y x =-,结合抛物线223y x x =--可知22323x x x --=-,解得:10x =(舍),24x =,故()14,5P .②过点B 作y 轴平行线,过点C 作x 轴平行线交于点G ,由OB OC =可知四边形OBGC 为正方形,∵直线1CP 的解析式为23y x =-∴1CP 与x 轴交于点3,02E ⎛⎫ ⎪⎝⎭,在BC 下方作BCF BCE ∠=∠交BG 于点F ,交抛物线于2P ∴OCE FCG∠=∠又∵OC=CG ,90COE G ∠=∠=︒∴OEC △≌()GFC ASA ,∴32FG OE ==,33,2F ⎛⎫- ⎪⎝⎭,又由()0,3C -可得直线CF 的解析式为132y x =-,结合抛物线223y x x =--可知212332x x x --=-,解得10x =(舍),252x =,故257,24P ⎛⎫- ⎪⎝⎭.综上所述,符合条件的P 点坐标为:()14,5P ,257,24P ⎛⎫- ⎪⎝⎭.(3)∵()3,0B ,()0,3C -∴直线BC 的解析式为3BC y x =-设M 的坐标为()3m m -,,则N 的坐标为()223m m m --,∴()22=3233MN m m m m m----=-∵()1,0A -,()0,3C -∴直线BC 的解析式为33AC y x =--∵QMN 为等腰直角三角形∴①当90QM MN QMN =∠=︒,时,如下图所示则Q 点的坐标为33m m ⎛⎫-- ⎪⎝⎭,∴4=33m m QM m ⎛⎫--= ⎪⎝⎭∴24=33m m m -解得:10m =(舍去),2133m =,353m =∴此时154,33M ⎛⎫- ⎪⎝⎭,154,93Q ⎛⎫-- ⎪⎝⎭;2134,33M ⎛⎫ ⎪⎝⎭,2134,93Q ⎛⎫- ⎪⎝⎭;②当90QN MN QNM =∠=︒,时,如下图所示则Q 点的坐标为222233m m m m ⎛⎫--- ⎪⎝⎭∴222=33m m m m QM m -+-=∴22=33m m m m +-解得:10m =(舍去),25m =,32m =∴此时()35,2M ,()35,12Q -;()42,1M -,()40,3Q -;③当90QM QN MQN =∠=︒,时,如图所示则Q 点纵坐标为()()22211113236=32222m m m m m m m -+--=----∴Q 点的坐标为22111136622m m m m ⎛⎫--- ⎪⎝⎭,∴Q 点到MN 的距离=221151+6666m m m m m --=∴22511+=3662m m m m ⋅-(直角三角形斜边上的中线等于斜边的一半)解得:10m =(舍去),27m =,31m =∴此时()51,2M -,()50,3Q -;()67,4M ,()67,18Q -.综上所述,点M 及其对应点Q 的坐标为:154,33M ⎛⎫- ⎪⎝⎭,154,93Q ⎛⎫-- ⎪⎝⎭;2134,33M ⎛⎫ ⎪⎝⎭,2134,93Q ⎛⎫- ⎪⎝⎭;()35,2M ,()35,12Q -;()42,1M -,()40,3Q -;()51,2M -,()50,3Q -;()67,4M ,()67,18Q -.【点睛】本题主要考查二次函数与几何图形.该题综合性较强,属于中考压轴题.12.(2021·湖南中考真题)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如()()1,1,2021,2021……都是“雁点”.(1)求函数4y x=图象上的“雁点”坐标;(2)若抛物线25y ax x c =++上有且只有一个“雁点”E ,该抛物线与x 轴交于M 、N 两点(点M 在点N 的左侧).当1a >时.①求c 的取值范围;②求EMN ∠的度数;(3)如图,抛物线2y x 2x 3=-++与x 轴交于A 、B 两点(点A 在点B 的左侧),P 是抛物线2y x 2x 3=-++上一点,连接BP ,以点P 为直角顶点,构造等腰Rt BPC △,是否存在点P ,使点C 恰好为“雁点”?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)(2,2)和(2,2)--;(2)①04c <<;②45°;(3)存在,P 点坐标为315,24⎛⎫ ⎪⎝⎭或3122⎛⎫+ ⎪ ⎪⎝⎭或3122⎛⎫- ⎪⎝⎭【分析】(1)根据“雁点”的定义可得y=x ,再联立4y x=求出“雁点”坐标即可;(2)根据25y ax x c =++和y=x 可得240ax x c ++=,再利用根的判别式得到4c a =,再求出a 的取值范围;将点c 代入解析式求出点E 的坐标,令y=0,求出M 的坐标,过E 点向x 轴作垂线,垂足为H 点,如图所示,根据EH=MH 得出EMH 为等腰直角三角形,∠EMN 的度数即可求解;(3)存在,根据图1,图2,图3进行分类讨论,设C (m ,m ),P (x ,y ),根据三角形全等得出边相等的关系,再逐步求解,代入解析式得出点P 的坐标.【详解】解:(1)联立4y x y x⎧=⎪⎨⎪=⎩,解得22x y =⎧⎨=⎩或22x y =-⎧⎨=-⎩即:函数4y x=上的雁点坐标为(2,2)和(2,2)--.(2)①联立25y x y ax x c=⎧⎨=++⎩得240ax x c ++=∵这样的雁点E 只有一个,即该一元二次方程有两个相等的实根,∴2440ac ∆=-=∵4c a=∵1a >∴04c <<②将4c a =代入,得2440E E ax x a++=解得2k x a =-,∴22,E a a ⎛⎫-- ⎪⎝⎭对于245y x x a α=++,令0y =有2450ax x a++=解得41,N M x x a a=-=-∴4,0M a ⎛⎫- ⎪⎝⎭过E 点向x 轴作垂线,垂足为H 点,EH=2a ,MH=242()a a a---=∴2EH MH a ==∴EMH 为等腰直角三角形,45EMN ∠=︒(3)存在,理由如下:如图所示:过P 作直线l 垂直于x 轴于点k ,过C 作CH ⊥PK 于点H设C (m ,m ),P (x ,y )∵△CPB 为等腰三角形,∴PC=PB ,∠CPB=90°,∴∠KPB+∠HPC=90°,∵∠HPC+∠HCP=90°,∴∠KPB=∠HCP ,∵∠H=∠PKB=90°,∴△CHP ≌△PKB ,∴CH=PK ,HP=KB ,即3m x y m y x-=⎧⎨-=-⎩∴3232x y m ⎧=⎪⎪⎨⎪=-⎪⎩当32x =时,23315()23224y =-+⨯+=∴315()24P ,如图2所示,同理可得:△KCP ≌△JPB∴KP=JB ,KC=JP设P (x ,y ),C (m ,m )∴KP=x-m ,KC=y-m ,JB=y ,JP=3-x ,即3x m y y m x-=⎧⎨-=-⎩解得3232x m y ⎧=+⎪⎪⎨⎪=⎪⎩令23-232x x ++=解得122+1021022x x -==,∴2103(,)22P +或2103(,)22P -如图3所示,∵△RCP ≌△TPB∴RC=TP ,RP=TB设P (x ,y ),C (m ,m )即3y m x x m y-=-⎧⎨-=⎩解得3232x m y ⎧=+⎪⎪⎨⎪=⎪⎩令23-232x x ++=解得122102-10,=22x x +=∴此时P 与第②种情况重合综上所述,符合题意P 的坐标为315()24,或2+103()22,或2103()22-,【点睛】本题考查了利用待定系数法求函数解析式,图形与坐标,等腰三角形的判定与性质,二次函数的综合运用,理解题意和正确作图逐步求解是解题的关键.13.(2021·湖南中考真题)如图所示,抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且2OA =,4OB =,8OC =,抛物线的对称轴与直线BC 交于点M ,与x 轴交于点N .(1)求抛物线的解析式;(2)若点P 是对称轴上的一个动点,是否存在以P 、C 、M 为顶点的三角形与MNB 相似?若存在,求出点P 的坐标,若不存在,请说明理由.(3)D 为CO 的中点,一个动点G 从D 点出发,先到达x 轴上的点E ,再走到抛物线对称轴上的点F ,最后返回到点C .要使动点G 走过的路程最短,请找出点E 、F 的位置,写出坐标,并求出最短路程.(4)点Q 是抛物线上位于x 轴上方的一点,点R 在x 轴上,是否存在以点Q 为直角顶点的等腰Rt CQR △?若存在,求出点Q 的坐标,若不存在,请说明理由.【答案】(1)228y x x =-++;(2)存在,()1,2P 或171,2P ⎛⎫ ⎪⎝⎭;(3)点()2,0,1,23E F ⎛⎫ ⎪⎝⎭,最短路程为,理由见详解;(4)存在,当以点Q 为直角顶点的等腰Rt CQR △时,点Q ⎝⎭或3322Q ⎛⎫ ⎪ ⎪⎝⎭,理由见详解.【分析】(1)由题意易得()()()2,0,4,0,0,8A B C -,然后设二次函数的解析式为()()24y a x x =+-,进而代入求解即可;(2)由题意易得BMN CMP ∠=∠,要使以点P 、C 、M 为顶点的三角形与△MNB 相似,则可分①当90CPM MNB ∠=∠=︒时,②当90PCM MNB ∠=∠=︒时,进而分类求解即可;(3)由题意可得作点D 关于x 轴的对称点H ,作点C 关于抛物线的对称轴的对称点I ,然后连接HI ,分别与x 轴、抛物线的对称轴交于点E 、F ,此时的点E 、F 即为所求,HI 即为动点G 所走过的最短路程,最后求解即可;(4)由题意可分①当点Q 在第二象限时,存在等腰Rt CQR △,②当点Q 在第一象限时,存在等腰Rt CQR △,然后利用“k 型”进行求解即可.【详解】解:(1)∵2OA =,4OB =,8OC =,∴()()()2,0,4,0,0,8A B C -,设二次函数的解析式为()()24y a x x =+-,代入点C 的坐标可得:88a -=,解得:1a =-,∴二次函数的解析式为()()24y x x =-+-,即为228y x x =-++;(2)存在以点P 、C 、M 为顶点的三角形与△MNB 相似,理由如下:由(1)可得抛物线的解析式为228y x x =-++,则有对称轴为直线1x =,设直线BC 的解析式为y kx b =+,代入点B 、C 坐标可得:408k b b +=⎧⎨=⎩,解得:28a b =-⎧⎨=⎩,∴直线BC 的解析式为28y x =-+,∴点()1,6M ,()1,0N ,∴由两点距离公式可得3,6,BN MN BM CM ====若使以点P 、C 、M 为顶点的三角形与△MNB 相似,则有BMN CMP ∠=∠,①当90CPM MNB ∠=∠=︒时,则有//CP x 轴,如图所示:∴点()1,8P ,②当90PCM MNB ∠=∠=︒时,如图所示:∴35562PM BM CM MN =∴52PM =,∴点171,2P ⎛⎫ ⎪⎝⎭;(3)由题意得:动点G 从点D 出发,先到达x 轴上的点E ,再走到抛物线对称轴上的点F ,最后返回到点C .根据轴对称的性质及两点之间线段最短可知要使点G 走过的路程最短则有作点D 关于x 轴的对称点H ,作点C 关于抛物线的对称轴的对称点I ,然后连接HI ,分别与x 轴、抛物线的对称轴交于点E 、F ,此时的点E 、F 即为所求,HI 即为动点G 所走过的最短路程,如图所示:∵OC=8,点D 为CO 的中点,∴OD=4,∴()0,4D ,∵抛物线的对称轴为直线1x =,∴()()2,8,0,4I H -,设直线HI 的解析式为y kx b =+,则把点H 、I 坐标代入得:284k b b +=⎧⎨=-⎩,解得:64k b =⎧⎨=-⎩,∴直线HI 的解析式为64y x =-,当y=0时,则有064x =-,解得:23x =,当x=1时,则有6142y =⨯-=,。
2024年中考数学复习重难点题型训练—一次函数与几何图形综合题二(含答案解析)类型一与三角形有关1.(2022·天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x 轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)【答案】D【分析】利用HL证明△ACO≌△BCO,利用勾股定理得到OC=4,即可求解.【详解】解:∵AB⊥x轴,∴∠ACO=∠BCO=90°,∵OA=OB,OC=OC,∴△ACO≌△BCO(HL),∴AC=BC=12AB=3,∵OA=5,∴=4,∴点A的坐标是(4,3),故选:D.【点睛】本题考查了坐标与图形,全等三角形的判定和性质,勾股定理,解题的关键是灵活运用所学知识解决问题.2.(2020·宁夏中考真题)如图,直线542y x =+与x 轴、y 轴分别交于A 、B 两点,把AOB 绕点B 逆时针旋转90°后得到11AO B ,则点1A的坐标是_____.【答案】(4,125)【解析】【分析】首先根据直线AB 来求出点A 和点B 的坐标,A 1的横坐标等于OB ,而纵坐标等于OB-OA ,即可得出答案.【详解】解:在542y x =+中,令x=0得,y=4,令y=0,得5042x =+,解得x=8-5,∴A (8-5,0),B (0,4),由旋转可得△AOB ≌△A 1O 1B ,∠ABA 1=90°,∴∠ABO=∠A 1BO 1,∠BO 1A 1=∠AOB=90°,OA=O 1A 1=85,OB=O 1B=4,∴∠OBO 1=90°,∴O 1B ∥x 轴,∴点A 1的纵坐标为OB-OA 的长,即为48-5=125;横坐标为O 1B=OB=4,故点A 1的坐标是(4,125),故答案为:(4,125).【点睛】本题主要考查了旋转的性质以及一次函数与坐标轴的交点问题,利用基本性质结合图形进行推理是解题的关键.3.(2021·广西贺州市·中考真题)如图,一次函数4y x =+与坐标轴分别交于A ,B 两点,点P ,C 分别是线段AB ,OB 上的点,且45OPC ∠=︒,PC PO =,则点P 的标为________.【答案】(--【分析】过P 作PD ⊥OC 于D ,先求出A ,B 的坐标,得∠ABO=∠OAB=45°,再证明△PCB ≌△OPA ,从而求出BD =,OD =,进而即可求解.【详解】如图所示,过P 作PD ⊥OC 于D ,∵一次函数4y x =+与坐标轴分别交于A ,B 两点,∴A(-4,0),B(0,4),即:OA=OB ,∴∠ABO=∠OAB=45°,∴△BDP 是等腰直角三角形,∵∠PBC=∠CPO=∠OAP=45°,∴∠PCB+∠BPC=135°=∠OPA+∠BPC,∴∠PCB=∠OPA,又∵PC=OP,∴△PCB≌△OPA(AAS),∴AO=BP=4,∴Rt△BDP中,BD=PD=2=2,∴OD=OB−BD=2,∴P(2,2).故答案是:P(2,2).【点睛】本题主要考查了一次函数图象上点的坐标特征以及等腰三角形的性质,结合等腰三角形的性质,判定全等三角形是解决问题的关键.4.(2022·湖北黄冈)如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C 匀速运动至点C停止.若点P的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时,t的值为________.【答案】252+##2+25【分析】根据函数图像可得AB=4=BC ,作∠BAC 的平分线AD ,∠B =36°可得∠B =∠DAC =36°,进而得到ADC BAC △△,由相似求出BD 的长即可.【详解】根据函数图像可得AB=4,AB+BC=8,∴BC=AB=4,∵∠B =36°,∴72BCA BAC ∠∠︒==,作∠BAC 的平分线AD ,∴∠BAD =∠DAC =36°=∠B ,∴AD=BD ,72BCA DAC ∠∠︒==,∴AD=BD=CD ,设AD BD CD x ===,∵∠DAC =∠B =36°,∴ADC BAC △△,∴AC DC BC AC =,∴x 4x 4x-=,解得:1225x =-+,225x =--,∴252AD BD CD ===,此时521AB BD t +==(s),故答案为:52.【点睛】此题考查了图形与函数图象间关系、相似三角形的判定与性质、解一元二次方程,关键是证明ADC BAC △△.5.(2020·四川内江?中考真题)如图,在平面直角坐标系中,点A (-2,0),直线33:33l y x =+与x 轴交于点B ,以AB 为边作等边1ABA ∆,过点1A 作11//A B x 轴,交直线l 于点1B ,以11A B 为边作等边112A B A ∆,过点2A 作22//A B x 轴,交直线l 于点2B ,以22A B 为边作等边223A B A ∆,以此类推……,则点2020A 的纵坐标是______________【答案】20203(21)2-【解析】【分析】如图,过A 1作A 1C ⊥AB 与C ,过A 2作A 2C 1⊥A 1B 1于C 1,过A 3作A 3C 2⊥A 2B 2于C 2,先根据直线方程与x 轴交于点B (-1,0),且与x 轴夹角为30º,则有AB=1,然后根据平行线的性质、等边三角形的性质、含30º的直角三角形的性质,分别求的A 1、A 2、A 3、的纵坐标,进而得到A n 的纵坐标,据此可得A 2020的纵坐标,即可解答.【详解】如图,过A 1作A 1C ⊥AB 与C ,过A 2作A 2C 1⊥A 1B 1于C 1,过A 3作A 3C 2⊥A 2B 2于C 2,先根据直线方程与x 轴交于点B (-1,0),与y 轴交于点D (0,33),∴OB=1,OD=33,∴∠DBO=30º由题意可得:∠A 1B 1B=∠A 2B 2B 1=30º,∠B 1A 1B=∠B 2A 2B 1=60º∴∠A 1BB 1=∠A 2B 1B 2=90º,∴AB=1,A 1B 1=2A 1B=21,A 2B 2=2A 2B 1=22,A 3B 3=2A 3B 2=23,…A n B n =2n∴A 1C=2AB=2×1,A 1纵坐标为32×1=13(21)2-;A 2C 1=32A 1B 1=1322⨯,A2的纵坐标为32×1+1322⨯=013(22)2+=332⨯=23(21)2-;A 3C 2=32A 2B 2=2322⨯,A 3的纵坐标为32×1+1322⨯+2322⨯=0123(222)2++=372⨯=33(21)2-;…由此规律可得:A n C n-1=1322n -⨯,A n 的纵坐标为01213(2222)2n -++++ =3(21)2n -,∴A 2020=20203(21)2-,故答案为:20203(21)2-【点睛】本题是一道点的坐标变化规律探究,涉及一次函数的图象、等边三角形的性质、含30º角的直角三角形的性质,数字型规律等知识,解答的关键是认真审题,观察图象,结合基本图形的有关性质,找到坐标变化规律.6.(2022·陕西)如图,ABC 的顶点坐标分别为(23)(30)(11)A B C ----,,,,,.将ABC 平移后得到A B C '''V ,且点A 的对应点是(23)A ',,点B 、C 的对应点分别是B C '',.(1)点A 、A '之间的距离是__________;(2)请在图中画出A B C '''V .【答案】(1)4(2)见解析【分析】(1)由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4;(2)根据题意找出平移规律,求出103-1B C ''(,),(,),进而画图即可.(1)解:由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4.故答案为:4.(2)解:由题意,得103-1B C ''(,),(,),如图,A B C '''V 即为所求.【点睛】本题考查了坐标系中两点之间的距离求解以及平移求点坐标画图,题目相对较简单,掌握平移规律是解决问题的关键.7.(2021·贵州毕节市·中考真题)如图,在平面直角坐标系中,点()11,1N 在直线:l y x =上,过点1N 作11N M l ⊥,交x 轴于点1M ;过点1M 作12M N x ⊥轴,交直线l 于点2N ;过点2N 作22N M l ⊥,交x 轴于点2M ;过点2M 作23M N x ⊥轴,交直线l 于点3N ;…;按此作法进行下去,则点2021M 的坐标为_____________.【答案】(20212,0).【分析】根据题目所给的解析式,求出对应的1M 坐标,然后根据规律求出n M 的坐标,最后根据题目要求求出最后答案即可.【详解】解:如图,过点N 作NM ⊥x 轴于M将1x =代入直线解析式y x =中得1y =∴1OM MN ==,MON ∠=45°∵1ONM =∠90°∴1ON NM =∵1ON NM ⊥∴11OM MM ==∴1M 的坐标为(2,0)同理可以求出2M 的坐标为(4,0)同理可以求出3M 的坐标为(8,0)同理可以求出n M 的坐标为(2n ,0)∴2021M 的坐标为(20212,0)故答案为:(20212,0).【点睛】本题主要考查了直线与坐标轴之间的关系,解题的关键在于能够发现规律.8.(2020·湖南湘西?中考真题)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在,,OA AB OB 上,2OD =.将矩形CODE 沿x 轴向右平移,当矩形CODE 与ABO 重叠部分的面积为时,则矩形CODE 向右平移的距离为___________.【答案】2【解析】【分析】先求出点B 的坐标(0,3),得到直线AB 的解析式为:33y =+,根据点D 的坐标求出OC 的长度,利用矩形CODE 与ABO 重叠部分的面积为63列出关系式求出3D G '=,再利用一次函数关系式求出OD '=4,即可得到平移的距离.【详解】∵(6,0)A ,∴OA=6,在Rt △AOB 中,30ABO ∠=︒,∴63tan 30OA OB ==∴B (0,63),∴直线AB 的解析式为:33y =+,当x=2时,y=43∴E (2,3,即DE=3∵四边形CODE 是矩形,∴OC=DE=43设矩形CODE 沿x 轴向右平移后得到矩形C O D E '''',D E ''交AB 于点G ,∴D E ''∥OB ,∴△AD G '∽△AOB ,∴∠AGD '=∠AOB=30°,∴∠EGE '=∠AGD '=30°,∴GE ''=,∵平移后的矩形CODE 与ABO 重叠部分的面积为,∴五边形C O D GE '''的面积为∴12O D O C EE GE ''''''⋅-⋅=,∴122EE ''⨯-⨯=,∴2EE '=,∴矩形CODE 向右平移的距离DD '=2EE '=,故答案为:2.【点睛】此题考查了锐角三角函数,求一次函数的解析式,矩形的性质,图形平移的性质,是一道综合多个知识点的综合题型,且较为基础的题型.9.(2021·浙江金华市·中考真题)在平面直角坐标系中,点A 的坐标为(,点B 在直线8:3l y x =上,过点B 作AB 的垂线,过原点O 作直线l 的垂线,两垂线相交于点C .(1)如图,点B ,C 分别在第三、二象限内,BC 与AO 相交于点D .①若BA BO =,求证:CD CO =.②若45CBO ∠=︒,求四边形ABOC 的面积.(2)是否存在点B ,使得以,,A B C 为顶点的三角形与BCO 相似?若存在,求OB 的长;若不存在,请说明理由.【答案】(1)①见解析;②552;(2)存在,44+-4,9,1【分析】(1)①等腰三角形等角对等边,则BAD AOB ∠=∠,根据等角的余角相等和对顶角相等,得到CDO COD ∠=∠,根据等角对等边,即可证明CD CO =;②添加辅助线,过点A 作AH OB ⊥于点H ,根据直线l 的解析式和角的关系,分别求出线段AB 、BC 、OB 、OC 的长,则11+22ABC CBO ABOC S S S AB BC OB OC =+=⨯⨯ 四边形;(2)分多钟情况进行讨论:①当点C 在第二象限内,ACB CBO ∠=∠时;②当点C 在第二象限内,ACB BCO ∠=∠时;③当点C 在第四象限内,ACB CBO ∠=∠时.【详解】解:(1)①证明:如图1,∵BA BO =,∴12∠=∠.∴BA BC ⊥,∴2590∠+∠=︒.而45∠=∠,∴2490∠+∠=︒.∵OB OC ⊥,∴1390∠+∠=︒.∴34∠=∠,∴CD CO =.②如图1,过点A 作AH OB ⊥于点H .由题意可知3tan 18∠=,在Rt AHO 中,3tan 18AH OH ∠==.设3m AH =,8m OH =.∵222AH OH OA +=,∴()()22238m m +=,解得1m =.∴38AH OH ==,.∵4590CBO ABC ∠=︒∠=︒,,∴45ABH ∠=︒,∴3,tan 45sin 45AH AH BH AB ====︒︒∴5OB OH BH =-=.∵45OB OC CBO ⊥∠=︒,,∴tan 455,cos 45OB OC OB BC =⨯︒===︒,∴111522ABC S AB BC =⨯=⨯= ,112555222CBO S OB OC =⨯=⨯⨯= :∴552ABC CBO ABOC S S S =+= 四边形.(2)过点A 作AH OB ⊥于点H ,则有38AH OH ==,.①如图2,当点C 在第二象限内,ACB CBO ∠=∠时,设OB t=∵ACB CBO ∠=∠,∴//AC OB .又∵AH OB OC OB ⊥⊥,,∴3AH OC ==.∵AH OB AB BC ⊥⊥,,∴12902390∠+∠=︒∠+∠=︒,,∴13∠=∠,∴AHB BOC ∽,∴AH HB BO OC=,∴383t t -=,整理得2890t t -+=,解得4t =±∴4OB =±②如图3,当点C 在第二象限内,ACB BCO ∠=∠时,延长AB CO ,交于点G ,则ACB GCB ≌,∴AB GB =.又∵AH OB OC OB ⊥⊥,,∴90AHB GOB ∠=∠=︒,而ABH GBO ∠=∠,∴ABH GBO ≌,∴142OB HB OH ===③当点C 在第四象限内,ACB CBO ∠=∠时,AC 与OB 相交于点E ,则有BE CE =.(a)如图4,点B 在第三象限内.在Rt ABC 中,1290,90ACB CAB ∠+∠=︒∠+∠=︒,∴2CAB∠=∠∴AE BE CE ==,又∵,AH OB OC OB ⊥⊥,∴90AHE COE ∠=∠=︒,而AEH CEO∠=∠∴AHE COE ≌,∴142HE OE OH ===∴225AE AH HE =+=,∴5BE =,∴9OB BE OE =+=(b)如图5,点B 在第一象限内.在Rt ABC 中90,90ACB CAB CBO ABE ∠+∠=︒∠+∠=︒∴CAB ABE ∠=∠,∴AE BE CE ==.又∵,AH OB OC OB ⊥⊥,∴90AHE COE ∠=∠=︒而AEH CEO ∠=∠,∴AHE COE≌∴142HE OE OH ===∴5AE ==,∴5BE =,∴1OB BE OE =-=综上所述,OB 的长为44+4,9,1.【点睛】本题涉及到等腰三角形、等角的余角相等、利用切割法求四边形的面积和相似三角形等知识,综合性较强.在题中已知两个三角形相似时,要分情况考虑.10.(2020·河南中考真题)小亮在学习中遇到这样一个问题:如图,点D 是弧BC 上一动点,线段8,BC cm =点A 是线段BC 的中点,过点C 作//CF BD ,交DA 的延长线于点F .当DCF ∆为等腰三角形时,求线段BD 的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题,请将下面的探究过程补充完整:()1根据点D 在弧BC 上的不同位置,画出相应的图形,测量线段,,BD CD FD 的长度,得到下表的几组对应值.操作中发现:①"当点D 为弧BC 的中点时, 5.0BD cm =".则上中a 的值是②"线段CF 的长度无需测量即可得到".请简要说明理由;()2将线段BD 的长度作为自变量x CD ,和FD 的长度都是x 的函数,分别记为CD y 和FD y ,并在平面直角坐标系xOy 中画出了函数FD y 的图象,如图所示.请在同一坐标系中画出函数CD y 的图象;()3继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当DCF ∆为等腰三角形时,线段BD 长度的近似值.(结果保留一位小数).【答案】(1)①5.0;②见解析;(2)图象见解析;(3)图象见解析;3.5cm 或5.0cm 或6.3cm ;【解析】【分析】(1)①点D 为弧BC 的中点时,△ABD ≌△ACD ,即可得到CD=BD ;②由题意得△ACF ≌△ABD ,即可得到CF=BD ;(2)根据表格数据运用描点法即可画出函数图象;(3)画出CF y 的图象,当DCF ∆为等腰三角形时,分情况讨论,任意两边分别相等时,即任意两个函数图象相交时的交点横坐标即为BD 的近似值.【详解】解:(1)①点D 为弧BC 的中点时,由圆的性质可得:AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACD ,∴CD=BD=5.0,∴ 5.0a =;②∵//CF BD ,∴BDA CFA ∠=∠,∵BDA CFA BAD CAF AD AF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△ABD ,∴CF=BD ,∴线段CF 的长度无需测量即可得到;(2)函数CD y的图象如图所示:(3)由(1)知=CF BD x =,画出CF y 的图象,如上图所示,当DCF ∆为等腰三角形时,①CF CD =,BD 为CF y 与CD y 函数图象的交点横坐标,即BD=5.0cm ;②CF DF =,BD 为CF y 与DF y 函数图象的交点横坐标,即BD=6.3cm ;③CD DF =,BD 为CD y 与DF y 函数图象的交点横坐标,即BD=3.5cm ;综上:当DCF ∆为等腰三角形时,线段BD 长度的近似值为3.5cm 或5.0cm 或6.3cm .【点睛】本题考查一次函数结合几何的应用,学会用描点法画出函数图象,熟练掌握一次函数的性质以及三角形全等的判定及性质是解题的关键.11.(2020·河北中考真题)如图1和图2,在ABC ∆中,AB AC =,8BC =,3tan 4C =.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且2AM CN ==.点P 从点M 出发沿折线MB BN-匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持APQ B∠=∠.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将ABC∆的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当03x≤≤及39x≤≤时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角APQ∠扫描APQ∆区域(含边界),扫描器随点P从M到B再到N共用时36秒.若94AK=,请直接..写出点K被扫描到的总时长.【答案】(1)3;(2)43MP=;(3)当03x≤≤时,24482525d x=+;当39x≤≤时,33355d x=-+;(4)23t s=【解析】【分析】(1)根据当点P在BC上时,PA⊥BC时PA最小,即可求出答案;(2)过A点向BC边作垂线,交BC于点E,证明△APQ∽△ABC,可得2APQABCS APS AB∆∆⎛⎫= ⎪⎝⎭,根据SS上下=45可得24=9APQABCS APS AB∆∆⎛⎫= ⎪⎝⎭,可得23APAB=,求出AB=5,即可解出MP;(3)先讨论当0≤x≤3时,P在BM上运动,P到AC的距离:d=PQ·sinC,求解即可,再讨论当3≤x≤9时,P在BN上运动,BP=x-3,CP=8-(x-3)=11-x,根据d=CP·sinC即可得出答案;(4)先求出移动的速度=936=14,然后先求出从Q 平移到K 耗时,再求出不能被扫描的时间段即可求出时间.【详解】(1)当点P 在BC 上时,PA ⊥BC 时PA 最小,∵AB=AC ,△ABC 为等腰三角形,∴PA min =tanC·2BC =34×4=3;(2)过A 点向BC 边作垂线,交BC 于点E,S 上=S △APQ ,S 下=S 四边形BPQC ,∵APQ B ∠=∠,∴PQ ∥BC ,∴△APQ ∽△ABC ,∴AP AD PQ AB AC BC==,∴2APQABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,当S S 上下=45时,24=9APQ ABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,∴23AP AB =,AE=2BC ·tan 3C =,根据勾股定理可得AB=5,∴2253AP MP AB +==,解得MP=43;(3)当0≤x≤3时,P 在BM 上运动,P 到AC 的距离:d=PQ·sinC ,由(2)可知sinC=35,∴d=35PQ ,∵AP=x+2,∴25AP x PQ AB BC+==,∴PQ=285x +⨯,∴d=23855x +⨯⨯=24482525x +,当3≤x≤9时,P 在BN 上运动,BP=x-3,CP=8-(x-3)=11-x ,d=CP·sinC=35(11-x )=-35x+335,综上()()24480325253333955x x d x x ⎧+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩;(4)AM=2<AQ=94,移动的速度=936=14,①从Q 平移到K ,耗时:92414-=1秒,②P 在BC 上时,K 与Q 重合时CQ=CK=5-94=114,∵∠APQ+∠QPC=∠B+∠BAP ,APQ B∠=∠∴∠QPC=∠BAP ,又∵∠B=∠C ,∴△ABP ∽△PCQ ,设BP=y ,CP=8-y ,AB BP PC CQ =,即51184y y =-,整理得y 2-8y=554-,(y-4)2=94,解得y 1=52,y 2=112,52÷14=10秒,112÷14=22秒,∴点K 被扫描到的总时长36-(22-10)-1=23秒.【点睛】本题考查了相似三角形的判定和性质,锐角三角函数,一次函数的应用,结合知识点灵活运用是解题关键.12.(2020·湖南衡阳?中考真题)如图1,平面直角坐标系xOy 中,等腰ABC ∆的底边BC 在x 轴上,8BC =,顶点A 在y 的正半轴上,2OA =,一动点E 从(3,0)出发,以每秒1个单位的速度沿CB 向左运动,到达OB 的中点停止.另一动点F 从点C 出发,以相同的速度沿CB 向左运动,到达点O 停止.已知点E 、F 同时出发,以EF 为边作正方形EFGH ,使正方形EFGH 和ABC ∆在BC 的同侧.设运动的时间为t 秒(0t ≥).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH 与ABC ∆重叠面积为S ,请问是存在t 值,使得9136S =若存在,求出t 值;若不存在,请说明理由;(3)如图2,取AC 的中点D ,连结OD ,当点E 、F 开始运动时,点M 从点O 出发,以每秒OD DC CD DO ---运动,到达点O 停止运动.请问在点E 的整个运动过程中,点M 可能在正方形EFGH 内(含边界)吗?如果可能,求出点M 在正方形EFGH 内(含边界)的时长;若不可能,请说明理由.【答案】(1)t=1;(2)存在,143t =,理由见解析;(3)可能,3455t ≤≤或4533t ≤≤或35t ≤≤理由见解析【解析】【分析】(1)用待定系数法求出直线AC 的解析式,根据题意用t 表示出点H 的坐标,代入求解即可;(2)根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,用待定系数法求出直线AB 的解析式,求出点H 落在BC 边上时的t 值,求出此时重叠面积为169﹤9136,进一步求出重叠面积关于t 的表达式,代入解t 的方程即可解得t 值;(3)由已知求得点D (2,1),AC=,结合图形分情况讨论即可得出符合条件的时长.【详解】(1)由题意,A(0,2),B(-4,0),C(4,0),设直线AC 的函数解析式为y=kx+b ,将点A 、C 坐标代入,得:402k b b +=⎧⎨=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩,∴直线AC 的函数解析式为122y x =-+,当点H 落在AC 边上时,点E(3-t ,0),点H (3-t ,1),将点H 代入122y x =-+,得:11(3)22t =--+,解得:t=1;(2)存在,143t =,使得9136S =.根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,设直线AB 的函数解析式为y=mx+n ,将点A 、B 坐标代入,得:402m n n -+=⎧⎨=⎩,解得:122m n ⎧=⎪⎨⎪=⎩,∴直线AC 的函数解析式为122y x =+,当t ﹥4时,点E (3-t ,0)点H (3-t ,t-3),G(0,t-3),当点H 落在AB 边上时,将点H 代入122y x =+,得:13(3)22t t -=-+,解得:133t =;此时重叠的面积为221316(3)(3)39t -=-=,∵169﹤9136,∴133﹤t ﹤5,如图1,设GH 交AB 于S ,EH 交AB 于T,将y=t-3代入122y x =+得:1322t x -=+,解得:x=2t-10,∴点S(2t-10,t-3),将x=3-t 代入122y x =+得:11(3)2(7)22y t t =-+=-,∴点T 1(3,(7))2t t --,∴AG=5-t ,SG=10-2t ,BE=7-t ,ET=1(7)2t -,211(7)24BET S BE ET t ∆==- ,21(5)2ASG S AG SG t ∆==- 所以重叠面积S=AOB BET ASG S S S ∆∆∆--=4-21(7)4t --2(5)t -=2527133424t t -+-,由2527133424t t -+-=9136得:1143t =,29215t =﹥5(舍去),∴143t =;(3)可能,35≤t≤1或t=4.∵点D 为AC 的中点,且OA=2,OC=4,∴点D (2,1),AC=,易知M 点在水平方向以每秒是4个单位的速度运动;当0﹤t ﹤12时,M 在线段OD 上,H 未到达D 点,所以M 与正方形不相遇;当12﹤t ﹤1时,12+12÷(1+4)=35秒,∴t =35时M 与正方形相遇,经过1÷(1+4)=15秒后,M 点不在正方行内部,则3455t ≤≤;当t=1时,由(1)知,点F 运动到原E 点处,M 点到达C 处;当1≤t≤2时,当t=1+1÷(4-1)=43秒时,点M 追上G 点,经过1÷(4-1)=13秒,点M 都在正方形EFGH 内(含边界),4533t ≤≤当t=2时,点M 运动返回到点O 处停止运动,当t=3时,点E 运动返回到点O 处,当t=4时,点F 运动返回到点O 处,当35t ≤≤时,点M 都在正方形EFGH 内(含边界),综上,当3455t ≤≤或4533t ≤≤或35t ≤≤时,点M 可能在正方形EFGH 内(含边界).【点睛】本题考查了一次函数与几何图形的综合,涉及求一次函数的解析式、正方形的性质、直角三角形的性质、不规则图形的面积、解一元二次方程等知识,解答的关键是认真审题,提取相关信息,利用待定系数法、数形结合法等解题方法确定解题思路,进而推理、探究、发现和计算.13.(2020·黑龙江哈尔滨?中考真题)已知,在平面直角坐标系中,点O 为坐标原点,直线AB 与x 轴的正半轴交于点A ,与y 轴的负半轴交于点B ,OA OB =,过点A 作x 轴的垂线与过点O 的直线相交于点C ,直线OC 的解析式为34y x =,过点C 作CM y ⊥轴,垂足为,9M OM =.(1)如图1,求直线AB 的解析式;(2)如图2,点N 在线段MC 上,连接ON ,点P 在线段ON 上,过P 点作PD x ⊥轴,垂足为D ,交OC 于点E ,若NC OM =,求PE OD的值;(3)如图3,在(2)的条件下,点F 为线段AB 上一点,连接OF ,过点F 作OF 的垂线交线段AC 于点Q ,连接BQ ,过点F 作x 轴的平行线交BQ 于点G ,连接PF 交x 轴于点H ,连接EH ,若,DHE DPH GQ FG ∠=∠-=,求点P 的坐标.【答案】(1)12y x =-;(2)94;(3)1236(,)55P .【解析】【分析】(1)根据题意求出A ,B 的坐标即可求出直线AB 的解析式;(2)求出N (3,9),以及ON 的解析式为y=3x ,设P (a ,3a ),表达出PE 及OD 即可解答;(3)如图,设直线GF 交CA 延长线于点R ,交y 轴于点S ,过点F 作FT ⊥x 轴于点T ,先证明四边形OSRA 为矩形,再通过边角关系证明△OFS ≌△FQR ,得到SF=QR ,进而证明△BSG ≌△QRG ,得到SG=RG=6,设FR=m ,根据GQ FG -=,以及在Rt △GQR 中利用勾股定理求出m 的值,得到FS=8,AR=4,证明四边形OSFT 为矩形,得到OT=FS=8,根据∠DHE=∠DPH ,利用正切函数的定义得到DE DH DH PD=,从而得到DH=32a ,根据∠PHD=∠FHT ,得到HT=2,再根据OT=OD+DH+HT ,列出关于a 的方程即可求出a 的值,从而得到点P 的坐标.【详解】解:(1)∵CM ⊥y 轴,OM=9,∴当y=9时,394x =,解得:x=12,∴C (12,9),∵CA ⊥x 轴,则A (12,0),∴OB=OA=12,则B (0,-12),设直线AB 的解析式为y=kx+b ,∴12012k b b +=⎧⎨=-⎩,解得:112k b =⎧⎨=-⎩,∴12y x =-;(2)由题意可得,∠CMO=∠OAC=∠MOA=90°,∴四边形MOAC 为矩形,∴MC=OA=12,∵NC=OM ,∴NC=9,则MN=MC-NC=3,∴N (3,9)设直线ON 的解析式为1y k x =,将N (3,9)代入得:193k =,解得:13k =,∴y=3x ,设P (a ,3a )∵PD ⊥x 轴交OC 于点E ,交x 轴于点D ,∴3(,)4E a a ,(a,0)D ,∴PE=39344a a a -=,OD=a ,∴9944a PE OD a ==;(3)如图,设直线GF 交CA 延长线于点R ,交y 轴于点S ,过点F 作FT ⊥x 轴于点T ,∵GF ∥x 轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR ,∴∠OSR=∠R=∠AOS=∠BSG=90°,则四边形OSRA为矩形,∴OS=AR,SR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°-∠AFR=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∵QF⊥OF,∴∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠SOF+∠OFS=90°,∴∠SOF=∠QFR,∴△OFS≌△FQR,∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB,∴BS=SF=QR,∵∠SGB=∠RGQ,∴△BSG≌△QRG,∴SG=RG=6,设FR=m,则AR=m,∴QR=SF=12-m,∴=,-=,∵GQ FG∴66m m +-=+,∵QG 2=GR 2+QR 2,即222(6)6(12)m m +=+-,解得:m=4,∴FS=8,AR=4,∵∠OAB=∠FAR ,FT ⊥OA ,FR ⊥AR ,∴FT=FR=AR=4,∠OTF=90°,∴四边形OSFT 为矩形,∴OT=FS=8,∵∠DHE=∠DPH ,∴tan ∠DHE=tan ∠DPH ,∴DE DH DH PD=,由(2)可知,DE=34a ,PD=3a ,∴343a DH DH a=,解得:DH=32a ,∴tan ∠PHD=3232PD a DH a ==,∵∠PHD=∠FHT ,∴tan ∠FHT=2TF HT =,∴HT=2,∵OT=OD+DH+HT ,∴3282a a ++=,∴a=125,∴1236(,)55P 【点睛】本题考查了一次函数与几何综合问题,涉及了一次函数解析式的求法,矩形的判定与性质,全等三角形的判定与性质以及锐角三角函数的定义等知识点,第(3)问难度较大,解题的关键是正确做出辅助线,熟悉几何的基本知识,综合运用全等三角形以及锐角三角函数的概念进行解答.类型二与平行四边形有关14.(2022·山东泰安)如图,四边形ABCD 为平行四边形,则点B 的坐标为________.【答案】()2,1--【分析】根据平行四边形的性质以及点的平移即可得出结论.【详解】解: 四边形ABCD 为平行四边形,∴DA CB ∥,即将D 点平移到A 的过程与将C 点平移到B 的过程保持一致,将D 点平移到A 的过程是::134x --=-(向左平移4各单位长度);:220y -=(上下无平移);∴将C 点平移到B 的过程按照上述一致过程进行得到()24,1B --,即()2,1B --,故答案为:()2,1--.【点睛】本题考查平行四边形的性质及点的平移,掌握点的平移的代数表示是解决问题的关键.15.(2022·甘肃武威)如图1,在菱形ABCD 中,60A ∠=︒,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为()AB .C .D .【答案】B【分析】根据图1和图2判定三角形ABD 为等边三角形,它的面积为【详解】解:在菱形ABCD 中,∠A=60°,∴△ABD 为等边三角形,设AB=a ,由图2可知,△ABD 的面积为∴△ABD 的面积24a ==解得:a=故选B【点睛】本题考查了动点问题的函数图象,根据菱形的性质和函数图象,能根据图形得出正确信息是解此题的关键.16.(2020·黑龙江牡丹江?中考真题)如图,已知直线AB 与x 轴交于点A ,与y 轴交于点B ,线段OA 的长是方程27180x x --=的一个根,12OB OA =.请解答下列问题:(1)求点A ,B 的坐标;(2)直线EF 交x 轴负半轴于点E ,交y 轴正半轴于点F ,交直线AB 于点C .若C 是EF 的中点,6OE =,反比例函数k y x=图象的一支经过点C ,求k 的值;(3)在(2)的条件下,过点C 作CD OE ⊥,垂足为D ,点M 在直线AB 上,点N 在直线CD 上.坐标平面内是否存在点P ,使以D ,M ,N ,P 为顶点的四边形是正方形?若存在,请写出点P 的个数,并直接写出其中两个点P 的坐标;若不存在,请说明理由.【答案】(1)A (9,0),B (0,92);(2)-18;(3)存在5个,(9,12)或(9,-12)或(1,0)或(-7,4)或(-15,0).【解析】【分析】(1)解一元二次方程,得到点A 的坐标,再根据12OB OA =可得点B 坐标;(2)利用待定系数法求出直线AB 的表达式,根据点C 是EF 的中点,得到点C 横坐标,代入可得点C 坐标,根据点C 在反比例函数图像上求出k 值;(3)画出图形,可得点P 共有5个位置,分别求解即可.【详解】解:(1)∵线段OA 的长是方程27180x x --=的一个根,解得:x=9或-2(舍),而点A 在x 轴正半轴,∴A (9,0),∵12OB OA =,∴B (0,92);(2)∵6OE =,∴E (-6,0),设直线AB 的表达式为y=kx+b ,将A 和B 代入,得:0992k b b =+⎧⎪⎨=⎪⎩,解得:1292k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴AB 的表达式为:1922y x =-+,∵点C 是EF 的中点,∴点C 的横坐标为-3,代入AB 中,y=6,则C (-3,6),∵反比例函数k y x=经过点C ,则k=-3×6=-18;(3)存在点P ,使以D ,M ,N ,P 为顶点的四边形是正方形,如图,共有5种情况,在四边形DM 1P 1N 1中,M 1和点A 重合,∴M 1(9,0),此时P 1(9,12);在四边形DP 3BN 3中,点B 和M 重合,可知M 在直线y=x+3上,联立:31922y x y x =+⎧⎪⎨=-+⎪⎩,解得:14x y =⎧⎨=⎩,∴M (1,4),∴P 3(1,0),同理可得:P 2(9,-12),P 4(-7,4),P 5(-15,0).故存在点P 使以D ,M ,N ,P 为顶点的四边形是正方形,点P 的坐标为P 1(9,12),P 2(9,-12),P 3(1,0),P 4(-7,4),P 5(-15,0).【点睛】本题考查了解一元二次方程,一次函数表达式,正方形的性质,反比例函数表达式,难度较大,解题的关键是根据图像画出符合条件的正方形.类型三最值问题17.(2020·江苏宿迁?中考真题)如图,在平面直角坐标系中,Q是直线y=﹣12x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点Q',连接OQ',则OQ'的最小值为()A.455B C.523D.655【答案】B【解析】【分析】利用等腰直角三角形构造全等三角形,求出旋转后Q′的坐标,然后根据勾股定理并利用二次函数的性质即可解决问题.【详解】解:作QM⊥x轴于点M,Q′N⊥x轴于N,设Q(m,122m-+),则PM=1m﹣,QM=122m-+,∵∠PMQ=∠PNQ′=∠QPQ′=90°,∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,∴∠QPM=∠PQ′N ,在△PQM 和△Q′PN 中,'90''PMQ PNQ QPM PQ N PQ Q P ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△PQM ≌△Q′PN(AAS),∴PN=QM=122m -+,Q′N=PM=1m ﹣,∴ON=1+PN=132m -,∴Q′(132m -,1m ﹣),∴OQ′2=(132m -)2+(1m ﹣)2=54m 2﹣5m+10=54(m ﹣2)2+5,当m=2时,OQ′2有最小值为5,∴OQ′故选:B .【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,三角形全等的判定和性质,坐标与图形的变换-旋转,二次函数的性质,勾股定理,表示出点的坐标是解题的关键18.(2020·湖南永州?中考真题)已知点()00,P x y 和直线y kx b =+,求点P 到直线y kx b =+的距离d可用公式d =C 的圆心C 的坐标为()1,1,半径为1,直线l 的表达式为26y x =-+,P 是直线l 上的动点,Q 是C 上的动点,则PQ 的最小值是()A .355B .3515-C .6515-D .2【答案】B 【解析】【分析】过点C 作直线l 的垂线,交C 于点Q ,交直线l 于点P ,此时PQ 的值最小,利用公式计算即可.【详解】过点C 作直线l 的垂线,交C 于点Q ,交直线l 于点P ,此时PQ 的值最小,如图,∵点C 到直线l 的距离()00222116355112kx y b d k -+-⨯-+==++-,C 半径为1,∴PQ 的最小值是3515-,故选:B.【点睛】此题考查公式的运用,垂线段最短的性质,正确理解公式中的各字母的含义,确定点P与点Q最小时的位置是解题的关键.A B-,在x19.(2020·辽宁鞍山?中考真题)如图,在平面直角坐标系中,已知(3,6),(2,2)CD=,线段CD在x轴上平移,当轴上取两点C,D(点C在点D左侧),且始终保持1+的值最小时,点C的坐标为________.AD BC【答案】(-1,0)【解析】【分析】作点B关于x轴的对称点B′,将B′向右平移1个单位得到B″,连接AB″,与x轴交于点D,过点B′作AB″的平行线,与x轴交于点C,得到此时AD+BC的值最小,求出直线AB″,得到点D坐标,从而可得点C坐标.【详解】解:如图,作点B关于x轴的对称点B′,将B′向右平移1个单位得到B″,连接AB″,与x轴交于点D,过点B′作AB″的平行线,与x轴交于点C,可知四边形B′B″DC为平行四边形,则B′C=B″D,由对称性质可得:BC=B′C,∴AD+BC=AD+B′C=AD+B″D=AB″,则此时AB″最小,即AD+BC最小,∵A(3,6),B(-2,2),∴B′(-2,-2),∴B″(-1,-2),设直线AB″的表达式为:y=kx+b,则632k bk b=+⎧⎨-=-+⎩,解得:2kb=⎧⎨=⎩,∴直线AB″的表达式为:y=2x,令y=0,解得:x=0,即点D坐标为(0,0),∴点C坐标为(-1,0),故答案为:(-1,0).【点睛】本题考查了轴对称的性质,最短路径问题,一次函数表达式,解题的关键是找到AD+BC最小时的情形20.(2020•连云港)如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线y=34x﹣3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为.【分析】如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.首先证明点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.求出MN,当点C与C′重合时,△C′DE的面积最小.【解析】如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x﹣3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,﹣3),∴OD =4,OE =3,∴DE =32+42=5,∵∠MDN =∠ODE ,∠MND =∠DOE ,∴△DNM ∽△DOE ,∴MN OE=DM DE,∴MN 3=35,∴MN =95,当点C 与C′重合时,△C′DE 的面积最小,最小值=12×5×(95−1)=2,故答案为2.21.(2020·江苏连云港?中考真题)如图,在平面直角坐标系xOy 中,半径为2的O 与x 轴的正半轴交于点A ,点B 是O 上一动点,点C 为弦AB 的中点,直线334y x =-与x 轴、y 轴分别交于点D 、E ,则CDE △面积的最小值为________.【答案】2【解析】【分析】如图,连接OB ,取OA 的中点M ,连接CM ,过点M 作MN ⊥DE 于N .首先证明点C 的运动轨迹是以M 为圆心,1为半径的⊙M ,设⊙M 交MN 于C′.求出MN ,当点C 与C′重合时,△C′DE的面积最小.【详解】解:如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x-3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,-3),∴OD=4,OE=3,∴5 DE===,∵∠MDN=∠ODE,∠MND=∠DOE,∴△DNM∽△DOE,∴MN DM OE DE=,∴3 35 MN=,∴95 MN=,当点C 与C′重合时,△C′DE 的面积最小,△C′DE 的面积最小值1951225⎛⎫=⨯⨯-= ⎪⎝⎭,故答案为2.【点睛】本题考查三角形的中位线定理,三角形的面积,一次函数的性质等知识,解题的关键是学会添加常用辅助线,构造三角形的中位线解决问题,属于中考常考题型.22.(2020·北京中考真题)在平面直角坐标系xOy 中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB=1.给出如下定义:平移线段AB ,得到⊙O 的弦A B ''(,A B ''分别为点A ,B 的对应点),线段AA '长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦12PP 和34P P ,则这两条弦的位置关系是;在点1234,,,P P P P 中,连接点A 与点的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线y =+上,记线段AB 到⊙O 的“平移距离”为1d ,求1d 的最小值;(3)若点A 的坐标为32,2⎛⎫ ⎪⎝⎭,记线段AB 到⊙O 的“平移距离”为2d ,直接写出2d 的取值范围.【答案】(1)平行,P 3;(2)32;(3)233922d ≤≤。
专题32函数与几何综合问题(25题)一、填空题1(2023·四川眉山·统考中考真题)如图,在平面直角坐标系xOy中,点B的坐标为-8,6,过点B分别作x轴、y轴的垂线,垂足分别为点C、点A,直线y=-2x-6与AB交于点D.与y轴交于点E.动点M在线段BC上,动点N在直线y=-2x-6上,若△AMN是以点N为直角顶点的等腰直角三角形,则点M的坐标为2(2023·四川自贡·统考中考真题)如图,直线y=-13x+2与x轴,y轴分别交于A,B两点,点D是线段AB上一动点,点H是直线y=-43x+2上的一动点,动点E m,0,F m+3,0,连接BE,DF,HD.当BE+DF取最小值时,3BH+5DH的最小值是.3(2023·江苏无锡·统考中考真题)二次函数y=a(x-1)(x-5)a>1 2的图像与x轴交于点A、B,与y轴交于点C,过点M3,1的直线将△ABC分成两部分,这两部分是三角形或梯形,且面积相等,则a 的值为.二、解答题4(2023·黑龙江牡丹江·统考中考真题)如图,在平面直角坐标系中,▱ABCD的顶点B,C在x轴上,D在y轴上,OB,OC的长是方程x2-6x+8=0的两个根(OB>OC).请解答下列问题:(1)求点B 的坐标;(2)若OD :OC =2:1,直线y =-x +b 分别交x 轴、y 轴、AD 于点E ,F ,M ,且M 是AD 的中点,直线EF 交DC 延长线于点N ,求tan ∠MND 的值;(3)在(2)的条件下,点P 在y 轴上,在直线EF 上是否存在点Q ,使△NPQ 是腰长为5的等腰三角形?若存在,请直接写出等腰三角形的个数和其中两个点Q 的坐标;若不存在,请说明理由.5(2023·湖南·统考中考真题)如图,点A ,B ,C 在⊙O 上运动,满足AB 2=BC 2+AC 2,延长AC 至点D ,使得∠DBC =∠CAB ,点E 是弦AC 上一动点(不与点A ,C 重合),过点E 作弦AB 的垂线,交AB 于点F ,交BC 的延长线于点N ,交⊙O 于点M (点M 在劣弧AC上).(1)BD 是⊙O 的切线吗?请作出你的判断并给出证明;(2)记△BDC ,△ABC ,△ADB 的面积分别为S 1,S 2,S ,若S 1⋅S =S 2 2,求tan D 2的值;(3)若⊙O 的半径为1,设FM =x ,FE ⋅FN ⋅1BC ⋅BN +1AE ⋅AC=y ,试求y 关于x 的函数解析式,并写出自变量x 的取值范围.6(2023·湖南·统考中考真题)我们约定:若关于x 的二次函数y 1=a 1x 2+b 1x +c 1与y 2=a 2x 2+b 2x +c 2同时满足a 2-c 1+(b 2+b 1)2+c 2-a 1 =0,b 1-b 22023≠0,则称函数y 1与函数y 2互为“美美与共”函数.根据该约定,解答下列问题:(1)若关于x 的二次函数y 1=2x 2+kx +3与y 2=mx 2+x +n 互为“美美与共”函数,求k ,m ,n 的值;(2)对于任意非零实数r ,s ,点P r ,t 与点Q s ,t r ≠s 始终在关于x 的函数y 1=x 2+2rx +s 的图像上运动,函数y 1与y 2互为“美美与共”函数.①求函数y 2的图像的对称轴;②函数y 2的图像是否经过某两个定点?若经过某两个定点,求出这两个定点的坐标;否则,请说明理由;(3)在同一平面直角坐标系中,若关于x 的二次函数y 1=ax 2+bx +c 与它的“美美与共”函数y 2的图像顶点分别为点A ,点B ,函数y 1的图像与x 轴交于不同两点C ,D ,函数y 2的图像与x 轴交于不同两点E ,F .当CD =EF 时,以A ,B ,C ,D 为顶点的四边形能否为正方形?若能,求出该正方形面积的取值范围;若不请说明理由.7(2023·江苏无锡·统考中考真题)如图,四边形ABCD 是边长为4的菱形,∠A =60°,点Q 为CD 的中点,P 为线段AB 上的动点,现将四边形PBCQ 沿PQ 翻折得到四边形PB C Q .(1)当∠QPB =45°时,求四边形BB C C 的面积;(2)当点P 在线段AB 上移动时,设BP =x ,四边形BB C C 的面积为S ,求S 关于x 的函数表达式.8(2023·江苏徐州·统考中考真题)如图,在平而直角坐标系中,二次函数y =-3x 2+23x 的图象与x 轴分别交于点O ,A ,顶点为B .连接OB ,AB ,将线段AB 绕点A 按顺时针方向旋转60°得到线段AC ,连接BC .点D ,E 分别在线段OB ,BC 上,连接AD ,DE ,EA ,DE 与AB 交于点F ,∠DEA =60°.(1)求点A ,B 的坐标;(2)随着点E 在线段BC 上运动.①∠EDA 的大小是否发生变化?请说明理由;②线段BF 的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由;(3)当线段DE 的中点在该二次函数的因象的对称轴上时,△BDE 的面积为.9(2023·内蒙古·统考中考真题)如图,在平面直角坐标系中,抛物线y =-x 2+3x +1交y 轴于点A ,直线y =-13x +2交抛物线于B ,C 两点(点B 在点C 的左侧),交y 轴于点D ,交x 轴于点E .(1)求点D ,E ,C 的坐标;(2)F 是线段OE 上一点OF <EF ,连接AF ,DF ,CF ,且AF 2+EF 2=21.①求证:△DFC 是直角三角形;②∠DFC 的平分线FK 交线段DC 于点K ,P 是直线BC 上方抛物线上一动点,当3tan ∠PFK =1时,求点P 的坐标.10(2023·吉林·统考中考真题)如图,在正方形ABCD 中,AB =4cm ,点O 是对角线AC 的中点,动点P ,Q 分别从点A ,B 同时出发,点P 以1cm/s 的速度沿边AB 向终点B 匀速运动,点Q 以2cm/s 的速度沿折线BC -CD 向终点D 匀速运动.连接PO 并延长交边CD 于点M ,连接QO 并延长交折线DA -AB 于点N ,连接PQ ,QM ,MN ,NP ,得到四边形PQMN .设点P 的运动时间为x (s )(0<x <4),四边形PQMN 的面积为y (cm 2)(1)BP 的长为cm ,CM 的长为cm .(用含x 的代数式表示)(2)求y 关于x 的函数解析式,并写出自变量x 的取值范围.(3)当四边形PQMN 是轴对称图形时,直接写出x 的值.11(2023·广东·统考中考真题)综合运用如图1,在平面直角坐标系中,正方形OABC 的顶点A 在x 轴的正半轴上,如图2,将正方形OABC 绕点O 逆时针旋转,旋转角为α0°<α<45° ,AB 交直线y =x 于点E ,BC 交y 轴于点F .(1)当旋转角∠COF 为多少度时,OE =OF ;(直接写出结果,不要求写解答过程)(2)若点A (4,3),求FC 的长;(3)如图3,对角线AC 交y 轴于点M ,交直线y =x 于点N ,连接FN ,将△OFN 与△OCF 的面积分别记为S 1与S 2,设S =S 1-S 2,AN =n ,求S 关于n 的函数表达式.12(2023·湖北黄冈·统考中考真题)已知抛物线y =-12x 2+bx +c 与x 轴交于A ,B (4,0)两点,与y 轴交于点C (0,2),点P 为第一象限抛物线上的点,连接CA ,CB ,PB ,PC .(1)直接写出结果;b =,c =,点A 的坐标为,tan ∠ABC =;(2)如图1,当∠PCB =2∠OCA 时,求点P 的坐标;(3)如图2,点D 在y 轴负半轴上,OD =OB ,点Q 为抛物线上一点,∠QBD =90°,点E ,F 分别为△BDQ 的边DQ ,DB 上的动点,QE =DF ,记BE +QF 的最小值为m .①求m 的值;②设△PCB 的面积为S ,若S =14m 2-k ,请直接写出k 的取值范围.13(2023·湖北宜昌·统考中考真题)如图,已知A (0,2),B (2,0).点E 位于第二象限且在直线y =-2x 上,∠EOD =90°,OD =OE ,连接AB ,DE ,AE ,DB .(1)直接判断△AOB 的形状:△AOB 是三角形;(2)求证:△AOE ≌△BOD ;(3)直线EA 交x 轴于点C (t ,0),t >2.将经过B ,C 两点的抛物线y 1=ax 2+bx -4向左平移2个单位,得到抛物线y 2.①若直线EA 与抛物线y 1有唯一交点,求t 的值;②若抛物线y 2的顶点P 在直线EA 上,求t 的值;③将抛物线y 2再向下平移,2(t -1)2个单位,得到抛物线y 3.若点D 在抛物线y 3上,求点D 的坐标.14(2023·山东滨州·统考中考真题)如图,在平面直角坐标系中,菱形OABC 的一边OC 在x 轴正半轴上,顶点A 的坐标为2,23 ,点D 是边OC 上的动点,过点D 作DE ⊥OB 交边OA 于点E ,作DF ∥OB 交边BC 于点F ,连接EF .设OD =x ,△DEF 的面积为S .(1)求S 关于x 的函数解析式;(2)当x 取何值时,S 的值最大?请求出最大值.15(2023·天津·统考中考真题)在平面直角坐标系中,O 为原点,菱形ABCD 的顶点A (3,0),B (0,1),D (23,1),矩形EFGH 的顶点E 0,12 ,F -3,12 ,H 0,32.(1)填空:如图①,点C 的坐标为,点G 的坐标为;(2)将矩形EFGH 沿水平方向向右平移,得到矩形E F G H ,点E ,F ,G ,H 的对应点分别为E ,F ,G ,H .设EE =t ,矩形E F G H 与菱形ABCD 重叠部分的面积为S .①如图②,当边E F 与AB 相交于点M 、边G H 与BC 相交于点N ,且矩形E F G H 与菱形ABCD 重叠部分为五边形时,试用含有t 的式子表示S ,并直接写出t 的取值范围:②当233≤t ≤1134时,求S 的取值范围(直接写出结果即可).16(2023·浙江温州·统考中考真题)如图1,AB 为半圆O 的直径,C 为BA 延长线上一点,CD 切半圆于点D ,BE ⊥CD ,交CD 延长线于点E ,交半圆于点F ,已知OA =32,AC =1.如图2,连接AF ,P 为线段AF 上一点,过点P 作BC 的平行线分别交CE ,BE 于点M ,N ,过点P 作PH ⊥AB 于点H .设PH =x ,MN =y .(1)求CE 的长和y 关于x 的函数表达式.(2)当PH <PN ,且长度分别等于PH ,PN ,a 的三条线段组成的三角形与△BCE 相似时,求a 的值.(3)延长PN 交半圆O 于点Q ,当NQ =154x -3时,求MN 的长.17(2023·新疆·统考中考真题)【建立模型】(1)如图1,点B 是线段CD 上的一点,AC ⊥BC ,AB ⊥BE ,ED ⊥BD ,垂足分别为C ,B ,D ,AB =BE .求证:△ACB ≌△BDE ;【类比迁移】(2)如图2,一次函数y =3x +3的图象与y 轴交于点A 、与x 轴交于点B ,将线段AB 绕点B 逆时针旋转90°得到BC 、直线AC 交x 轴于点D .①求点C 的坐标;②求直线AC 的解析式;【拓展延伸】(3)如图3,抛物线y =x 2-3x -4与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于C点,已知点Q (0,-1),连接BQ .抛物线上是否存在点M ,使得tan ∠MBQ =13,若存在,求出点M 的横坐标.18(2023·江苏连云港·统考中考真题)【问题情境 建构函数】(1)如图1,在矩形ABCD 中,AB =4,M 是CD 的中点,AE ⊥BM ,垂足为E .设BC =x ,AE =y ,试用含x 的代数式表示y .【由数想形 新知初探】(2)在上述表达式中,y 与x 成函数关系,其图像如图2所示.若x 取任意实数,此时的函数图像是否具有对称性?若有,请说明理由,并在图2上补全函数图像.【数形结合 深度探究】(3)在“x 取任意实数”的条件下,对上述函数继续探究,得出以下结论:①函数值y 随x 的增大而增大;②函数值y 的取值范围是-42<y <42;③存在一条直线与该函数图像有四个交点;④在图像上存在四点A 、B 、C 、D ,使得四边形ABCD 是平行四边形.其中正确的是.(写出所有正确结论的序号)【抽象回归 拓展总结】(4)若将(1)中的“AB=4”改成“AB=2k”,此时y关于x的函数表达式是;一般地,当k≠0,x取任意实数时,类比一次函数、反比例函数、二次函数的研究过程,探究此类函数的相关性质(直接写出3条即可).19(2023·四川凉山·统考中考真题)阅读理解题:阅读材料:如图1,四边形ABCD是矩形,△AEF是等腰直角三角形,记∠BAE为α、∠FAD为β,若tanα=1 2,则tanβ=13.证明:设BE=k,∵tanα=12,∴AB=2k,易证△AEB≌△EFC AAS∴EC=2k,CF=k,∴FD=k,AD=3k∴tanβ=DFAD =k3k=13,若α+β=45°时,当tanα=12,则tanβ=13.同理:若α+β=45°时,当tanα=13,则tanβ=12.根据上述材料,完成下列问题:如图2,直线y=3x-9与反比例函数y=mx(x>0)的图象交于点A,与x轴交于点B.将直线AB绕点A顺时针旋转45°后的直线与y轴交于点E,过点A作AM⊥x轴于点M,过点A作AN⊥y轴于点N,已知OA=5.(1)求反比例函数的解析式;(2)直接写出tan ∠BAM 、tan ∠NAE 的值;(3)求直线AE 的解析式.20(2023·山东泰安·统考中考真题)如图1,二次函数y =ax 2+bx +4的图象经过点A (-4,0),B (-1,0).(1)求二次函数的表达式;(2)若点P 在二次函数对称轴上,当△BCP 面积为5时,求P 坐标;(3)小明认为,在第三象限抛物线上有一点D ,使∠DAB +∠ACB =90°;请判断小明的说法是否正确,如果正确,请求出D 的坐标;如果不正确,请说明理由.21(2023·湖北恩施·统考中考真题)在平面直角坐标系xoy 中,O 为坐标原点,已知抛物线y =-12x 2+bx +c 与y 轴交于点A ,抛物线的对称轴与x 轴交于点B .(1)如图,若A 0,3 ,抛物线的对称轴为x =3.求抛物线的解析式,并直接写出y ≥3时x 的取值范围;(2)在(1)的条件下,若P 为y 轴上的点,C 为x 轴上方抛物线上的点,当△PBC 为等边三角形时,求点P ,C 的坐标;(3)若抛物线y =-12x 2+bx +c 经过点D m ,2 ,E n ,2 ,F 1,-1 ,且m <n ,求正整数m ,n 的值.22(2023·辽宁营口·统考中考真题)如图,抛物线y =ax 2+bx -1a ≠0 与x 轴交于点A 1,0 和点B ,与y 轴交于点C ,抛物线的对称轴交x 轴于点D 3,0 ,过点B 作直线l ⊥x 轴,过点D 作DE ⊥CD ,交直线l 于点E .(1)求抛物线的解析式;(2)如图,点P为第三象限内抛物线上的点,连接CE和BP交于点Q,当BQPQ=57时.求点P的坐标;(3)在(2)的条件下,连接AC,在直线BP上是否存在点F,使得∠DEF=∠ACD+∠BED?若存在,请直接写出点F的坐标;若不存在,请说明理由.23(2023·山东日照·统考中考真题)在平面直角坐标系xOy内,抛物线y=-ax2+5ax+2a>0交y 轴于点C,过点C作x轴的平行线交该抛物线于点D.(1)求点C,D的坐标;(2)当a=13时,如图1,该抛物线与x轴交于A,B两点(点A在点B的左侧),点P为直线AD上方抛物线上一点,将直线PD沿直线AD翻折,交x轴于点M(4,0),求点P的坐标;(3)坐标平面内有两点E1a ,a+1,F5,a+1,以线段EF为边向上作正方形EFGH.①若a=1,求正方形EFGH的边与抛物线的所有交点坐标;②当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为52时,求a的值.24(2023·江苏无锡·统考中考真题)已知二次函数y=22x2+bx+c的图像与y轴交于点A,且经过点B(4,2)和点C(-1,2).(1)请直接写出b,c的值;(2)直线BC交y轴于点D,点E是二次函数y=22x2+bx+c图像上位于直线AB下方的动点,过点E作直线AB的垂线,垂足为F.①求EF的最大值;②若△AEF中有一个内角是∠ABC的两倍,求点E的横坐标.25(2023·辽宁·统考中考真题)如图,抛物线y=-12x2+bx+c与x轴交于点A和点B4,0,与y轴交于点C0,4,点E在抛物线上.(1)求抛物线的解析式;(2)点E在第一象限内,过点E作EF∥y轴,交BC于点F,作EH∥x轴,交抛物线于点H,点H在点E的左侧,以线段EF,EH为邻边作矩形EFGH,当矩形EFGH的周长为11时,求线段EH的长;(3)点M在直线AC上,点N在平面内,当四边形OENM是正方形时,请直接写出点N的坐标.11。
二次函数与几何综合压轴题几乎所有的地方都把二次函数与几何综合压轴题作为中考压轴题。
1.(2023·青海·中考真题)如图,二次函数2y x bx c =−++的图象与x 轴相交于点A 和点()1,0C ,交y 轴于点()0,3B .(1)求此二次函数的解析式;(2)设二次函数图象的顶点为P ,对称轴与x 轴交于点Q ,求四边形AOBP 的面积(请在图1中探索); (3)二次函数图象的对称轴上是否存在点M ,使得△AMB 是以AB 为底边的等腰三角形?若存在,请求出满足条件的点M 的坐标;若不存在,请说明理由(请在图2中探索).2.(2023·内蒙古·中考真题)如图,在平面直角坐标系中,抛物线2y x bx c =−++与x 轴的交点分别为A 和()10B ,(点A 在点B 的左侧),与y 轴交于点()0,3C ,点P 是直线AC 上方抛物线上一动点.(1)求抛物线的解析式;(2)如图1,过点P 作x 轴平行线交AC 于点E ,过点P 作y 轴平行线交x 轴于点D ,求PE PD +的最大值及点P 的坐标;(3)如图2,设点M 为抛物线对称轴上一动点,当点P ,点M 运动时,在坐标轴上确定点N ,使四边形PMCN 为矩形,求出所有符合条件的点N 的坐标.3.(2023·海南·中考真题)如图1,抛物线2y x bx c =++交x 轴于A ,()3,0B 两点,交y 轴于点()0,3C −.点P 是抛物线上一动点.(1)求该抛物线的函数表达式;(2)当点P 的坐标为()1,4−时,求四边形BACP 的面积;(3)当动点P 在直线BC 上方时,在平面直角坐标系是否存在点Q ,使得以B ,C ,P ,Q 为顶点的四边形是矩形?若存在,请求出点Q 的坐标;若不存在,请说明理由;(4)如图2,点D 是抛物线的顶点,过点D 作直线DH y ∥轴,交x 轴于点H ,当点P 在第二象限时,作直线PA ,PB 分别与直线DH 交于点G 和点I ,求证:点D 是线段IG 的中点.4.(2023·西藏·中考真题)在平面直角坐标系中,抛物线2y x bx c =−++与x 轴交于()30A −,,()10B ,两点,与y 轴交于点C .(1)求抛物线的解析式;(2)如图甲,在y 轴上找一点D ,使ACD 为等腰三角形,请直接写出点D 的坐标;(3)如图乙,点P 为抛物线对称轴上一点,是否存在P 、Q 两点使以点A ,C ,P ,Q 为顶点的四边形是菱形?若存在,求出P 、Q 两点的坐标,若不存在,请说明理由.5.(2023·四川甘孜·中考真题)已知抛物线2y x bx c =++与x 轴相交于()10A −,,B 两点,与y 轴相交于点()03C −,.(1)求b ,c 的值;(2)P 为第一象限抛物线上一点,PBC 的面积与ABC 的面积相等,求直线AP 的解析式;(3)在(2)的条件下,设E 是直线BC 上一点,点P 关于AE 的对称点为点P ′,试探究,是否存在满足条件的点E ,使得点P ′恰好落在直线BC 上,如果存在,求出点P ′的坐标;如果不存在,请说明理由.6.(2023·四川达州·中考真题)如图,抛物线2y ax bx c ++过点()()()1,0,3,,00,3A B C −.(1)求抛物线的解析式;(2)设点P 是直线BC 上方抛物线上一点,求出PBC 的最大面积及此时点P 的坐标;(3)若点M 是抛物线对称轴上一动点,点N 为坐标平面内一点,是否存在以BC 为边,点B C M N 、、、为顶点的四边形是菱形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.7.(2023·四川巴中·中考真题)在平面直角坐标系中,抛物线2(0)y ax bx c a ++≠经过点(1,0)A −和(0,3)B ,其顶点的横坐标为1.(1)求抛物线的表达式.(2)若直线x m =与x 轴交于点N ,在第一象限内与抛物线交于点M ,当m 取何值时,使得AN MN +有最大值,并求出最大值.(3)若点P 为抛物线2(0)y ax bx c a ++≠的对称轴上一动点,将抛物线向左平移1个单位长度后,Q 为平移后抛物线上一动点.在(2)的条件下求得的点M ,是否能与A 、P 、Q 构成平行四边形?若能构成,求出Q 点坐标;若不能构成,请说明理由.8.(2023·四川眉山·中考真题)在平面直角坐标系中,已知抛物线2y ax bx c ++与x 轴交于点()()3,0,1,0A B −两点,与y 轴交于点()0,3C ,点P 是抛物线上的一个动点.(1)求抛物线的表达式;(2)当点P 在直线AC 上方的抛物线上时,连接BP 交AC 于点D .如图1.当PD DB的值最大时,求点P 的坐标及PD DB 的最大值; (3)过点P 作x 轴的垂线交直线AC 于点M ,连接PC ,将PCM △沿直线PC 翻折,当点M 的对应点'M 恰好落在y 轴上时,请直接写出此时点M 的坐标.9.(2023·四川内江·中考真题)如图,在平面直角坐标系中,抛物线2y ax bx c ++与x 轴交于()4,0B ,()2,0C −两点.与y 轴交于点()0,2A −.(1)求该抛物线的函数表达式;(2)若点P 是直线AB 下方抛物线上的一动点,过点P 作x 轴的平行线交AB 于点K ,过点P 作y 轴的平行线交x 轴于点D ,求与12PK PD +的最大值及此时点P 的坐标; (3)在抛物线的对称轴上是否存在一点M ,使得MAB △是以AB 为一条直角边的直角三角形:若存在,请求出点M 的坐标,若不存在,请说明理由.10.(2023·湖北黄冈·中考真题)已知抛物线212y x bx c =−++与x 轴交于,(4,0)A B 两点,与y 轴交于点(0,2)C ,点P 为第一象限抛物线上的点,连接,,,CA CB PB PC .(1)直接写出结果;b =_____,c =_____,点A 的坐标为_____,tan ABC ∠=______;(2)如图1,当2PCB OCA ∠=∠时,求点P 的坐标; (3)如图2,点D 在y 轴负半轴上,OD OB =,点Q 为抛物线上一点,90QBD ∠=°,点E ,F 分别为BDQ △的边,DQ DB 上的动点,QE DF =,记BE QF +的最小值为m . ①求m 的值;②设PCB 的面积为S ,若214S m k =−,请直接写出k 的取值范围.11.(2023·湖北武汉·中考真题)抛物线21:28=−−C y x x 交x 轴于,A B 两点(A 在B 的左边),交y 轴于点C .(1)直接写出,,A B C 三点的坐标;(2)如图(1),作直线()04=<<x t t ,分别交x 轴,线段BC ,抛物线1C 于,,D E F 三点,连接CF .若BDE 与CEF △相似,求t 的值;(3)如图(2),将抛物线1C 平移得到抛物线2C ,其顶点为原点.直线2y x =与抛物线2C 交于,O G 两点,过OG 的中点H 作直线MN (异于直线OG )交抛物线2C 于,M N 两点,直线MO 与直线GN 交于点P .问点P 是否在一条定直线上?若是,求该直线的解析式;若不是,请说明理由.12.(2023·湖南郴州·中考真题)已知抛物线24y ax bx ++与x 轴相交于点 1,0A ,()4,0B ,与y 轴相交于点C .(1)求抛物线的表达式;(2)如图1,点P 是抛物线的对称轴l 上的一个动点,当PAC △的周长最小时,求PAPC的值; (3)如图2,取线段OC 的中点D ,在抛物线上是否存在点Q ,使1tan 2QDB ∠=若存在,求出点Q 的坐标;若不存在,请说明理由.且与直线:1l y x =−−交于D E 、两点(点D 在点E 的右侧),点M 为直线l 上的一动点,设点M 的横坐标为t .(1)求抛物线的解析式.(2)过点M 作x 轴的垂线,与拋物线交于点N .若04t <<,求NED 面积的最大值.(3)抛物线与y 轴交于点C ,点R 为平面直角坐标系上一点,若以B C M R 、、、为顶点的四边形是菱形,请求出所有满足条件的点R 的坐标.在此抛物线上,其横坐标分别为,2(0)m m m >,连接AP ,AQ .(1)求此抛物线的解析式.(2)当点Q 与此抛物线的顶点重合时,求m 的值.(3)当PAQ ∠的边与x 轴平行时,求点P 与点Q 的纵坐标的差.(4)设此抛物线在点A 与点P 之间部分(包括点A 和点P )的最高点与最低点的纵坐标的差为1h ,在点A 与点Q 之间部分(包括点A 和点Q )的最高点与最低点的纵坐标的差为2h .当21h h m −=时,直接写出m 的值.15.(2023·青海西宁·中考真题)如图,在平面直角坐标系中,直线l 与x 轴交于点()6,0A ,与y 轴交于点()0,6B −,抛物线经过点A ,B ,且对称轴是直线1x =.(1)求直线l 的解析式; (2)求抛物线的解析式;(3)点P 是直线l 下方抛物线上的一动点,过点P 作PC x ⊥轴,垂足为C ,交直线l 于点D ,过点P 作PM l ⊥,垂足为M .求PM 的最大值及此时P 点的坐标.16.(2023·湖南·中考真题)如图,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于C 点,其中()10B ,,()0,3C .(1)求这个二次函数的表达式;(2)在二次函数图象上是否存在点P ,使得PAC ABC S S =△△?若存在,请求出P 点坐标;若不存在,请说明理由;(3)点Q 是对称轴l 上一点,且点Q 的纵坐标为a ,当QAC △是锐角三角形时,求a 的取值范围.17.(2023·辽宁营口·中考真题)如图,抛物线()210y ax bx a +−≠与x 轴交于点 1,0A 和点B ,与y 轴交于点C ,抛物线的对称轴交x 轴于点()3,0D ,过点B 作直线l x ⊥轴,过点D 作DE CD ⊥,交直线l 于点E .(1)求抛物线的解析式;(2)如图,点P 为第三象限内抛物线上的点,连接CE 和BP 交于点Q ,当57BQ PQ =时.求点P 的坐标; (3)在(2)的条件下,连接AC ,在直线BP 上是否存在点F ,使得DEF ACD BED ∠=∠+∠?若存在,请直接写出点F 的坐标;若不存在,请说明理由.18.(2023·湖南湘西·中考真题)如图(1),二次函数25y ax x c =−+的图像与x 轴交于()4,0A −,(),0B b 两点,与y 轴交于点()0,4C −.(1)求二次函数的解析式和b 的值.(2)在二次函数位于x 轴上方的图像上是否存在点M ,使13BOM ABC S S =△△?若存在,请求出点M 的坐标;若不存在,请说明理由.(3)如图(2),作点A 关于原点O 的对称点E ,连接CE ,作以CE 为直径的圆.点E ′是圆在x 轴上方圆弧上的动点(点E ′不与圆弧的端点E 重合,但与圆弧的另一个端点可以重合),平移线段AE ,使点E 移动到点E ′,线段AE 的对应线段为A E ′′,连接E C ′,A A ′,A A ′的延长线交直线E C ′于点N ,求AA CN′的值.19.(2023·辽宁盘锦·中考真题)如图,抛物线23y ax bx ++与x 轴交于点()10A −,,()30B ,,与y 轴交于点C .(1)求抛物线的解析式.(2)如图1,点Q 是x 轴上方抛物线上一点,射线QM x ⊥轴于点N ,若QM BM =,且4tan 3MBN ∠=,请直接写出点Q 的坐标.(3)如图2,点E 是第一象限内一点,连接AE 交y 轴于点D ,AE 的延长线交抛物线于点P ,点F 在线段CD 上,且CF OD =,连接FA FE BE BP ,,,,若AFE ABE S S =△△,求PAB 面积.20.(2023·重庆·中考真题)如图,在平面直角坐标系中,抛物线22y ax bx ++过点()1,3,且交x 轴于点()1,0A −,B 两点,交y 轴于点C .(1)求抛物线的表达式;(2)点P 是直线BC 上方抛物线上的一动点,过点P 作PD BC ⊥于点D ,过点P 作y 轴的平行线交直线BC 于点E ,求PDE △周长的最大值及此时点P 的坐标;(3)在(2)中PDE △周长取得最大值的条件下,将该抛物线沿射线CB M 为平移后的抛物线的对称轴上一点.在平面内确定一点N ,使得以点A ,P ,M ,N 为顶点的四边形是菱形,写出所有符合条件的点N 的坐标,并写出求解点N 的坐标的其中一种情况的过程.21.(2023·四川广安·中考真题)如图,二次函数2y x bx c =++的图象交x 轴于点A B ,,交y 轴于点C ,点B 的坐标为()1,0,对称轴是直线=1x −,点P 是x 轴上一动点,PM x ⊥轴,交直线AC 于点M ,交抛物线于点N .(1)求这个二次函数的解析式.(2)若点P 在线段AO 上运动(点P 与点A 、点O 不重合),求四边形ABCN 面积的最大值,并求出此时点P 的坐标.(3)若点P 在x 轴上运动,则在y 轴上是否存在点Q ,使以M 、N C Q 、、为顶点的四边形是菱形?若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由.22.(2023·湖北十堰·中考真题)已知抛物线28y ax bx ++过点()4,8B 和点()8,4C ,与y 轴交于点A .(1)求抛物线的解析式;(2)如图1,连接,AB BC ,点D 在线段AB 上(与点,A B 不重合),点F 是OA 的中点,连接FD ,过点D 作DE FD ⊥交BC 于点E ,连接EF ,当DEF 面积是ADF △面积的3倍时,求点D 的坐标;(3)如图2,点P 是抛物线上对称轴右侧的点,(),0H m 是x 轴正半轴上的动点,若线段OB 上存在点G (与点,O B 不重合),使得GBP HGP BOH ∠=∠=∠,求m 的取值范围.23.(2023·四川·中考真题)如图1,在平面直角坐标系中,已知二次函数24y ax bx ++的图象与x 轴交于点()2,0A −,()4,0B ,与y 轴交于点C .(1)求抛物线的解析式;(2)已知E 为抛物线上一点,F 为抛物线对称轴l 上一点,以B ,E ,F 为顶点的三角形是等腰直角三角形,且90BFE ∠=°,求出点F 的坐标; (3)如图2,P 为第一象限内抛物线上一点,连接AP 交y 轴于点M ,连接BP 并延长交y 轴于点N ,在点P 运动过程中,12OM ON +是否为定值?若是,求出这个定值;若不是,请说明理由.24.(2023·黑龙江绥化·中考真题)如图,抛物线21y ax bx c =++的图象经过(6,0)A −,(2,0)B −,(0,6)C 三点,且一次函数6y kx =+的图象经过点B .(1)求抛物线和一次函数的解析式.(2)点E ,F 为平面内两点,若以E 、F 、B 、C 为顶点的四边形是正方形,且点E 在点F 的左侧.这样的E ,F 两点是否存在?如果存在,请直接写出所有满足条件的点E 的坐标:如果不存在,请说明理由.(3)将抛物线21y ax bx c =++的图象向右平移8个单位长度得到抛物线2y ,此抛物线的图象与x 轴交于M ,N 两点(M 点在N 点左侧).点P 是抛物线2y 上的一个动点且在直线NC 下方.已知点P 的横坐标为m .过点P 作PD NC ⊥于点D .求m 为何值时,12CD PD +有最大值,最大值是多少?25.(2023·四川德阳·中考真题)已知:在平面直角坐标系中,抛物线与x 轴交于点(4,0)A −,(2,0)B ,与y 轴交于点(0,4)C −.(1)求抛物线的解析式;(2)如图1,如果把抛物线x 轴下方的部分沿x 轴翻折180°,抛物线的其余部分保持不变,得到一个新图象.当平面内的直线6y kx =+与新图象有三个公共点时,求k 的值; (3)如图2,如果把直线AB 沿y 轴向上平移至经过点D ,与抛物线的交点分别是E ,F ,直线BC 交EF 于点H ,过点F 作FG CH ⊥于点G ,若DF HG=F 的坐标.26.(2023·辽宁锦州·中考真题)如图,抛物线2y bx c ++交x 轴于点()1,0A −和B ,交y 轴于点(C ,顶点为D .(1)求抛物线的表达式;(2)若点E 在第一象限内对称右侧的抛物线上,四边形ODEB 的面积为E 的坐标;(3)在(2)的条件下,若点F 是对称轴上一点,点H 是坐标平面内一点,在对称轴右侧的抛物线上是否存在点G ,使以E ,F ,G ,H 为顶点的四边形是菱形,且60EFG ∠=°,如果存在,请直接写出点G 的坐标;如果不存在,请说明理由.27.(2023·辽宁鞍山·中考真题)如图1,抛物线253y ax x c =++经过点()3,1,与y 轴交于点()0,5B ,点E 为第一象限内抛物线上一动点.(1)求抛物线的解析式.(2)直线243y x =−与x 轴交于点A ,与y 轴交于点D ,过点E 作直线EF x ⊥轴,交AD 于点F ,连接BE .当BE DF =时,求点E 的横坐标.(3)如图2,点N 为x 轴正半轴上一点,OE 与BN 交于点M .若OE BN =,3tan 4BME ∠=,求点E 的坐标.28.(2023·辽宁丹东·中考真题)抛物线24y ax bx +−与x 轴交于点()4,0A −,()2,0B ,与y 轴交于点C .(1)求抛物线的表达式;(2)如图,点D 是抛物线上的一个动点,设点D 的横坐标是()42m m −<<,过点D 作直线DE x ⊥轴,垂足为点E ,交直线AC 于点F .当D ,E ,F 三点中一个点平分另外两点组成的线段时,求线段DF 的长;(3)若点P 是抛物线上的一个动点(点P 不与顶点重合),点M 是抛物线对称轴上的一个点,点N 在坐标平面内,当四边形CMPN 是矩形邻边之比为1:2时,请直接写出点P 的横坐标.。
中考数学专题复习:几何与函数问题专项练习附答案【知识纵横】客观世界中事物总是相互关联、相互制约的。
几何与函数问题就是从量和形的侧面去描述客观世界的运动变化、相互联系和相互制约性。
函数与几何的综合题,对考查学生的双基和探索能力有一定的代表性,通过几何图形的两个变量之间的关系建立函数关系式,进一步研究几何的性质,沟通函数与几何的有机联系,可以培养学生的数形结合的思想方法。
【典型例题】【例1】己知AB=2,AD=4f ZDAB=90\AD//BC(如图).E是射线BC上的动点(点E与点B不重合),M是线段庞的中点.(1)设BE=x,△ABM的面积为y,求y关于工的函数解析式,并写出函数的定义域;(2)如果以线段AB为直径的圆与以线段为直径的圆外切,求线段况的长;(3)联结交线段AM于点N,如果以A N,D为顶点的三角形与任;相似,【思路点拨】(1)取AB中点H,联结MH;(2)先求出DE;(3)分二种情况讨论。
【例2】(山东青岛)己知:如图(1),在RtAACB中,ZC=90S AC=4cm, BC=3cm,点F由B出发沿HA方向向点A匀速运动,速度为lcm/s;点。
由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为f(s)(0<Z<2),解答下列问题:(1)当,为何值时,PQ//BC?(2)设△AQP的面积为y(cm2),求y与,之间的函数关系式;(3)是否存在某一时刻使线段PQ恰好把Rt/\ACB的周长和面积同时平分?若存在,求出此时/的值;若不存在,说明理由;(4)如图(2),连接PC,并把△PQC沿QC翻折,得到四边形PQP'C,那么是否存在某一时刻,,使四边形PQPC为菱形?若存在,求出此时菱形的边长;若不存在,说明理由・刀图(1)图(2)P'【思路点拨】(1)设BP为t,则AQ=2t,证△4QQ s AABC;(2)过点P作PH A-AC 于H.(3)构建方程模型,求t;(4)过点P作PMA.A C于PNTBC于N,若四边形POP'C 是菱形,那么构建方程模型后,能找到对应f的值。
专题01一次函数综合题通用的解题思路:(1)一次函数与几何图形的面积问题首先要根据题意画出草图,结合图形分析其中的几何图形,再求出面积.(2)一次函数的优化问题通常一次函数的最值问题首先由不等式找到x的取值范围,进而利用一次函数的增减性在前面范围内的前提下求出最值.(3)用函数图象解决实际问题从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.1.(2024•鼓楼区一模)如图,直线6y=+与O相切,切点为P,与x轴y轴分别交于A、B两点.O 与x轴负半轴交于点C.(1)求O的半径;(2)求图中阴影部分的面积.2.(2023•宿豫区三模)如图①,在平面直角坐标系中,直线1:1l y x =+与直线2:2l x =-相交于点D ,点A 是直线2l 上的动点,过点A 作1AB l ⊥于点B ,点C 的坐标为(0,3),连接AC ,BC .设点A 的纵坐标为t ,ABC ∆的面积为s .(1)当2t =时,求点B 的坐标;(2)s 关于t 的函数解析式为()()()215154415(15)t bt t t s a t t t ⎧+-⎪=⎨⎪+--<<⎩或,其图象如图②所示,结合图①、②的信息,求出a 与b 的值;(3)在直线2l 上是否存在点A ,使得90ACB ∠=︒,若存在,请求出此时点A 的坐标;若不存在,请说明理由.3.(2023•溧阳市一模)如图1,将矩形AOBC放在平面直角坐标系中,点O是原点,点A坐标为(0,4),点∆是由AOPB坐标为(5,0),点P是x轴正半轴上的动点,连接AP,AQP∆沿AP翻折所得到的图形.(1)当点Q落在对角线OC上时,OP=;(2)当直线PQ经过点C时,求PQ所在的直线函数表达式;(3)如图2,点M是BC的中点,连接MP、MQ.①MQ的最小值为;②当PMQ∆是以PM为腰的等腰三角形时,请直接写出点P的坐标.4.(2022•启东市模拟)我们知道一次函数y mx n =+与(0)y mx n m =-+≠的图象关于y 轴对称,所以我们定义:函数y mx n =+与(0)y mx n m =-+≠互为“M ”函数.(1)请直接写出函数25y x =+的“M ”函数;(2)如果一对“M ”函数y mx n =+与(0)y mx n m =-+≠的图象交于点A ,且与x 轴交于B ,C 两点,如图所示,若90BAC ∠=︒,且ABC ∆的面积是8,求这对“M ”函数的解析式;(3)在(2)的条件下,若点D 是y 轴上的一个动点,当ABD ∆为等腰三角形时,请求出点D 的坐标.5.(2024•新北区校级模拟)如图①,动点P 从矩形ABCD 的顶点A 出发,以1v 的速度沿折线A B C --向终点C 运动;同时,一动点Q 从点D 出发,以2v 的速度沿DC 向终点C 运动,当一个点到达终点时,另一个点也停止运动.点E 为CD 的中点,连接PE ,PQ ,记EPQ ∆的面积为S ,点P 运动的时间为t ,其函数图象为折线MN NF -和曲线FG (图②),已知,4ON =,1NH =,点G 的坐标为(8,0).(1)点P 与点Q 的速度之比12v v 的值为;AB AD 的值为;(2)如果15OM =.①求线段NF 所在直线的函数表达式;②求FG 所在曲线的函数表达式;③是否存在某个时刻t ,使得154S ?若存在,求出t的取值范围:若不存在,请说明理由.6.(2024•梁溪区校级模拟)在平面直角坐标系xOy 中,二次函数234y ax ax a =-++的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴正半轴交于点C ,直线12y x =交于第一象限内的D 点,且ABC ∆的面积为10.(1)求二次函数的表达式;(2)点E 为x 轴上一点,过点E 作y 轴的平行线交线段OD 于点F ,交抛物线于点G ,当GF =时,求点G 的坐标;(3)已知点(,0)P n 是x 轴上的点,若点P 关于直线OD 的对称点Q 恰好落在二次函数的图象上,求n 的值.7.(2023•邗江区校级一模)如图1,在平面直角坐标系中,直线:3l y x =-+分别与x 轴、y 轴交于点A 点和B 点,过O 点作OD AB ⊥于D 点,以OD 为边构造等边(EDF F ∆点在x 轴的正半轴上).(1)求A 、B 点的坐标,以及OD 的长;(2)将等边EDF ∆,从图1的位置沿x 轴的正方向以每秒1个单位的长度平移,移动的时间为()t s ,同时点P 从E 出发,以每秒2个单位的速度沿着折线ED DF -运动(如图2所示),当P 点到F 点停止,DEF ∆也随之停止.①t =()s 时,直线l 恰好经过等边EDF ∆其中一条边的中点;②当点P 在线段DE 上运动,若2DM PM =,求t 的值;③当点P 在线段DF 上运动时,若PMN ∆t 的值.8.(2023•武进区校级模拟)在平面直角坐标系xOy 中,对于任意两点11(P x ,1)y 与22(P x ,2)y 的“非常距离”,给出如下定义:若1212||||x x y y -- ,则点1P 与点2P 的“非常距离”为12||x x -;若1212||||x x y y -<-,则点1P 与点2P 的“非常距离”为12||y y -.例如:点1(1,2)P ,点2(3,5)P ,因为|13||25|-<-,所以点1P 与点2P 的“非常距离”为|25|3-=,也就是图1中线段1PQ 与线段2P Q 长度的较大值(点Q 为垂直于y 轴的直线1PQ 与垂直于x 轴的直线2P Q 交点).(1)已知点1(2A -,0),B 为y 轴上的一个动点,①若点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标;②直接写出点A 与点B 的“非常距离”的最小值;(2)已知C 是直线334y x =+上的一个动点,①如图2,点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标;②如图3,E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C 与点E 的“非常距离”的最小值及相应的点E 与点C 的坐标.9.(2023•海安市一模)对于平面直角坐标系xOy中的图形W和点P,给出如下定义:F为图形W上任意一点,将P,F两点间距离的最小值记为m,最大值记为M,称M与m的差为点P到图形W的“差距离”,记作(,)B-A,(2,1)d P W,即(,)d P W M m=-,已知点(2,1)(1)求(,)d O AB;(2)点C为直线1d C AB=时,点C的横坐标是;y=-上的一个动点,当(,)1(3)点D为函数(22)d D AB 时,直接写出b的取值范围.y x b x=+- 图象上的任意一点,当(,)210.(2022•姑苏区校级模拟)平面直角坐标系xOy 中,对于任意的三个点A 、B 、C ,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的“三点矩形”.在点A ,B ,C 的所有“三点矩形”中,若存在面积最小的矩形,则称该矩形为点A ,B ,C 的“最佳三点矩形”.如图1,矩形DEFG ,矩形IJCH 都是点A ,B ,C 的“三点矩形”,矩形IJCH 是点A ,B ,C 的“最佳三点矩形”.如图2,已知(4,1)M ,(2,3)N -,点(,)P m n .(1)①若2m =,4n =,则点M ,N ,P 的“最佳三点矩形”的周长为,面积为;②若2m =,点M ,N ,P 的“最佳三点矩形”的面积为24,求n 的值;(2)若点P 在直线25y x =-+上.①求点M ,N ,P 的“最佳三点矩形”面积的最小值及此时m 的取值范围;②当点M ,N ,P 的“最佳三点矩形”为正方形时,求点P 的坐标;(3)若点(,)P m n 在抛物线2y ax bx c =++上,当且仅当点M ,N ,P 的“最佳三点矩形”面积为12时,21m -- 或13m ,直接写出抛物线的解析式.11.(2022•太仓市模拟)如图①,动点P 从矩形ABCD 的顶点A 出发,以1v 的速度沿折线A B C --向终点C 运动;同时,一动点Q 从点D 出发,以2v 的速度沿DC 向终点C 运动,当一个点到达终点时,另一个点也停止运动.点E 为CD 的中点,连接PE ,PQ ,记EPQ ∆的面积为S ,点P 运动的时间为t ,其函数图象为折线MN NF -和曲线FG (图②),已知,3ON =,1NH =,点G 的坐标为(6,0).(1)点P 与点Q 的速度之比12v v 的值为;:AB AD 的值为;(2)如果2OM =.①求线段NF 所在直线的函数表达式;②是否存在某个时刻t ,使得23S ?若存在,求出t的取值范围;若不存在,请说明理由.12.(2022•邗江区校级一模)在平面直角坐标系xOy 中,对于点P 和线段ST ,我们定义点P 关于线段ST 的线段比()()PS PS PT ST k PTPS PT ST ⎧<⎪⎪=⎨⎪⎪⎩ .(1)已知点(0,1)A ,(1,0)B .①点(2,0)Q 关于线段AB 的线段比k =;②点(0,)C c 关于线段AB的线段比k =,求c 的值.(2)已知点(,0)M m ,点(2,0)N m +,直线2y x =+与坐标轴分别交于E ,F 两点,若线段EF 上存在点使得这一点关于线段MN 的线段比14k ,直接写出m 的取值范围.13.(2022•泰州)定义:对于一次函数1y ax b =+、2y cx d =+,我们称函数()()(0)y m ax b n cx d ma nc =++++≠为函数1y 、2y 的“组合函数”.(1)若3m =,1n =,试判断函数52y x =+是否为函数11y x =+、221y x =-的“组合函数”,并说明理由;(2)设函数12y x p =--与23y x p =-+的图像相交于点P .①若1m n +>,点P 在函数1y 、2y 的“组合函数”图像的上方,求p 的取值范围;②若1p ≠,函数1y 、2y 的“组合函数”图像经过点P .是否存在大小确定的m 值,对于不等于1的任意实数p ,都有“组合函数”图像与x 轴交点Q 的位置不变?若存在,请求出m 的值及此时点Q 的坐标;若不存在,请说明理由.14.(2024•钟楼区校级模拟)在同一平面内,具有一条公共边且不完全重合的两个全等三角形,我们称这两个三角形叫做“共边全等”.(1)下列图形中两个三角形不是“共边全等”是;(2)如图1,在边长为6的等边三角形ABC中,点D在AB边上,且13AD AB=,点E、F分别在AC、BC边上,满足BDF∆和EDF∆为“共边全等”,求CF的长;(3)如图2,在平面直角坐标系中,直线312y x=-+分别与直线y x=、x轴相交于A、B两点,点C是OB 的中点,P、Q在AOB∆的边上,当以P、B、Q为顶点的三角形与PCB∆“共边全等”时,请直接写出点Q的坐标.15.(2023•新北区校级二模)如图,在平面直角坐标系xOy中,点A、点B的坐标分别为(2,0)-、(0,8).经过A、B、O三点的圆的圆心为M,过点M的直线与M的公共点是D、E,与x轴交于点F,与y轴交于点N,连接AE、OD、BD.已知45∠=︒.ODF(1)M的直径为,点M的坐标为;(2)求直线DF所对应的函数表达式;(3)若P是线段AF上的动点,PEA∠与BDO∆的一个内角相等,求OP的长度.16.(2023•梁溪区模拟)如图,以(9,0)B-为顶点作等边ABCA-、(2,0)∆,点C在第二象限.(1)求直线BC所对应的函数表达式.(2)过点(1,0)DP PQ=.D作一条直线交BC于点P,交AC于点Q,且:3:2①求点P的坐标与BPD∠的度数;②在y轴上是否存在这样的点M,使得点M到BPD∠的两边所在直线的距离相等?若存在,请直接写出所以符合条件的点M的坐标;若不存在,请说明理由.17.(2023•海州区校级二模)问题提出:(1)在学习几何时,我们可以通过构造基本图形,将几何“模型“化.例如在三角形全等与三角形的相似的学习过程中,“k ”字形是非常重要的基本图形.如图1,已知:90ADC BEC ACB ∠=∠=∠=︒,D 、C 、E 三点共线,AC BC =,由ASA 易证ADC CEB ∆≅∆;如图2,已知:90ADC BEC ACB ∠=∠=∠=︒,D 、C 、E 三点共线,若6AC =、3BC =、1BE =,则AD 的长为;问题探究:(2)①如图3,已知:90ADC BEC ACB ∠=∠=∠=︒,AC BC =,D 、C 、E 三点共线,求证:AD BE DE =+;②如图4,已知点(3,1)A -,点B 在直线24y x =-+上,若90AOB ∠=︒,则此时点B 的坐标为;问题拓展:(3)如图5,正方形ABCD 中,点G 是BC 边上一点,BF AG ⊥,DE AG ⊥,垂足分别为F 、E .若1AE =,四边形ABFD 的面积等于10,求正方形ABCD 的面积.(4)如图6,正方形ABCD 中,点E 、F 分别在AD 、AB 边上,AE BF =,连接EF 、DF ,则EF DF 的最小值是.18.(2023•金坛区一模)在平面直角坐标系xOy 中,对于点A ,记线段OA 的中点为M .若点A ,M ,P ,Q 按逆时针方向排列构成菱形AMPQ ,其中(0180)QAM αα∠=︒<<,则把菱形AMPQ 称为点A 的“α︒菱形”AMPQ ,把菱形AMPQ 边上所有点都称为点A 的“α︒菱点”.已知点(0,4)A .(1)在图1中,用直尺和圆规作出点A 的“60︒菱形”AMPQ ,并直接写出点P 的坐标(不写作法,保留作图痕迹);(2)若点(1,1)B 是点A 的“α︒菱点”,求α的值;(3)若一次函数3y x b =+的图象上存在点A 的“α︒菱点”,直接写出b 的取值范围.19.(2022•吴中区模拟)探究与应用:在学习几何时,我们可以通过分离和构造基本图形,将几何“模块”化.例如在相似三角形中,K字形是非常重要的基本图形,可以建立如下的“模块”(如图①):(1)请就图①证明上述“模块”的合理性.已知:90∽;∆∆∠=∠=∠=︒,求证:ABC DCEA D BCE(2)请直接利用上述“模块”的结论解决下面两个问题:①如图②,已知点(2,1)=-+上运动,若90A-,点B在直线23y x∠=︒,求此时点B的坐标;AOB②如图③,过点(2,1)=-+于点C、D,求点A关于直线CD的对A-作x轴与y轴的平行线,交直线23y x称点E的坐标.20.(2022•雨花台区校级模拟)阅读并解答下列问题;在学习完《中心对称图形》一章后,老师给出了以下一个思考题:如图1,在平面直角坐标系xOy 中,已知点(0,3)A ,(5,1)B ,(,0)C a ,(2,0)D a +,连接AC ,CD ,DB ,求AC CD DB ++最小值.【思考交流】小明:如图2,先将点A 向右平移2个单位长度到点1A ,作点B 关于x 轴的对称点1B ,连接11A B 交x 轴于点D ,将点D 向左平移2个单位长度得到点C ,连接AC .BD .此时AC CD DB ++的最小值等于11A B CD +.小颖:如图3,先将点A 向右平移2个单位长度到点1A ,作点1A 关于x 轴的对称点2A ,连接2A B 可以求解.小亮:对称和平移还可以有不同的组合⋯.【尝试解决】在图2中,AC CD DB ++的最小值是.【灵活应用】如图4,在平面直角坐标系xOy 中,已知点(0,3)A ,(5,1)B ,(,1)C a ,(2,0)D a +,连接AC ,CD ,DB ,则AC CD DB ++的最小值是,此时a =,并请在图5中用直尺和圆规作出AC CD DB ++最小时CD 的位置(不写作法,保留作图痕迹).【拓展提升】如图6,在平面直角坐标系xOy 中,已知点(0,3)A ,C 是一次函数y x =图象上一点,CD 与y 轴垂直且2CD =(点D 在点C 右侧),连接AC ,CD ,AD ,直接写出AC CD DA ++的最小值是,此时点C 的坐标是.21.(2022•滨海县校级三模)定义:若一个函数的图象上存在横、纵坐标之和为零的点,则称该点为这个函数图象的“好点”,例如,点(1,1)-是函数2y x =+的图象的“好点”.(1)在函数①5y x =-+,②6y x =,③221y x x =++的图象上,存在“好点”的函数是(填序号).(2)设函数4(0)y x x=<与1y kx =-的图象的“好点”分别为点A 、B ,过点A 作AC y ⊥轴,垂足为C .当ABC ∆为等腰三角形时,求k 的值;(3)若将函数224y x x =+的图象在直线y m =下方的部分沿直线y m =翻折,翻折后的部分与图象的其余部分组成了一个新的图象.当该图象上恰有3个“好点”时,求m 的值.22.(2022•宜兴市校级一模)如图(1),在平面直角坐标系中,四边形OABC 的顶点O 是坐标原点,点A 坐标(6,0),点B 在y 轴上,点C 在第二象限角平分线上,动点P 、Q 同时从点O 出发,点P 以1/cm s 的速度沿O A B →→匀速运动到终点B ;点Q 沿O C B A →→→运动到终点A ,点Q 在线段OC 、CB 、BA 上分别做匀速运动,速度分别为1/V cm s 、2/V cm s 、3/V cm s .设点P 运动的时间为()t s ,OPQ ∆的面积为2()S cm ,已知S 与t 之间的部分函数关系如图(2)中的曲线段OE 、曲线段EF 和线段FG 所示.(1)1V =,2V =;(2)求曲线段EF 的解析式;(3)补全函数图象(请标注必要的数据);(4)当点P 、Q 在运动过程中是否存在这样的t ,使得直线PQ 把四边形OABC 的面积分成11:13两部分,若存在直接写出t 的值;若不存在,请说明理由.。
(培优特训)专项19.3 一一次函数与几何综合高分必刷1.(2023春•普兰店区期中)已知△ABC中,∠C=90°,AC=3,CD=4,BD=AD.点F从点A出发,沿AC﹣CD运动,速度为1cm/s,同时点E从点B出发,沿BD﹣DA运动,运动速度为1cm/s,一个点到达终点,另一点也停止运动.(1)求BD的长;(2)设△AEF的面积为S,点P、Q运动时间为t,求S与的函数关系式,并写出的取值范围.【答案】(1)5cm;(2)S=.【解答】解:(1)在Rt△ACD中,∠C=90°,AC=3cm,CD=4cm,∴AD===5(cm),又∵BD=AD,∴BD=5cm;(2)3÷1=3(s),5÷1=5(s),(3+4)÷1=7(s),(5+5)÷1=10(s).当0≤t≤3时,如图1所示,AF=tcm,BE=tcm,∴CE=BC﹣BE=4+5﹣t=(9﹣t)cm,∴S=AF•CE=t(9﹣t)=(﹣t2+t)cm2;当3<t≤5时,如图2所示,CF=(t﹣3)cm,BE=tcm,∴EF=BC﹣CF﹣BE=4+5﹣(t﹣3)﹣t=(12﹣2t)cm,∴S=AC•EF=×3(12﹣2t)=(﹣3t+18)cm2;当5<t<7时,如图3所示,过点E作EM⊥BC于点M,则△DEM∽△DAC.∵CQ=(t﹣3)cm,BD=5cm,DP=(t﹣5)cm,=,∴DQ=BC﹣CQ﹣BD=4+5﹣(t﹣3)﹣5=(7﹣t)cm,PM==cm,∴S=DQ•AC﹣DQ•PM=×3(7﹣t)﹣(7﹣t)=(t2﹣t+21)cm2.综上所述,S与t的函数关系式为S=.2.(2023春•鼓楼区期中)如图1,已知直线l1:y=ax﹣6a交x轴于点A,交轴y于点B,直线l2:y=bx﹣18a交x轴于点C,交y轴于点D,交直线l1于点E.(1)求点A的坐标;(2)若点B为线段AE的中点,求证:EC=EA;(3)如图2,已知P(0,m),将线段PA绕点P逆时针方向旋转90°至PF,连接OF,求证:点F在某条直线上运动,并求OF的最小值.【答案】(1)点A(6,0);(2)证明见解答;(3)证明见解答,OF的最小值为:3.【解答】(1)解:令y=ax﹣6a=0,解得:x=6,则点A(6,0);(2)证明:对于y=ax﹣6a,令x=0,则y=﹣6a,则点B(0,﹣6a),∵点B为线段AE的中点,则点E(﹣6,﹣12a),将点E的坐标代入y=bx﹣18a得:﹣12a=﹣6b﹣18a,解得:b=﹣a,则直线l2:y=﹣ax﹣18a,则点C(0,﹣18),由点A、C的坐标知,其中点坐标为(﹣6,0),改点和点E的横坐标相同,即点E在AC的中垂线上,∴EC=EA;(3)证明:过点F作FT⊥y轴于点T,∵线段PA绕点P逆时针方向旋转90°至PF,则PA=PF,∠FPA=90°,∴∠TPF+∠TFP=90°,∠TPF+∠APO=90°,∴∠TFP=∠APO,∵∠AOP=∠PTF=90°,PA=PF,∴△AOP≌△PTF(AAS),∴PT=OA=6,FT=OP=m,则点F的坐标为:(m,m+6),则点F在直线y=x+6上,则OF2=m2+(m+6)2=2(m+3)2+18≥18,∴OF的最小值为:3.3.(2023春•苍南县期中)如图,在平面直角坐标系中,▱OABC的顶点A落在x轴上,点B的坐标为(7,4),AB=2,点D是OC的中点,点E是线段AD 上一动点,EF⊥BC于点F,连结DF.(1)求点A、C的坐标.(2)求直线AD的函数表达式.(3)若△DEF是等腰三角形,求CF的长.【答案】(1)点A、C的坐标分别为:(5,0)、(2,4);(2)y=﹣x+;(3)CF=或或3.【解答】解:(1)过点B作BT⊥x轴于点T,则BT=4,则AT===2,则OA=OT﹣AT=7﹣2=5=BC,则点A的坐标为:(5,0),则x C=x B﹣BC=7﹣5=2,点C的坐标为:(2,4),即点A、C的坐标分别为:(5,0)、(2,4);(2)直线AD的表达式为:y=kx+b,则,解得:,故直线AD的表达式为:y=﹣x+;(3)当DE=DF时,则点E在A处,则CF=5﹣2=3;当DE=EF时,延长FE交x轴于点H,过点D作DM⊥x轴于点M,作EN⊥DM于点N,设点E(a,﹣a+),则N(1,﹣a+),则DN=a﹣,NE=a﹣1,EF=a+,则(a﹣1)2+(a﹣)2=(a+)2,解得:a=2+(负值已舍去);则CF=;当DF=EF时,过点D作DK⊥EF于点K,则FK=2,DF2=(a﹣1)2+22,则(a﹣1)2+(a﹣)2=(a﹣1)2+22,解得:a=1(舍去)或,则CF=﹣2=,综上,CF=或或3.4.(2023•佳木斯一模)如图,将矩形纸片OABC放在平面直角坐标系中,O为坐标原点.点A在y轴上,点C在x轴上,OA,OB的长是x2﹣16x+60=0的两个根,P是边AB上的一点,将△OAP沿OP折叠,使点A落在OB上的点Q处.(1)求点B的坐标;(2)求直线PQ的解析式;(3)点M在直线OP上,点N在直线PQ上,是否存在点M,N,使以A,C.M,N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【答案】(1)B(8,6);(2)直线PQ解析式为y=﹣x+10;(3)存在点M,N,使以A,C.M,N为顶点的四边形是平行四边形,N的坐标为(6,2)或(﹣,)或(,﹣).【解答】解:(1)由x2﹣16x+60=0得x=6或x=10,∵OA<OB,∵四边形OABC是矩形,∴∠OAB=90°,在Rt△AOB中,AB===8,∴B(8,6);(2)过Q作QG⊥AB于G,交OC于H,如图:∵将△OAP沿OP折叠,使点A落在OB上的点Q处,∴∠OQP=∠OAP=90°=∠BQP,AP=QP,OQ=OA=6,∴BQ=OB﹣OQ=10﹣6=4,设AP=QP=x,则BP=AB﹣AP=8﹣x,在Rt△BPQ中,PQ2+BQ2=BP2,∴x2+42=(8﹣x)2,解得x=3,∴AP=PQ=3,BP=8﹣x=5,∴P(3,6),∵2S△BPQ=BP•QG=PQ•BQ,∴QG===,∴PG===,∴AG=AP+PG=,∵∠HGB=∠ABC=∠BCO=90°,∴四边形GBCH是矩形,∴GH=BC=OA=6,∠GHC=90°,∴QH=GH﹣QG=6﹣=,设直线PQ解析式为y=kx+b,把P(3,6),Q(,)代入得:,解得,∴直线PQ解析式为y=﹣x+10;(3)存在点M,N,使以A,C.M,N为顶点的四边形是平行四边形,理由如下:由(2)得P(3,6),直线PQ解析式为y=﹣x+10,∴直线OP解析式为y=2x,设M(m,2m),N(n,﹣n+10),又A(0,6),C(8,0),①若MN,AC为对角线,则MN,AC的中点重合,∴,解得,∴N(6,2);②若MA,NC为对角线,则MA,NC的中点重合,∴,解得;∴N(﹣,);③若MC,NA为对角线,则MC,NA的中点重合,∴,解得,∴N(,﹣);综上所述,N的坐标为(6,2)或(﹣,)或(,﹣).5.(2023春•顺德区校级月考)如图,请根据图象所提供的信息解答下列问题:(1)当x 时,kx+b≥mx﹣n;(2)不等式kx+b<0的解集是 ;(3)求两个一次函数表达式;(4)若直线l1分别交x轴、y轴于点M、A,直线l2分别交x轴、y轴于点B、N,求点M的坐标和四边形OMPN的面积.【答案】(1)x≤1;(2)x>3;(3)直线l1的解析式为y=2x﹣1,直线l2的解析式为;(4)M点的坐标为;四边形OMPN的面积=1.【解答】解:(1)当x≤1时,kx﹣b≥mx﹣n;故填:x≤1;(2)由图象可知:不等式kx+b<0的解集为x>3;故填:x>3;(3)把A(0,﹣1),P(1,1)分别代入y=mx﹣n,得,解得,所以直线l1的解析式为y=2x﹣1,把P(1,1)、B(3,0)分别代入y=kx+b,得,解得,所以直线l2的解析式为,(4)当y=2x﹣1=0时,解得,所以M点的坐标为;当x=0时,,则N点坐标为,所以四边形OMPN的面积=S△ONB﹣S△PMB==1.6.(2023春•北碚区校级期中)如图,在平面直角坐标系中,直线y=2x﹣2与x 轴、y轴分别交于点A、点B,与直线CD:y=kx+b(k≠0)交于点P,OC=OD=4OA.(1)求直线CD的解析式;(2)连接OP、BC,若直线AB上存在一点Q,使得S△PQC=S四边形OBCP,求点Q的坐标;(3)将直线CD向下平移1个单位长度得到直线,直线l与x轴交于点E,点N为直线l上的一点,在平面直角坐标系中,是否存在点M,使以点O,E,N,M为顶点的四边形是矩形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【答案】(1)y=﹣x+4;(2)或;(3)(3,3)或.【解答】解:(1)∵直线y=2x﹣2与x轴、y轴分别交于点A、点B,∴令y=0,则x=1,∴点A为(1,0),∴OA=1,∵OC=OD=4OA=4,∴点C为(4,0),点D为(0,4),设直线CD的解析式为y=kx+b;∴,∴,∴直线CD的解析式为y=﹣x+4;(2)解:在y=2x﹣2中,令x=0,则y=﹣2,∴点B为(0,﹣2),∵,解得,∴点P的坐标为(2,2);∴;∵点Q在直线AB上,则设点Q为(x,2x﹣2),则当点Q在点B的下方时,如图:∵AC=3,点P的坐标为(2,2),∴,∵S△PQC=S四边形OBCP,∴,∴,解得:,∴,∴点Q的坐标为;当点Q在点P的上方时,如图:,∴,∴解得:,∴,∴点Q的坐标为;综合上述,点Q的坐标为或;(3)解:∵直线CD向下平移1个单位长度得到直线l,∴直线l为y=﹣x+3,令y=0,则x=3,∴点E的坐标为(3,0),即OE=3;当OE=3作为矩形OEMN的边时,如图:∴点N的坐标为(0,3),∴点M的坐标为(3,3);当OE=3作为矩形OEMN的对角线时,如图:∴点F的坐标为,∵tan∠OEN=|﹣1|=1,∴∠OEN=45°,∵ON⊥NE,∴△ONE是等腰直角三角形,∴ON=NE,∴四边形ONEM是正方形,∴MN⊥OE,MN=OE,∴,∴点M的坐标为;综合上述,则点M的坐标为(3,3)或;7.(2023春•宜兴市期中)如图,在平面直角坐标系中,已知A(0,4),点B、C都在x轴上,BC=12,AD∥BC,CD所在直线的函数表达式为y=﹣x+9,E是BC的中点,点P是BC边上一个动点.(1)当PB= 时,以点P、A、D、E为顶点的四边形为平行四边形;(2)点P在BC边上运动过程中,以点P、A、D、E为顶点的四边形能否构成菱形?试说明理由.【答案】(1)1或11;(2)以点P、A、D、E为顶点的四边形能构成菱形,理由见解析.【解答】解:(1)∵AD∥BC,点A坐标是(0,4),CD所在直线的函数关系式为y=﹣x+9,∴D点的纵坐标为4,y=4时,4=﹣x+9,x=5,∴D点的横坐标为5,∴D(5,4),∵CD所在直线的函数关系式为y=﹣x+9,y=0时,0=﹣x+9,x=9,∴C(9,0),∴OC=9,作DN⊥BC交于N,如图1所示,则四边形OADN为矩形,∴CN=OC﹣ON=OC﹣AD=9﹣5=4,DN=4,∴△DNC为等腰直角三角形,∴CD==4,若以点P、A、D、E为顶点的四边形为平行四边形,则AD=PE=5,有两种情况:①当P在E的左边,∵E是BC的中点,∴BE=6,∴PB=BE﹣PE=6﹣5=1;②当P在E的右边,PB=BE+PE=6+5=11;故当PB=1或11时,以点P、A、D、E为顶点的四边形为平行四边形,故答案为:1或11;(2)点P在BC边上运动过程中,以点P、A、D、E为顶点的四边形能构成菱形,理由如下:①当BP=1时,此时CN=DN=4,NE=6﹣4=2,∴DE===2≠AD,故不能构成菱形.②当BP=11时,以点P、A、D、E为顶点的四边形是平行四边形,∴EP=AD=5,过D作DN⊥BC于N,如图2所示:由(1)得:DN=CN=4,∴NP=BP﹣BN=BP﹣(BC﹣CN)=11﹣(12﹣4)=3.∴DP===5,∴EP=DP=AD=5,故此时平行四边形PDAE是菱形,即以点P、A、D、E为顶点的四边形能构成菱形.8.(2023春•工业园区校级期中)如图,在平面直角坐标系中,点A、点B分别在x轴与y轴上,直线AB的解析式为,以线段AB、BC为边作平行四边形ABCD.(1)如图1,若点C的坐标为(3,7),判断四边形ABCD的形状,并说明理由;(2)如图2,在(1)的条件下,P为CD边上的动点,点C关于直线BP的对称点是Q,连接PQ,BQ.①当∠CBP= °时,点Q位于线段AD的垂直平分线上;②连接AQ,DQ,设CP=x,设PQ的延长线交AD边于点E,当∠AQD=90°时,求证:QE=DE,并求出此时x的值.【答案】(1)四边形ABCD是正方形,理由见解答过程;(2)①30;②证明QE=DE见解答过程,x的值是.【解答】解:(1)四边形ABCD是正方形,理由如下:过C作CH⊥y轴于H,如图:在y=﹣x+3中,令x=0得y=3,令y=0得x=4,∴A(4,0),B(0,3),∴OA=4,OB=3,AB==5,。
专题32函数与几何综合问题(25题)一、填空题1.(2023·四川眉山·统考中考真题)如图,在平面直角坐标系xOy 中,点B 的坐标为()86-,,过点B 分别作x 轴、y 轴的垂线,垂足分别为点C 、点A ,直线26y x =--与AB 交于点D .与y 轴交于点E .动点M 在线段BC 上,动点N 在直线26y x =--上,若AMN 是以点N 为直角顶点的等腰直角三角形,则点M 的坐标为【答案】()8,6M -或28,3M ⎛⎫- ⎪⎝⎭【分析】如图,由AMN 是以点N 为直角顶点的等腰直角三角形,可得N 在以AM 为直径的圆H 上,MN AN =,可得N 是圆H 与直线26y x =--的交点,当,M B 重合时,符合题意,可得()8,6M -,当N 在AM 的上方时,如图,过N 作NJ y ⊥轴于J ,延长MB 交BJ 于K ,则90NJA MKN ∠=∠=︒,8JK AB ==,证明MNK NAJ ≌,设(),26N x x --,可得MK NJ x ==-,266212KN AJ x x ==---=--,而8KJ AB ==,则2128x x ---=,再解方程可得答案.【详解】解:如图,∵AMN 是以点N 为直角顶点的等腰直角三角形,∴N 在以AM 为直径的圆H 上,MN AN =,∴N 是圆H 与直线26y x =--的交点,当,M B 重合时,∵()8,6B -,则()4,3H -,∴4MH AH NH ===,符合题意,∴()8,6M -,当N 在AM 的上方时,如图,过N 作NJ y ⊥轴于J ,延长MB 交BJ 于K ,则90NJA MKN ∠=∠=︒,8JK AB ==,∴90NAJ ANJ ∠+∠=︒,【答案】392【分析】作出点()32C -,,作CD 直角三角形求得1103F ⎛⎫ ⎪⎝⎭,,利用待定系数法求得直线DG y ⊥轴于点G ,此时35BH +【详解】解:∵直线123y x =-+则2CP =,3OP =,∵CFP AFD ∠=∠,∴FCP FAD ∠=∠,∴tan tan FCP FAD ∠=∠,∴PF OB PC OA=,即226PF =,∴23PF =,则1103F ⎛⎫ ⎪⎝⎭,,设直线CD 的解析式为y kx =+则321103k b k b +=-⎧⎪⎨+=⎪⎩,解得311k b =⎧⎨=-⎩∴直线CD 的解析式为3y x =联立,311123y x y x =-⎧⎪⎨=-+⎪⎩,解得⎧⎪⎪⎨⎪⎪⎩即3971010D ⎛⎫ ⎪⎝⎭,;过点D 作DG y ⊥轴于点G ,②如图2,直线BM过AC中点,直线BM解析式为1522y x=-+,AC中点坐标为910a=;③如图3,直线CM过AB中点,AB中点坐标为()3,0,5⑤如图5,直线ME ∥AC ,MN CO ∥,则EMN ACO∽∴12BE AB =,又4AB =,∴22BE =,∵53222BN =-=<,∴不成立;⑥如图6,直线ME ∥BC ,同理可得12AE AB =,∴22AE =,222NE =-,tan tan MEN CBO ∠∠=,∴155222a =-,解得212a +=;综上所述,910a =或225+或212+.【点睛】本题考查了二次函数的综合问题,解直角三角形,相似三角形的性质与判定,熟练掌握以上知识,并分类讨论是解题的关键.二、解答题4.(2023·黑龙江牡丹江·统考中考真题)如图,在平面直角坐标系中,ABCD Y 的顶点B ,C 在x 轴上,D(1)求点B 的坐标;(2)若:2:1OD OC =,直线y x b =-+分别交x DC 延长线于点N ,求tan MND ∠的值;(3)在(2)的条件下,点P 在y 轴上,在直线存在,请直接写出等腰三角形的个数和其中两个点【答案】(1)()4,0B -(2)1tan 3MND ∠=(3)存在,等腰三角形的个数是8个,1652Q ⎛- ⎝【分析】(1)解方程得到OB ,OC 的长,从而得到点(2)由:2:1OD OC =,2OC =,得4OD =线y x b =-+中,求得b 的值,从而得到直线的解析式,进而求得点45FEO ∠=︒.过点C 作CH EN ⊥于H ,过点::2:1DO OC NK CK ==,进而得到2NK CK =EC CK =,由211EC OC OE =-=-=可得CK 得到22cos EK EN KEN ==∠,在Rt ECH △中,322NH EN EH =-=,最终可得结果tan MND ∠(3)分PN PQ =,PN NQ =,PQ NQ =三大类求解,共有【详解】(1)解方程2680x x -+=,得14x =OB OC > ,(3)解:由(2)知:直线EF 解析式为设()0,P p ,(),1Q q q -+,①当5PN QN ==时,()()2223025p -+--=,()23q -+解得6p =-或2p =,6522q +=或∴1652524,22Q ⎛⎫-- ⎪ ⎪⎝⎭,2652Q ⎛+ ⎝如图,11PQ N 、12PQ N 、21P Q N ;②当5PQ QN ==时,由①知:1652524,22Q ⎛⎫-- ⎪ ⎪⎝⎭,2652,2Q ⎛+ ⎝;③当5PN PQ ==时,由①知:()10,6P -,()20,2P ,当()10,6P -时,()()22061q q -+-+-解得13q =(舍去),24q =,∴()34,3Q -,如图,当()20,2P 时,()()220215q q -++-=解得13q =(舍去),24q =-,综上,等腰三角形的个数是8个,符合题意的Q 坐标为16525,2Q ⎛- ⎝【点睛】本题考查了一次函数的图像与性质,一次函数与平行四边形,等腰三角形的综合问题,数形结合思想是解题的关键.5.(2023·湖南·统考中考真题)如图,点使得DBC CAB ∠=∠,点E 是弦AC 上一动点(不与点交BC 的延长线于点N ,交O 于点M (1)BD 是O 的切线吗?请作出你的判断并给出证明;(2)记BDC ABC ADB ,,的面积分别为(3)若O 的半径为1,设FM x =,FE 自变量x 的取值范围.【答案】(1)BD 是O 的切线,证明见解析(2)152+∴在Rt OFM △中,2OF OM =∴211BF BO OF x =+=+-,AF2②若a c=,则A、B关于y轴对称,以综上,以A,B,C,D为顶点的四边形能构成正方形,此时【点睛】本题主要考查了二次函数的综合应用、正方形的性质等知识点,解题的关键是利用分类讨论的思想解决问题.(1)当45QPB ∠=︒时,求四边形(2)当点P 在线段AB 上移动时,设【答案】(1)438+(2)23234312x S x =++【分析】(1)连接BD 、可得PBQ 为等腰直角三角形,则 四边形ABCD 为菱形,∠PB x=,23BQ=,PBQ(1)求点,A B 的坐标;(2)随着点E 在线段BC 上运动.①EDA ∠的大小是否发生变化?请说明理由;②线段BF 的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由;(3)当线段DE 的中点在该二次函数的因象的对称轴上时,【答案】(1)()20A ,,()13B ,;∵()2313y x =--+,∴抛物线对称轴为1x =,即1ON =,∵将线段AB 绕点A 按顺时针方向旋转∵2OA OB AC BC ====,∴四边形OACB 是菱形,∴BC OA ∥,∵DH BN ⊥,AN BN ⊥,∴DH BC OA ∥∥,∴MBE MHD ∠∠=,MEB MDH ∠∠=∵DE 的中点为点M ,∴MD ME =,∴MBE MHD ≌,∴DH BE =,∵90ANM ∠=︒,∴1809090MBE ANM ∠∠=︒-︒=︒=,∵DE 的中点为点M ,DAE 是等边三角形,∴AM DE ⊥,∴90AME ∠=︒,∴180BME NMA ∠∠+=︒,∴BME NAM ∠∠=,(1)求点,,D E C 的坐标;(2)F 是线段OE 上一点()OF EF <,连接,AF DF ①求证:DFC △是直角三角形;②DFC ∠的平分线FK 交线段DC 于点,K P 是直线坐标.【答案】(1)(3,1)C ,(0,2)D ,(6,0)E (2)①证明见解析,②点P 的坐标为(1,3)或(7,3【分析】(1)根据一次函数与坐标轴的交点及一次函数与二次函数的交点求解即可;(2)①设(,0),F m 然后利用勾股定理求解,m-①抛物线231y x x =-++交y 轴于点A ,当0x =时,1,y =.(0,1),A ∴1OA ∴=,在Rt AOF 中,90AOF ∠=︒,由勾股定理得222AF OA OF +=,设(,0),F m ,OF m ∴=221AF m ∴=+,(6,0),E .6,OE ∴=6EF OE OF m ∴=-=-,2221,AF EF += 221(6)21,m m ∴++-=122,4m m ∴==,,OF EF < 2,m ∴=2OF ∴=,(2,0)F ∴.(0,2),D 2OD ∴=,OD OF ∴=.DOF ∴ 是等腰直角三角形,45OFD ∴∠=︒.过点C 作CG x ⊥轴,垂足为G .(3,1),C 1,3CG OG ∴==,1,GF OG OF =-= ,CG GF ∴=CGF ∴ 是等腰直角三角形,45,GFC ∴∠︒=90,DFC ∴∠=︒DFC ∴ 是直角三角形.②FK 平分,90,DFC DFC ∠∠=︒(1)BP 的长为__________,CM 的长为_________(2)求y 关于x 的函数解析式,并写出自变量x 的取值范围.(3)当四边形PQMN 是轴对称图形时,直接写出x 【答案】(1)()4x -;x(2)()(241216024162x x y x x ⎧-+⎪=⎨-+<≤⎪⎩(3)43x =或83x =【分析】(1)根据正方形中心对称的性质得出OM ANP CQM ≌即可;(2)分02x <≤,2<两种情况分别画出图形,根据正方形的面积,以及平行四边形的性质即可求解;(3)根据(2)的图形,分类讨论即可求解.【详解】(1)解:依题意,1AP x x =⨯=()cm ,则∵四边形ABCD 是正方形,∴,90AD BC DAB ∠=∠=︒∥,∵点O 是正方形对角线的中点,∴,OM OP OQ ON ==,则四边形PQMN 是平行四边形,∴MQ PN =,MQ NP ∥∴PNQ MQN ∠=∠,又AD BC ∥,∴ANQ CQN ∠=∠,∴ANP MQC ∠=∠,在,ANP CQM 中,ANP MQC NAP QCM NP MQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ANP CQM ≌,∴()cm MC AP x ==故答案为:()4x -;x .(2)解:当02x <≤时,点Q 在BC 上,由(1)可得ANP CQM ≌,同理可得PBQ MDN ≌,∵4,2,PB x QB x MC x =-==,42QC x =-,则222MCQ BPQy AB S S =-- ()()164242x x x x =--⨯--241216x x =-+;当24x <≤时,如图所示,则AP x =,224AN CQ x CB x ==-=-,()244PN AP AN x x x =-=--=-+,∴()44416y x x =-+⨯=-+;综上所述,()()2412160241624x x x y x x ⎧-+<≤⎪=⎨-+<≤⎪⎩;当四边形PQMN 是菱形时,则∴()()2242x x x -+=解得:0x =(舍去)②如图所示,当PB =424x x -=-,解得x 当四边形PQMN 是菱形时,则综上所述,当四边形【点睛】本题考查了正方形的性质,动点问题,全等三角形的性质与判定,矩形的性质,平行四边形的性质与判定,菱形的性质,轴对称图形,熟练掌握以上知识是解题的关键.(1)当旋转角COF ∠为多少度时,OE OF =;(直接写出结果,不要求写解答过程)(2)若点(4,3)A ,求FC 的长;(3)如图3,对角线AC 交y 轴于点M ,交直线y x =于点N ,连接FN ,将OFN △1S 与2S ,设12S S S =-,AN n =,求S 关于n 的函数表达式.【答案】(1)22.5︒(2)154FC =(3)212S n =【分析】(1)根据正方形的性质及直角三角形全等的判定及性质得出AOG ∠=45EOG ∠=︒,即可求解;(2)过点A 作AP x ⊥轴,根据勾股定理及点的坐标得出5OA =,再由相似三角形的判定和性质求解即可;(3)根据正方形的性质及四点共圆条件得出O 、C 、F 、N 四点共圆,再由圆周角定理及等腰直角三角形的判定和性质得出FN ON =,90FNO ∠=︒,过点N 作GQ BC ⊥于点G ,交OA 于点形的判定和性质得出,CG OQ CO QG ==,结合图形分别表示出1S ,2S ,得出(2)过点A 作AP x ⊥轴,如图所示:∵(4,3)A ,∴3,4AP OP ==,∴5OA =,∵正方形OABC ,∴5OC OA ==,90C ∠=∴90C APO ∠∠==︒,∵AOP COF ∠∠=,∴OCF OPA ∽ ,∴OC FC OP AP=即543FC =,∴154FC =;(3)∵正方形OABC ,∵BC OA ∥,∴GQ OA ⊥,∵90FNO ∠=︒,∴1290∠∠+=︒,∵1390∠∠+=︒,∴23∠∠=,∴(AAS)FGN NQO ≌ ∴,GN OQ FG QN ==,∵GQ BC ⊥,FCO COQ ∠∠=∴四边形COQG 为矩形,∴,CG OQ CO QG ==,∴(211S S ON OQ ===(1)直接写出结果;b =_____,c =_____,点A 的坐标为_____,tan ABC ∠=______(2)如图1,当2PCB OCA ∠=∠时,求点P 的坐标;(3)如图2,点D 在y 轴负半轴上,OD OB =,点Q 为抛物线上一点,90QBD ∠=︒,点的边,DQ DB 上的动点,QE DF =,记BE Q F +的最小值为m .①求m 的值;②设PCB 的面积为S ,若214S m k =-,请直接写出k 的取值范围.【答案】(1)32,2,()1,0-,12(2)()2,3(3)解:①如图2,作DH ⊥∵90BQD BDQ ︒∠+∠=,HDF ∠∴QD HDF ∠=∠,∵QE DF =,DH BQ =,∴(SAS)BQE HDF ≌,∴BE FH =,∴BE QF FH QF QH +=+≥,∴Q ,F ,H 共线时,BE Q F +②如图3,作PT y ∥轴,交设22,1T a a ⎛⎫-+ ⎪⎝⎭,,P a ⎛ ⎝则21132222S a a ⎛=-+++ ⎝∴04S <≤,∴21044m k <-≤,∴0174k <-≤,∴1317k ≤<.【点睛】本题考查用待定系数法求函数解析式、二次函数与几何综合、二次函数与(1)直接判断AOB 的形状:AOB 是_________三角形;(2)求证:AOE BOD △≌△;(3)直线EA 交x 轴于点(,0),2C t t >.将经过B ,C 两点的抛物线21y ax =物线2y .①若直线EA 与抛物线1y 有唯一交点,求t 的值;②若抛物线2y 的顶点P 在直线EA 上,求t 的值;③将抛物线2y 再向下平移,22(1)t -个单位,得到抛物线3y .若点D 在抛物线【答案】(1)等腰直角三角形(2)详见解析(3)①3t =;②6t =;③126,55D ⎛⎫ ⎪⎝⎭【分析】(1)由(0,2),(2,0)A B 得到2OA OB ==,又由90AOB ∠=︒,即可得到结论;(2)由90EOD ∠=︒,90AOB ∠=︒得到AOE BOD ∠=∠,又有AO OB =AOE BOD △≌△;(3)①求出直线AC 的解析式和抛物线1y 的解析式,联立得()23x t -+22(3)43(3)0t t t ∆=+-⨯=-=即可得到t 的值;∵90EOD ∠=︒,90AOB ∠=︒,AOB AOD DOE ∴∠-∠=∠-∠AOE BOD ∴∠=∠,∵,AO OB OD OE ==,(SAS)AOE BOD ∴△≌△;(3)①设直线AC 的解析式为(0,2),(,0)A C t ,∴90EMO OND ∠=∠=︒,90DOE ∠=︒ ,∴EOM MEO EOM NOD ∠+∠=∠+∠∴MEO NOD ∠=∠,∵OD OE =,∴(AAS)ODN EOM ≌,∴,ON EM DN OM ==,∵OE 的解析式为2y x =-,∴设22EM OM m ==,∴DN OM m ==,EM x ⊥ 轴,∴OA EM ∥,∴~CAO CEM ,::OC CM OA EM ∴=,22t t m m∴=+,1t m t ∴=-,∴2221t EM ON OM m t ====-,DN 2,11t t D t t ⎛⎫∴ ⎪--⎝⎭, 抛物线2y 再向下平移22(1)t -个单位,得到抛物线2222(2)y x t x(1)求S 关于x 的函数解析式;(2)当x 取何值时,S 的值最大?请求出最大值.【答案】(1)23232S x x =-+(2)当2x =时,S 的最大值为23∵顶点A 的坐标为()2,23,∴()222234OA =+=,2OG =,∴1cos 2OG AOG AO ∠==,①如图②,当边E F ''与AB 相交于点M 、边G H ''与BC 相交于点N ,且矩形E F G H ''''与菱形为五边形时,试用含有t 的式子表示S ,并直接写出t 的取值范围:②当2311334t ≤≤时,求S 的取值范围(直接写出结果即可).【答案】(1)()3,2,33,2⎛⎫- ⎪⎝⎭(2)①332t <≤;②3316S ≤≤【分析】(1)根据矩形及菱形的性质可进行求解;(2)①由题意易得3,1EF E F EH E H ''''====,然后可得60ABO ∠=︒,则有32EM =,进而根据割补∵四边形ABCD 是菱形,且(3,0),(0,1),(2A B D ∴()()2230012AB AD ==-+-=,AC BD ⊥∴2AC =,∴()3,2C ,故答案为()3,2,33,2⎛⎫- ⎪⎝⎭;(2)解:①∵点10,2E ⎛⎫ ⎪⎝⎭,点13,2F ⎛⎫- ⎪⎝⎭,点∴矩形EFGH 中,EF x ∥轴,EH x ⊥轴,EF ∴矩形E F G H ''''中,E F x ''∥轴,E H x ''⊥轴,由点()3,0A ,点()0,1B ,得3,1OA OB ==.在Rt ABO △中,tan 3OA ABO OB ∠==,得ABO ∠在Rt BME △中,由1tan 60,12EM EB EB =⋅︒=-此时面积S 最大,最大值为133S =⨯=当1134t =时,矩形E F G H ''''和菱形ABCD 由(1)可知B 、D 之间的水平距离为23,则有点由①可知:60D B ∠=∠=︒,(1)求CE的长和y关于x的函数表达式.(2)当PH PN<,且长度分别等于PH,PN,a的三条线段组成的三角形与(3)延长PN交半圆O于点Q,当1534NQ x=-时,求【答案】(1)165CE=,25412y x=-+(2)1615或2740或6041(3)17 8【分析】(1)如图1,连接OD,根据切线的性质得出出165CE=;证明四边形APMC是平行四边形,得出MN(2)根据BCE三边之比为3:4:5,可分为三种情况.当:3:4PH PN=时,分别列出比例式,进而即可求解.∵CD 切半圆O 于点D ,∴OD CE ⊥.∵32OA =,1AC =,∴52OC =,∴2CD =.∵BE CE ⊥,∴OD BE ∥,∴CD CO CE CB=,即5224CE =,∴165CE =.∵MN CB ∥,∴四边形APMC 是平行四边形,∴sin 1sin PH PH CM PA ===∠∵MN ME BC CE =,则90AQB AGQ ∠=∠=︒,∴QAB BQG ∠=∠.∵1534NQ x =-,PN y =。
专题训练(五)[函数与几何图形的综合]1.已知函数y=mx2-(2m-5)x+m-2的图象与x轴有两个公共点.(1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C1.①当n≤x≤-1时,y的取值范围是1≤y≤-3n,求n的值;②函数C2:y=m(x-h)2+k的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为√5的圆内或圆上.设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.2.如图5-1,抛物线y=x2+bx+c与x轴交于A,B两点,B点坐标为(3,0),与y轴交于点C(0,3).图5-1(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值.(3)点D为抛物线对称轴上一点.当△BCD是以BC为直角边的直角三角形时,求点D的坐标.3.如图5-2,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过点P且垂直于AB的直线与☉O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC∶CE=1∶2.图5-2(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.4.如图5-3,抛物线y=a(x-2)2-1过点C(4,3),交x轴于A,B两点(点A在点B的左侧).图5-3(1)求抛物线的解析式,并写出顶点M的坐标;(2)连接OC,CM,求tan∠OCM的值;(3)若点P在抛物线的对称轴上,连接BP,CP,BM,当∠CPB=∠PMB时,求点P的坐标.5.如图5-4①,在平面直角坐标系xOy 中,直线l :y=34x+m 与x 轴,y 轴分别交于点A 和点B (0,-1),抛物线y=12x 2+bx+c 经过点B ,且与直线l 的另一个交点为C (4,n ).图5-4(1)求n 的值和抛物线的解析式.(2)点D 在抛物线上,且点D 的横坐标为t (0<t<4),DE ∥y 轴交直线l 于点E ,点F 在直线l 上,且四边形DFEG 为矩形(如图②).若矩形DFEG 的周长为p ,求p 与t 的函数关系式及p 的最大值.(3)M 是平面内一点,将△AOB 绕点M 沿逆时针方向旋转90°后,得到△A 1O 1B 1,点A ,O ,B 的对应点分别是点A 1,O 1,B 1.若△A 1O 1B 1的两个顶点恰好落在抛物线上,请直接写出点A 1的横坐标.6.如图5-5,在平面直角坐标系中,抛物线y=√33x 2-2√33x-√3与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点E (4,n )在抛物线上.图5-5(1)求直线AE 的解析式.(2)点P 为直线CE 下方抛物线上的一点,连接PC ,PE.当△PCE 的面积最大时,连接CD ,CB ,点K 是线段CB 的中点,点M 是线段CP 上的一点,点N 是线段CD 上的一点,求KM+MN+NK 的最小值.(3)点G 是线段CE 的中点,将抛物线y=√33x 2-2√33x-√3沿x 轴正方向平移得到新抛物线y',y'经过点D ,y'的顶点为点F .在新抛物线y'的对称轴上,是否存在点Q ,使得△FGQ 为等腰三角形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.参考答案1.解:(1)由题意可得:{m ≠0,[-(2m -5)]2-4m (m -2)>0.解得:m<2512,且m ≠0.当m=2时,函数解析式为y=2x 2+x.(2)①函数y=2x 2+x 图象开口向上,对称轴为直线x=-14,∴当x<-14时,y 随x 的增大而减小. ∵当n ≤x ≤-1时,y 的取值范围是1≤y ≤-3n , ∴2n 2+n=-3n.∴n=-2或n=0(舍去). ∴n=-2.②∵y=2x 2+x=2x+142-18,∴函数C 1的图象顶点M 的坐标为-14,-18.由图形可知当P 为射线MO 与圆的交点时,距离最大.∵点P 在直线OM 上,由O (0,0),M -14,-18可求得直线的解析式为y=12x. 设P (a ,b ),则有a=2b.根据勾股定理可得PO 2=(2b )2+b 2=(√5)2,解得b=1(负值已舍). ∴a=2.∴PM 最大时函数C 2的解析式为y=2(x-2)2+1. 2.解:(1)由题意得{32+3b +c =0,c =3,解得{b =-4,c =3.∴抛物线的解析式为y=x 2-4x+3.(2)方法1(代数法):如图①,过点P 作PG ∥CF 交CB 于点G ,由题意知∠BCO=∠CFE=45°,F (0,m ),C (0,3), ∴△CFE 和△GPE 均为等腰直角三角形,∴EF=√22CF=√22(3-m ),PE=√22PG. 又易知直线BC 的解析式为y=-x+3.设x P =t (1<t<3),则PE=√22PG=√22(-t+3-t-m )=√22(-m-2t+3). 又∵t 2-4t+3=t+m ,∴m=t 2-5t+3.∴PE+EF=√22(3-m )+√22(-m-2t+3)=√22(-2t-2m+6)=-√2(t+m-3)=-√2(t 2-4t )=-√2(t-2)2+4√2, ∴当t=2时,PE+EF 取最大值4√2.方法2:(几何法)如图②,由题易知直线BC 的解析式为y=-x+3,OC=OB=3,∴∠OCB=45°. 同理可知∠OFE=45°, ∴△CEF 为等腰直角三角形.以BC 为对称轴将△FCE 对称得到△F'CE ,作PH ⊥CF'于点H 则PE+EF=PF'=√2PH. 又PH=y C -y P =3-y P .∴当y P 最小时,PE+EF 取最大值.∵抛物线的顶点坐标为(2,-1),∴当y P=-1时,(PE+EF)max=√2×(3+1)=4√2.(3)由(1)知对称轴为直线x=2,设D(2,n),如图③.当△BCD是以BC为直角边的直角三角形,且D在BC上方D1位置时, 由勾股定理得C D12+BC2=B D12,即(2-0)2+(n-3)2+(3√2)2=(3-2)2+(0-n)2,解得n=5;当△BCD是以BC为直角边的直角三角形,且D在BC下方D2位置时, 由勾股定理得B D22+BC2=C D22,即(2-3)2+(n-0)2+(3√2)2=(2-0)2+(n-3)2,解得n=-1.∴当△BCD是以BC为直角边的直角三角形时,D点坐标为(2,5)或(2,-1).3.解:(1)过点E作EF⊥x轴于点F,∵CD⊥AB,∴CD∥EF,PC=PD.∴△ACP∽△AEF, △BPD∽△BFE.∵AC∶CE=1∶2, ∴AC∶AE=1∶3.∴APAF =CPEF=13,DPEF=PBB F=13.∴AF=3AP,BF=3PB.∵AF-BF=AB.∴3AP-3PB=AB.又∵☉O的半径为3,设P(m,0),∴3(3+m)-3(3-m)=6,∴m=1.∴P(1,0).(2)∵P(1,0),∴OP=1,∵A(-3,0).∴OA=3,∴AP=4,BP=2.∴AF=12.连接BC.∵AB是直径,∴∠ACB=90°.∵CD⊥AB,∴△ACP∽△CBP,∴APCP =CP BP.∴CP2=AP·BP=4×2=8.∴CP=2√2(负值已舍).∴EF=3CP=6√2.∴E(9,6√2).∵抛物线的顶点在直线CD上,∴CD 是抛物线的对称轴, ∴抛物线过点(5,0).设抛物线的函数表达式为y=ax 2+bx+c. 根据题意得{0=9a -3b +c ,0=25a +5b +c ,6√2=81a +9b +c ,解得{a =√28,b =-√24,c =-15√28,∴抛物线的函数表达式为y=√28x 2-√24x-15√28.4.解:(1)由抛物线y=a (x-2)2-1过点C (4,3), 得3=a (4-2)2-1,解得a=1,∴抛物线的解析式为y=(x-2)2-1,顶点M 的坐标为(2,-1). (2)如图,连接OM ,∵OC 2=32+42=25,OM 2=22+12=5,CM 2=22+42=20, ∴CM 2+OM 2=OC 2, ∴∠OMC=90°.OM=√5,CM=2√5,tan ∠OCM=OMCM =√52√5=12.(3)如图,过C 作CN 垂直于对称轴,垂足N 在对称轴上,取一点E ,使EN=CN=2,连接CE ,EM=6.当y=0时,(x-2)2-1=0,解得x 1=1,x 2=3,∴A (1,0),B (3,0). ∵CN=EN ,∴∠CEP=∠PMB=∠CPB=45°, ∵∠EPB=∠EPC+∠CPB=∠PMB+∠PBM , ∴∠EPC=∠PBM ,∴△CEP ∽△PMB ,∴EPMB =CEPM ,易知MB=√2,CE=2√2, ∴√2=2√2PM ,解得PM=3±√5,∴P 点坐标为(2,2+√5)或(2,2-√5). 5.解:(1)∵直线l :y=34x+m 经过点B (0,-1),∴m=-1,∴直线l 的解析式为y=34x-1. ∵直线l :y=34x-1经过点C (4,n ), ∴n=34×4-1=2.∵抛物线y=12x 2+bx+c 经过点C (4,2)和点B (0,-1),∴{12×42+4b +c =2,c =-1,解得{b =-54,c =-1,∴抛物线的解析式为y=12x 2-54x-1. (2)令y=0,则34x-1=0,解得x=43,∴点A 的坐标为43,0, ∴OA=43. 在Rt △OAB 中,OB=1, ∴AB=√OA 2+OB 2=√(43) 2+12=53. ∵DE ∥y 轴,∴∠ABO=∠DEF ,在矩形DFEG 中,EF=DE ·cos ∠DEF=DE ·OB AB =35DE ,DF=DE ·sin ∠DEF=DE ·OA AB =45DE , ∴p=2(DF+EF )=2×45+35DE=145DE ,∵点D 的横坐标为t (0<t<4),∴D t ,12t 2-54t-1,E t ,34t-1,∴DE=34t-1-12t 2-54t-1=-12t 2+2t , ∴p=145×-12t 2+2t =-75t 2+285t ,∴p=-75(t-2)2+285,且-75<0,∴当t=2时,p 有最大值285.(3)∵△AOB 绕点M 沿逆时针方向旋转90°,∴A 1O 1∥y 轴,B 1O 1∥x 轴.设点A 1的横坐标为x ,如图①,点O 1,B 1在抛物线上时,点O 1的横坐标为x ,点B 1的横坐标为x+1, ∴12x 2-54x-1=12(x+1)2-54(x+1)-1,解得x=34.如图②,点A 1,B 1在抛物线上时,点B 1的横坐标为x+1,点A 1的纵坐标比点B 1的纵坐标大43, ∴12x 2-54x-1=12(x+1)2-54(x+1)-1+43, 解得x=-712.综上所述,点A 1的横坐标为34或-712. 6.解:(1)令y=0,得√33x 2-2√33x-√3=0, 解得x 1=-1,x 2=3,∴点A (-1,0),B (3,0).∵点E (4,n )在抛物线上,∴n=√33×42-2√33×4-√3=5√33, 即点E (4,5√33), 设直线AE 的解析式为y=kx+b ,则{-k +b =0,4k +b =5√33,解得{k =√33,b =√33, ∴直线AE 的解析式为y=√33x+√33.(2)令y=√33x 2-2√33x-√3中x=0,得y=-√3,∴C (0,-√3).由(1)得点E (4,5√33),∴直线CE 的解析式为y=2√33x-√3. 过点P 作PH ∥y 轴,交CE 于点H ,如图①, 设点P t ,√33t 2-2√33t-√3,则H t ,2√33t-√3,∴PH=2√33t-√3-(√33t 2-2√33t -√3)=-√33t 2+4√33t , ∴S △PCE =S △PHC +S △PHE =12·PH ·|x E -x C | =12×(-√33t 2+4√33t)×4 =-2√33t 2+8√33t =-2√33(t 2-4t ) =-2√33(t-2)2+8√33. ∵-2√33<0, ∴当t=2时,S △PCE 最大,此时点P (2,-√3). ∵C (0,-√3),∴PC ∥x 轴.∵B (3,0),K 为BC 的中点,∴K 32,-√32.如图②,作点K 关于CP ,CD 的对称点K 1,K 2,连接K 1K 2,分别交CP ,CD 于点M ,N.此时KM+MN+NK 最小,易知K 132,-3√32.∵OC=√3,OB=3,OD=1,∴∠OCB=60°,∠OCD=30°, ∴CD 平分∠OCB ,∴点K 2在y 轴上.∵CK=OC=√3,∴点K 2与原点O 重合, ∴KM+MN+NK=K 1M+MN+NO=OK 1=√(32)2+(-3√32)2=3, ∴KM+MN+NK 的最小值为3.(3)存在.如图③,点Q的坐标分别为Q1(3,2√3),Q23,-4√3+2√213,Q33,-2√35,Q43,-4√3-2√213.。
专题16 一次函数与几何综合压轴题型专训【题型目录】题型一根据两直线的交点求不等式的解集题型二两直线的交点与二元一次方程组的解题型三 一次函数中最短路径问题题型四 动点问题的函数图象题型五 一次函数的规律探究问题题型六 一次函数与全等三角形综合题型七 一次函数与平行四边形综合题型八 一次函数综合压轴题【经典例题一 根据两直线的交点求不等式的解集】【知识归纳】由于任何一个一元一次不等式都可以转化为ax b +>0或ax b +<0或ax b +≥0或ax b +≤0(a 、b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数y ax b =+的值大于0(或小于0或大于等于0或小于等于0)时求相应的自变量的取值范围.要点诠释:求关于x 的一元一次不等式ax b +>0(a ≠0)的解集,从“数”的角度看,就是x 为何值时,函数y ax b =+的值大于0?从“形”的角度看,确定直线y ax b =+在x 轴(即直线y =0)上方部分的所有点的横坐标的范围.ax b cx d +>+(a ≠c ,且0ac ≠)的解集y ax b =+的函数值大于y cx d =+的函数值时的自变量x 取值范围直线y ax b =+在直线y cx d =+的上方对应的点的横坐标范围.【例1】(2023秋·江苏镇江·八年级统考期末)一次函数11y kx =-(0k ≠)与22y x =-+的图像如图所示,当1x <时,12y y <,则满足条件的k 的取值范围是( )A .1k >-,且0k ≠B .12k -<<,且0k ≠C .2k <,且0k ≠D .1k <-或2k >【答案】B 【分析】联立11y kx =-与22y x =-+,求出两条直线交点的横坐标,根据当1x <时,12y y <,结合图象列不等式,即可求解.⇔⇔【变式训练】【变式的图象相交于点,则关于x的不等式22m ∴-=,解得:1m =-,()1,2A ∴-,将A 代入23y ax =+中,23a =-+ ,解得:1a =∴ 23y x =+∴解不等式23x x ->+解集为1x <-.故选:D .【点睛】本题考查了一次函数与一元一次不等式的关系,求出点A 的坐标和2y 的函数解析式,并结合函数图象进行解答是解题的关键.【变式2】(2021·全国·八年级专题练习)在平面直角坐标系中,垂直x 轴的直线l 分别与函数1+1,2y x a y x a =-=-+的图像交于P 、Q 两点,若平移直线l ,可以使P 、Q 都在x 轴的下方,则实数a 的取值范围是_________.【答案】1x <-【分析】根据题意可知1+1,2y x a y x a =-=-+在0y <时,x 有公共解,因此可以列出不等式,从而得到答案.【详解】令+10y x a =-<,则-1x a <,令102y x a =-+<,则2x a >,∵平移直线l ,可以使P 、Q 都在x 轴的下方,∴可知1+1,2y x a y x a =-=-+在0y <时,x 有公共解,∴2-1a a <,解得:1a <-,故填:1a <-.【点睛】本题考查了一次函数的图象与性质、函数与不等式的关系,解答的关键是将图象问题转化为不等式.点A 、B ,与直线相交于点C ,点P 为直线(1)求n 和k 的值;(2)若点P 在射线CA 上,且2POC AOC S S ∆∆=,求点P (3)观察函数图象,请直接写出不等式443x kx -+≥的解集.【答案】(1)43n =,23k =(2)P 4(4,)3-∴1322OAPS PN∆=⨯⨯=,∴43 PN=,∴43y=-,令43y=-,则443x-+解得4x=,【经典例题二【知识归纳】一次函数与二元一次方程组每个二元一次方程组都对应两个一次函数,于是也对应两条直线,则就是二元一次方程组则两个一次函数的直线就平行.反过来,当两个一次函数直线平行时,相应的二元一次方程如二元一次方程组无解,【变式训练】【变式个单位长度,使其与联立后可以得到:336y x m y x =+⎧⎨=-+⎩,解得1632m x m y ⎧=-⎪⎪⎨⎪=+⎪⎩,因为它们的交点在第二象限,00x y <⎧∴⎨>⎩即106302m m ⎧-<⎪⎪⎨⎪+>⎪⎩,解得66m m >⎧⎨>-⎩,6m ∴>,故选:B .【点睛】本题主要考查了一次函数图象的平移以及求图象的交点的问题,解决本题需要建立关于x 和y 的二元一次方程组和关于m 的不等式组,要求学生能熟练运用平移的规则得到平移后的函数解析式,同时能联立这两个解析式求交点坐标,最后还需要根据交点坐标的特征建立不等式组求出其中的字母参数的取值范围,整个过程对学生的计算能力有较高的要求.【变式2】(2021·全国·八年级专题练习)对于实数a ,b ,我们定义符号max{a ,b}的意义为:当a≥b 时,max{a ,b}=a ;当a <b 时,max{a ,b]=b ;如:max{4,﹣2}=4,max{3,3}=3,若关于x 的函数为y =max{x+3,﹣x+1},则该函数的最小值是_____.【答案】2【分析】联立两函数解析式成方程组,通过解方程组找出交点坐标,再根据max{a ,b}的意义即可得出函数的最小值.【详解】解:联立两函数解析式成方程组,得:31y x y x =+⎧⎨=-+⎩,解得:12x y =-⎧⎨=⎩.∴当x <﹣1时,y =max{x+3,﹣x+1}=﹣x+1>2;当x≥﹣1时,y =max{x+3,﹣x+1}=x+3≥2.∴函数y =max{x+3,﹣x+1}最小值为2.故答案为:2.【点睛】本题考查一次函数,解题的关键是掌握分段函数的解析式和函数最值的求解方法.【变式3】(2022·黑龙江鹤岗·八年级期末)在平面直角坐标系xOy 中,直线()40y kx k =+≠与轴交于点A.【经典例题三【解题技巧】我们将“连点之间,线段最短【变式训练】【变式553y =上一动点,BE 交轴于点H ,且A .55(0,)2B .(0,5) 【答案】C【分析】首先求得8AB AC ==, 取点可推导BD EF =,即有BD BE BE +=BD BE +的值最小;利用待定系数法求出直线【详解】解:对于直线AB :553y =当0x =时,可有55y =,∵(3,0)C ,∴CF AO ∥,∴ECF OAC ∠=∠,∵AB AC =,AO BC ⊥,∴OAC BAD ∠=∠,∴BAD ECF ∠=∠,∵8CF AB ==,AD EC =,∴()ECF DAB SAS V V ≌,【答案】30401313⎛⎫- ⎪⎝⎭,【分析】如图所示,过点Q 作QD 利用勾股定理求出5OA =,再利用三角形面积法求出股定理求出(234BP BQ +=+-【点睛】本题主要考查了勾股定理,坐标与图形,一次函数与坐标轴的交点问题,正确得到要使BP BQ +最小就相当于在x 轴上找一点到点G ()43,和点H 182455⎛⎫- ⎪⎝⎭,的距离最小是解题的关键.。
中考数学总复习《几何综合问题(一次函数的实际综合应用)》专项提升训练(带答案)学校:___________班级:___________姓名:___________考号:___________1.点P 是平面直角坐标系中的一点且不在坐标轴上,过点P 向x 轴,y 轴作垂线段,若垂线段的长度的和为2,则点P 叫做“好垂点”.例如:如图中的()11P ,是“好垂点”.(1)在点()1,2A ,()133522B C ⎛⎫-- ⎪⎝⎭,,,中,是“好垂点”的点为 ; (2)求函数21y x =-+的图象上的“好垂点”的坐标.(3)若二次函数223y x bx =+-的图象上存在4个“好垂点”,求b 的取值范围.(4)已知T 的圆心T 的坐标为()10-,,半径为r . 若T 上存在“好垂点”,则r 的取值范围是 .2.如图,在平面直角坐标系中,直线2y x =+与x 轴、y 轴分别交于A 、B 两点,点()2,C m 为直线2y x =+上一点,直线y x b =-+过点C .(1)求m 和b 的值;(2)直线y x b =-+与x 轴交于点D ,动点P 从点D 开始以每秒1个单位的速度向x 轴负方向运动(点P 不与点D ,点A 重合).若点P 在线段DA 上,设点P 的运动时间为t 秒. ①若ACP △的面积为10,求t 的值;②是否存在t 的值,使ACP △是以AP 为腰的等腰三角形?若存在,求出t 的值;若不存在,请说明理由.为顶点的三角形与BCO相似?若存在,求、C分别在>.AB BC为顶点的三角形与OAC相似?两点,点(2C,(1)求m 和b 的值;(2)直线12y x b =-+与x 轴交于点D ,动点P 从点D 开始以每秒1个单位的速度向x 轴负方向运动.设点P 的运动时间为t 秒.①若点P 在线段DA 上,且ACP △的面积为10,求t 的值;②是否存在t 的值,使ACP △为等腰三角形?若存在,直接写出t 的值;若不存在请说明理由. 6.如图,在平面直角坐标系中,正方形ABCD 的顶点A 为()2,0,顶点D 为()0,4.(1)直接写出直线BC 的解析式:____________;(2)点M 与点A 关于y 轴对称,点N 为正方形边上一点,且45DMN ∠=,直接写出点N 的坐标:____________;(3)将正方形沿y 轴向下平移(0)t t >个单位,直至点D 落在x 轴上.设正方形在x 轴下方的部分面积为S ,求S 关于t 的函数关系式,并写出相应自变量t 的取值范围.7.如图,在平面直角坐标系中,直线24y x =-+与x 轴交于点A ,与y 轴交于点B ,过点B 的直线交x 轴于C (点C 在A 左侧),且ABC 面积为10.(1)求点C的坐标及直线BC的解析式;(2)如图1,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边向FG左侧作等腰直角FGQ,其中90∠=︒,在G点的运动过程中,当顶点Q落在直线BC上时,求点G的坐FGQ标;(3)如图2,若M为线段BC上一点,且满足AMB AOB=S S△△,点E为直线AM上一动点,在x轴上是否存在点D,使以点D,E,B,C为顶点的四边形为平行四边形?若存在,请求出点D的坐标;若不存在,请说明理由.8.在同一平面直角坐标系中,我们规定点的两种移动方式:从点(,)x y移动到点(2,1)++称为x y一次甲方式移动;从点(,)x y移动到点(1,3)x y++称为一次乙方式移动.(1)若原点O经过两次甲方式移动,得到点M;原点O经过两次乙方式移动,得到点N.设过点M,N的直线为1l,求直线1l的解析式;(2)若原点O连续移动10次(每次按甲方式或乙方式移动),最终移动到点Q.试说明:无论每次按甲方式还是乙方式移动,最终点Q都落在一条确定的直线上;设这条直线为2l,请求出直线2l的解析式;(3)将(2)中的直线2l向下平移30个单位得到直线3l.分别在上述直线1l2l3l上取点AB C设点A B C的横坐标分别为a b c且a b试探究:当A B C三点共线时a b c之间有何数量关系?说明理由.9.【问题提出】△的面积为3 则ABC的面积(1)如图①点D为ABC的边AC的中点连接BD若ABD为_______;【问题探究】(2)如图②在平面直角坐标系中点A在第一象限连接OA作AB x⊥轴于点B若2AB OB = 25OA = 过点B 的直线l 将OAB 分成面积相等的两部分 求直线l 的函数表达式;【问题解决】(3)如图③ 在平面直角坐标系中 四边形OABC 是某市将要筹建的高新技术开发区用地示意图 其中O 为坐标原点 ()()()24,728,425,0A B C ,, 为了方便驻区单位 计划过点O 修一条笔直的道路1l (路宽不计) 并且使直线1l 将四边形OABC 分成面积相等的两部分 记直线1l 与AB 所在直线的交点为D 再过点A 修一条笔直的道路2l (路宽不计) 并且使直线2l 将OAD △分成面积相等的两部分 你认为直线1l 和2l 是否存在?若存在 请求出直线1l 和2l 的函数表达式;若不存在 请说明理由.10.如图 在矩形ABCD 中 4AD = 6AB = 动点P Q 均以每秒1个单位长度的速度分别从点D 点C 同时出发 其中点P 沿折线D A B →→方向运动 点Q 沿折线C B A →→方向运动 当两者相遇时停止运动.运动时间为t 秒 PQD 的面积为y .(1)请直接写出y 关于t 的函数表达式并注明自变量t 的取值范围;(2)在给定的直角坐标系中画出这个函数的图象 并写出该函数的一条性质; (3)结合函数图象 直接写出PQD 的面积大于4时t 的取值范围.11.如图 在平面直角坐标系中 直线AB 交x 轴 y 轴于(,0)A a 和(0,)B b 两点 其中a 和b 是方程212320x x -+=的两个实数根 且b a >.使PBC的面积最大?若存在PBC面积的最大值.若没有13.如图点()4,C t在第四象限段OB上.连接于点E交折线段(1)求点A B的坐标;(2)设点E F的纵坐标分别为1y2y当04≤≤时12m-为定值求t的值;y y(3)在(2)的条件下分别过点E F作EG FH垂直于y轴垂足分别为点G H当06≤≤时求长方形EGHF周长的最大值.m14.已知四边形OABC是边长为4的正方形分别以OA OC、所在的直线为x轴y轴建立如图所示的平面直角坐标系直线l经过A C、两点.(1)求直线l的函数表达式;(2)如下图若点D是OC的中点E是直线l上的一个动点求使OE DE+取得最小值时点E的坐标.(3)如下图过点O作AC的垂线垂足为点M点P是直线l上的一个点点Q是y轴上的一个点以,,O P Q为顶点的三角形与OMP全等请直接写出所有符合条件的点P的坐标.15.如图1 在平面直角坐标系xoy中等腰直角AOB的斜边OB在x轴上顶点A的坐标为()2,2与AOB重叠部分为轴对称图形时轴交于点(4,0)A-使得QAB为等腰直角三角形?若存在参考答案:5b<(4)2-或8423.(1)1 (2)4 (3)352+或352或32或3132+或3132-+4.(1)()4,8- (2)16y x=- (3)存在 ()()()()0,2,0,4,0,6,0,12---5.(1)4m = 5b = (2)①7 ②存在 4t =秒或()1242-秒或()1242+秒或8秒6.(1)214=-+y x (2):10877,⎛⎫ ⎪⎝⎭或401877⎛⎫⎪⎝⎭, (3)当02t <≤时 254S t =;当24t <≤时 55S t =-7.(1)443y x =+ ()3,0C -; (2)1230,7G ⎛⎫ ⎪⎝⎭或()20,1G -; (3)19,03⎛⎫- ⎪⎝⎭或1,03⎛⎫ ⎪⎝⎭或31,03⎛⎫ ⎪⎝⎭. 8.(1)210y x =-+ (2)250y x =-+ (3)43b c a =-9.(1)6;(2)24y x =-+;(3)存在 直线1l 的函数表达式为17y x = 直线2l 的函数表达式为152y x =- 10.(1)()()30442847t t y t t ⎧<≤⎪=⎨-+<<⎪⎩ (2)当04x <≤时 y 随x 的增大而增大 当47x <≤时 y 随x 的增大而减小 (3)463t <<解题过程:(1)解:依题意 44614AD BC AB ++=++=则相遇时间为14711=+; DP CQ t ==当04t <≤时 点P 在AD 上 Q 在BC 上 ∴1632y t t =⨯=当47t <≤时 142PQ t =-∴()11414222y PQ AD t =⨯=⨯⨯-428t =-+4∴4a = 8b =∴224845AB =+=;(2)设OBD ∠的度数为m ︒ 而90BOE ∠=︒ ∴90BEO m ∠=︒-︒∴90FED BEO m ∠=∠=︒-︒∵DE 的垂直平分线交x 轴负半轴于点F∴FE FD =∴90FED FDE m ∠=∠=︒-︒∴()1802902DFE m m ∠=︒-︒-︒=︒;(3)如图 过B 作BQ DF ⊥于Q 过D 作DT BO ⊥于T由(2)得90FDE FED m ∠=∠=︒-︒∵BF BD =∴90BFD BDF m ∠=∠=︒-︒∴()1802902FBD m m ∠=︒-︒-︒=︒∵BF BD = BQ DF ⊥∴FBQ DBQ DBT m ∠=∠=∠=︒而DT BO ⊥ DQ BQ ⊥∴FQ DQ DT == 设FQ DQ DT x === OT y =FOD BOD S S = DFE BOE S S =2OE xy = 解得4xy OE =FOD BOD S S =可得:24xy y x ⎛⎫+ ⎪28320y +-=解得:434y =-12.(1)223y x x =--+(2)存在()1,2Q -使得QAC △的周长最小(3)存在31524P ⎛⎫- ⎪⎝⎭,使得PBC 面积最大 最大为278 解题过程:(1)解:将1,0A ()3,0B -代入2y x bx c =-++中得10930b c b c -++=⎧⎨--+=⎩ ∴23b c =-⎧⎨=⎩. ∴抛物线解析式为:223y x x =--+;(2)解:∵抛物线解析式为()222314y x x x =--+=-++ ∴抛物线的对称轴为直线=1x -连接BQ由对称性可知BQ AQ =∴AQC 的周长CA AC AQ AC CQ BQ =++=++ ∵A C 为定点∴AC 为定值∴当CQ BQ +最小时 AQC 的周长最小∴当B C Q 三点共线时 CQ BQ +最小 即AQC 的周长最小在223y x x =--+中 当0x =时 2233y x x =--+=C ∴的坐标为()0,3设直线BC 解析式为y kx b '=+∴303k b b ''-+=⎧⎨=⎩∴13k b =⎧⎨='⎩3yx 3y x 中 当时 1y =-+()1,2-∴存在()1,2Q -使得QAC 的周长最小;)解:设()PBPC S S =△∴当S 四边形BPCO S ∴四边形12BE =⋅∴点P 坐标为31524⎛⎫- ⎪⎝⎭,∴存在31524P ⎛⎫- ⎪⎝⎭,使得PBC 面积最大 最大为278.13.(1)()0,9A ()6,0B(2)6-(3)26解题过程:(1)解:∵直线392y x =-+交y 轴于点A 交x 轴于点B∴当0y =时 得:3902x -+= 解得:6x =当0x =时 得:9y =∴()0,9A ()6,0B ;(2)设OC 的解析式为y kx = 过点()4,C t ∴4t k =∴4tk =∴OC 的解析式为()04ty x t =<∵点(),0P m 在线段OB 上 过点P 作x 轴的垂线 交边AB 于点E 交折线段OCB 于点F 且点EF 的纵坐标分别为1y 2y 04m ≤≤∴1392y m =-+ 24ty m =∴1233992424t t y y m m m ⎛⎫-=-+-=-+ ⎪⎝⎭∵12y y -为定值 即3924t m ⎛⎫-+ ⎪⎝⎭为定值∴3024t+=解得:6t =-;(3)①当04m ≤≤时129EF y y =-=(定长) 在点P 运动到图中点P ' 此时直线经过点C 即4m =∴044k b b=+⎧⎨=⎩ 解得14k b =-⎧⎨=⎩ 直线l 的函数表达式4y x =-+;(2)解:如图所示 连接BE BD ,由正方形的性质可得OA BA BC OC ===又∵AC AC =∴()SSS OAC BAC △≌△∴OAE BAE ∠=∠又∵AE AE =∴()SAS OAE BAE △≌△∴OE BE =∴DE OE DE BE +=+∴当B D E 、、三点共线时 DE BE +最小 即此时OE DE +取得最小值 设DB 所在直线为()1110y k x b k =+≠∵点D 是OC 的中点 ()04C ,∴()02D ,又∵()44B ,∴111442k b b =+⎧⎨=⎩∴11122k b ⎧=⎪⎨⎪=⎩ ∴直线DB 为122y x =+33⎝⎭∴()224x x +=∴422x =-在4y x =-+中 当422x =-时 22y =∴P 点坐标为()42222-,; 如图所示 当POM OPQ △≌△时同理可得PQ CQ OM CM === 24OC OM == ∴22PQ CQ OM CM ====∴422OQ =+∴P 点坐标为()22422-+,; 如图所示 当OMP PQO ≌△△时∴PM OQ OM PQ ==,同理可得2222OM CM OC === 设OQ PM x == 则4CQ PQ x ==- 242222CP CQ x CM MP x ==-=+=+ 解得422x =-直线AOB COP S S S ∆∆=-1122AM OB OP PC =⋅-⋅2111424222m m m =⨯⨯-⋅=-.当24m <<时 如图②.COB AOP S S S ∆∆=-1122PC OB OP AM =⋅-⋅114222m m m =⨯⨯-⨯=.当4m >时 如图③COP AOB S S ∆∆=-1122PC OP OB AM =-2111424222m m m =-⨯⨯=-.与AOB重叠部分为轴对称图形无重叠部分(3)Q 的坐标为(3,7)-或(7,4)-或7(2-7)2 解题过程:(1)在94y x =中 令2x =得92y =9(2,)2C ∴; 设直线1l 的解析式为y kx b =+ 把(4,0)A - 9(2,)2C 代入得: 40922k b k b -+=⎧⎪⎨+=⎪⎩解得343k b ⎧=⎪⎨⎪=⎩ ∴直线1l 的解析式为334y x =+; (2)如图:设(,0)M m 则3(,3)4D m m + 9(,)4E m m 2DE =39|3|244m m ∴+-= 3322m ∴-=或3322m -=- 解得23m =或103m = M ∴的坐标为2(3 0)或10(3 0); (3)在334y x =+中 令0x =得3y =(0,3)B ∴①当B 为直角顶点时 过B 作BH y ⊥轴于H 如图:QAB 为等腰直角三角形 AB QB ∴= 90QBA ∠=︒ 90ABO QBH BQH ∴∠=︒-∠=∠ 90AOB QHB ∠=︒=∠ (AAS)ABO BQH ∴≌ 4OA BH ∴== 3OB QH == 7OH OB BH ∴=+= Q ∴的坐标为(3,7)-; ②当A 为直角顶点时,过Q 作QT x ⊥轴于T , 如图:同理可得(AAS)AQT BAO ≌ 3AT OB ∴== 4QT OA == 7OT OA AT ∴=+= Q ∴的坐标为(7,4)-; ③当Q 为直角顶点时,过Q 作WG y ⊥轴于G 过A 作AW WG ⊥于W ,如图:同理可得(AAS)AQW QBG ≌ AW QG ∴= QW BG = 设(,)Q p q ∴(4)3q p p q =-⎧⎨--=-⎩ 解得7272p q ⎧=-⎪⎪⎨⎪=⎪⎩Q ∴的坐标为7(2-, 7)2; 综上所述 Q 的坐标为(3,7)-或(7,4)-或7722⎛⎫- ⎪⎝⎭,。
冲刺中考数学压轴之满分集训专题02函数图像与性质综合题(四大类)【类型一:分析函数图像】【典例1】(锦州)已知A,B两地相距10千米,上午9:00甲骑电动车从A 地出发到B地,9:10乙开车从B地出发到A地,甲、乙两人距A地的距离y(千米)与甲所用的时间x(分)之间的关系如图所示,则乙到达A地的时间为.【答案】9:20【解答】解:因为甲30分走完全程10千米,所以甲的速度是千米/分,由图中看出两人在走了5千米时相遇,那么甲此时用了15分钟,则乙用了(15﹣10)分钟,所以乙的速度为:5÷5=1千米/分,所以乙走完全程需要时间为:10÷1=10分,因为9:10乙才出发,所以乙到达A地的时间为9:20;故答案为9:20.【变式1-1】(2022•潍坊)如图,在▱ABCD中,∠A=60°,AB=2,AD=1,点E,F在▱ABCD的边上,从点A同时出发,分别沿A→B→C和A→D→C 的方向以每秒1个单位长度的速度运动,到达点C时停止,线段EF扫过区域的面积记为y,运动时间记为x,能大致反映y与x之间函数关系的图象是()A.B.C.D.【答案】A【解答】解:过点F作FH⊥AB于H,当0≤x≤1时,如图1,在Rt△FAH中,AF=x,∠A=60°,则FH=AF•sin A=x,∴线段EF扫过区域的面积y=x•x=x2,图象是开口向上的抛物线,当1<x≤2时,如图2,过点D作DP⊥AB于P,则DP=AD•sin A=,∴线段EF扫过区域的面积y=×(x﹣1+x)×=x﹣,图象是y 随x的增大而增大的线段,当2<x≤3时,如图3,过点E作EG⊥CD于G,则CE=CF=3﹣x,∴EG=(3﹣x),∴线段EF扫过区域的面积y=2×﹣×(3﹣x)×(3﹣x)=﹣(3﹣x)2,图象是开口向下的抛物线,故选:A.【变式1-2】(2022•齐齐哈尔)如图①所示(图中各角均为直角),动点P从点A出发,以每秒1个单位长度的速度沿A→B→C→D→E路线匀速运动,△AFP的面积y随点P运动的时间x(秒)之间的函数关系图象如图②所示,下列说法正确的是()A.AF=5B.AB=4C.DE=3D.EF=8【答案】B【解答】解:由图②的第一段折线可知:点P经过4秒到达点B处,此时的三角形的面积为12,∵动点P从点A出发,以每秒1个单位长度的速度沿A→B→C→D→E路线匀速运动,∴AB=4.∵×AF•AB=12,∴AF=6,∴A选项不正确,B选项正确;由图②的第二段折线可知:点P再经过2秒到达点C处,∴BC=2,由图②的第三段折线可知:点P再经过6秒到达点D处,∴CD=6,由图②的第四段折线可知:点P再经过4秒到达点E处,∴DE=4.∴C选项不正确;∵图①中各角均为直角,∴EF=AB+CD=4+6=10,∴D选项的结论不正确,故选:B.【变式1-3】(2022•宜昌)如图是小强散步过程中所走的路程s(单位:m)与步行时间t(单位:min)的函数图象.其中有一时间段小强是匀速步行的.则这一时间段小强的步行速度为()A.50m/min B.40m/min C.m/min D.20m/min【答案】D【解答】解:由函数图象知,从30﹣70分钟时间段小强匀速步行,∴这一时间段小强的步行速度为=20(m/min),故选:D.【变式1-4】(2022•辽宁)如图,在等边三角形ABC中,BC=4,在Rt△DEF 中,∠EDF=90°,∠F=30°,DE=4,点B,C,D,E在一条直线上,点C,D重合,△ABC沿射线DE方向运动,当点B与点E重合时停止运动.设△ABC运动的路程为x,△ABC与Rt△DEF重叠部分的面积为S,则能反映S与x之间函数关系的图象是()A.B.C.D.【答案】A【解答】解:过点A作AM⊥BC,交BC于点M,在等边△ABC中,∠ACB=60°,在Rt△DEF中,∠F=30°,∴∠FED=60°,∴∠ACB=∠FED,∴AC∥EF,在等边△ABC中,AM⊥BC,∴BM=CM=BC=2,AM=BM=2,=BC•AM=4,∴S△ABC①当0<x≤2时,设AC与DF交于点G,此时△ABC与Rt△DEF重叠部分为△CDG,由题意可得CD=x,DG=x∴S=CD•DG=x2;②当2<x≤4时,设AB与DF交于点G,此时△ABC与Rt△DEF重叠部分为四边形AGDC,由题意可得:CD=x,则BD=4﹣x,DG=(4﹣x),﹣S△BDG=4﹣×(4﹣x)×(4﹣x),∴S=S△ABC∴S=﹣x2+4x﹣4=﹣(x﹣4)2+4,③当4<x≤8时,设AB与EF交于点G,过点G作GM⊥BC,交BC于点M,此时△ABC与Rt△DEF重叠部分为△BEG,由题意可得CD=x,则CE=x﹣4,DB=x﹣4,∴BE=x﹣(x﹣4)﹣(x﹣4)=8﹣x,∴BM=4﹣x在Rt△BGM中,GM=(4﹣x),∴S=BE•GM=(8﹣x)×(4﹣x),∴S=(x﹣8)2,综上,选项A的图像符合题意,故选:A.【类型二:判断函数图像】【典例2】(2020•铜仁市)如图,在矩形ABCD中,AB=3,BC=4,动点P沿折线BCD从点B开始运动到点D,设点P运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.【答案】D【解答】解:由题意当0≤x≤4时,y=×AD×AB=×3×4=6,当4<x<7时,y=×PD×AD=×(7﹣x)×4=14﹣2x.故选:D.【变式2-1】(2022•湖北)如图,边长分别为1和2的两个正方形,其中有一条边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形的面积为S1,小正方形与大正方形重叠部分的面积为S2,若S=S1﹣S2,则S随t变化的函数图象大致为()A.B.C.D.【答案】A【解答】解:由题意得:当0≤t<1时,S=4﹣t,当1≤t≤2时,S=3,当2<<t≤3时,S=t+1,故选:A.【变式2-2】(2022•绥化)已知二次函数y=ax2+bx+c的部分函数图象如图所示,则一次函数y=ax+b2﹣4ac与反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.【答案】B【解答】解:∵二次函数y=ax2+bx+c的部分函数图象开口向上,∴a>0,∵二次函数y=ax2+bx+c的部分函数图象顶点在x轴下方,开口向上,∴二次函数y=ax2+bx+c的图象与x轴有两个交点,b2﹣4ac>0,∴一次函数y=ax+b2﹣4ac的图象位于第一,二,三象限,由二次函数y=ax2+bx+c的部分函数图象可知,点(2,4a+2b+c)在x轴上方,∴4a+2b+c>0,∴y=的图象位于第一,三象限,据此可知,符合题意的是B,故选:B.【变式2-3】(2022•广西)已知反比例函数y=(b≠0)的图象如图所示,则一次函数y=cx﹣a(c≠0)和二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【答案】D【解答】解:∵反比例函数y=(b≠0)的图象位于一、三象限,∴b>0;∵A、B的抛物线都是开口向下,∴a<0,根据同左异右,对称轴应该在y轴的右侧,故A、B都是错误的.∵C、D的抛物线都是开口向上,∴a>0,根据同左异右,对称轴应该在y轴的左侧,∵抛物线与y轴交于负半轴,∴c<0由a>0,c<0,排除C.故选:D.【类型三:反比例函数综合】【典例3】(2022•十堰)如图,正方形ABCD的顶点分别在反比例函数y=(k1>0)和y=(k2>0)的图象上.若BD∥y轴,点D的横坐标为3,则k1+k2=()A.36B.18C.12D.9【答案】B【解答】解:连接AC交BD于E,延长BD交x轴于F,连接OD、OB,如图:∵四边形ABCD是正方形,∴AE=BE=CE=DE,设AE=BE=CE=DE=m,D(3,a),∵BD∥y轴,∴B(3,a+2m),A(3+m,a+m),∵A,B都在反比例函数y=(k1>0)的图象上,∴k1=3(a+2m)=(3+m)(a+m),∵m≠0,∴m=3﹣a,∴B(3,6﹣a),∵B(3,6﹣a)在反比例函数y=(k1>0)的图象上,D(3,a)在y=(k2>0)的图象上,∴k1=3(6﹣a)=18﹣3a,k2=3a,∴k1+k2=18﹣3a+3a=18;故选:B【变式3-1】(2021•鄂州)如图,点A是反比例函数y=(x>0)的图象上一点,过点A作AC⊥x轴于点C,AC交反比例函数y=(x>0)的图象于点B,点P是y轴正半轴上一点.若△PAB的面积为2,则k的值为.【答案】8【解答】解:连接OA、OB,∵AC⊥x轴,∴AC∥y轴,=S△APB,∴S△AOB=2,∵S△APB=2,∴S△AOB由反比例函数系数k的几何意义可得:S△AOC=6,S△BOC=,∴6﹣=2,解得:k=8,故答案为8.【变式3-2】(2021•荆州)如图,过反比例函数y=(k>0,x>0)图象上的四点P1,P2,P3,P4分别作x轴的垂线,垂足分别为A1,A2,A3,A4,再过P1,P2,P3,P4分别作y轴,P1A1,P2A2,P3A3的垂线,构造了四个相邻的矩形.若这四个矩形的面积从左到右依次为S1,S2,S3,S4,OA1=A1A2=A2A3=A3A4,则S1与S4的数量关系为.【答案】S1=4S4【解答】解:∵过双曲线上任意一点、向坐标轴作垂线所围成的矩形面积S 是个定值,OA1=A1A2=A2A3=A3A4,∴S1=k,S2=k,S3=k,S4=k,∴S1=4S4.故答案为:S1=4S4.【变式3-3】(2022•毕节市)如图,在平面直角坐标系中,正方形ABCD的顶点A,B分别在x轴、y轴上,对角线交于点E,反比例函数y=(x>0,k>0)的图象经过点C,E.若点A(3,0),则k的值是.【答案】4【解答】解:设C(m,),∵四边形ABCD是正方形,∴点E为AC的中点,∴E(,),∵点E在反比例函数y=上,∴,∴m=1,作CH⊥y轴于H,∴CH=1,∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°,∴∠OBA=∠HCB,∵∠AOB=∠BHC,∴△AOB≌△BHC(AAS),∴BH=OA=3,OB=CH=1,∴C(1,4),∴k=4,故答案为:4.【变式3-4】(2022•雁塔区校级模拟)如图,正方形ACBE的边长是,点B,C分别在x轴和y轴正半轴上,BO=2,ED⊥x轴于点D,ED的中点F在反比例函数y=(x>0)的图象上,则k=.【答案】3【解答】解:∵正方形ACBE的边长是,BO=2,∴BC=BE=,∴OC===1,∵∠ABC=90°,∴∠OBC+∠EBD=90°,∵∠OBC+∠OCB=90°,∴∠OCB=∠EBD,在△OBC和△DEB中,,∴△OBC≌△DEB(AAS),∴BD=OC=1,DE=OB=2,∴OD=3,∴E(3,2),∵点F是ED的中点,∴F(3,1),∵点F在反比例函数y=(x>0)的图象上,∴k=3×1=3,故答案为3.【变式3-5】(2021•广元)如图,点A(﹣2,2)在反比例函数y=的图象上,点M在x轴的正半轴上,点N在y轴的负半轴上,且OM=ON=5.点P(x,y)是线段MN上一动点,过点A和P分别作x轴的垂线,垂足为点D和E,<S△OPE时,x的取值范围是.连接OA、OP.当S△OAD【答案】1<x<4【解答】解:过点B作BF⊥ON于F,连接OB,过点C作CG⊥OM于点G,连接OC,如图,∵点A(﹣2,2)在反比例函数y=的图象上,∴k=﹣4.∴y=.∵点A(﹣2,2),∴AD=OD=2.∴.设B(a,b),则ab=﹣4,OF=﹣b,BF=a.∴==2.=2.同理:S△OCG>S△OBF,从图中可以看出当点P在线段BC上时,S△OPE<S△OPE.即当点P在线段BC上时,满足S△OAD∵OM=ON=5,∴N(0,﹣5),M(5,0).设直线MN的解析式为y=mx+n,则:,解得:.∴直线MN的解析式为y=x﹣5.∴,解得:,.∴B(1,﹣4),C(4,﹣1).∴x的取值范围为1<x<4.【变式3-6】(2021•荆门)如图,在平面直角坐标系中,Rt△OAB斜边上的高为1,∠AOB=30°,将Rt△OAB绕原点顺时针旋转90°得到Rt△OCD,点A的对应点C恰好在函数y=(k≠0)的图象上,若在y=的图象上另有一点M使得∠MOC=30°,则点M的坐标为.【答案】(,1)【解答】解:作AE⊥OB于E,MF⊥x轴于F,则AE=1,∵∠AOB=30°,∴OE=AE=,将Rt△OAB绕原点顺时针旋转90°得到Rt△OCD,点A的对应点C为(1,),∵点C在函数y=(k≠0)的图象上,∴k=1×=,∴y=,∵∠COD=∠AOB=30°,∠MOC=30°,∴∠DOM=60°,∴∠MOF=30°,∴OF=MF,设MF=n,则OF=n,∴M(n,n),∵点M在函数y=的图象上,∴n=,∴n=1(负数舍去),∴M(,1),故答案为(,1).【变式3-7】(2021•达州)如图,将一把矩形直尺ABCD和一块等腰直角三角板EFG摆放在平面直角坐标系中,AB在x轴上,点G与点A重合,点F在AD上,EF交BC于点M,反比例函数y=(x<0)的图象恰好经过点F,M,若直尺的宽CD=1,三角板的斜边FG=4,则k=.【答案】﹣12【解答】解:过点M作MN⊥AD,垂足为N,则MN=CD=1,在Rt△FMN中,∠MFN=45°,∴FN=MN=1又∵FG=4,∴NA=MB=FG﹣FN=4﹣1=3,设OA=a,则OB=a+1,∴点F(﹣a,4),M(﹣a﹣1,3),又∵反比例函数y=(x<0)的图象恰好经过点F,M,∴k=﹣4a=3(﹣a﹣1),解得,a=3,∴k=﹣4a=﹣12,故答案为:﹣12.【类型4:二次函数综合】【典例4】(2021•广安)二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0,②4a﹣2b+c<0,③a﹣b≥x(ax+b),④3a+c<0,正确的有()A.1个B.2个C.3个D.4个【答案】C【解答】解:∵抛物线开口向下,∴a<0,∵对称轴为直线x=﹣1,即,∴b=2a,则b<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故①正确;∵抛物线对称轴为直线x=﹣1,与x轴的一个交点横坐标在0和1之间,则与x轴的另一个交点在﹣2和﹣3之间,∴当x=﹣2时,y=4a﹣2b+c>0,故②错误;∵x=﹣1时,y=ax2+bx+c的最大值是a﹣b+c,∴a﹣b+c≥ax2+bx+c,∴a﹣b≥ax2+bx,即a﹣b≥x(ax+b),故③正确;∵当x=1时,y=a+b+c<0,b=2a,∴a+2a+c=3a+c<0,故④正确;故选:C.【变式4-1】(2022•辽宁)抛物线y=ax2+bx+c的部分图象如图所示,对称轴为直线x=﹣1,直线y=kx+c与抛物线都经过点(﹣3,0).下列说法:①ab>0;②4a+c>0;③若(﹣2,y1)与(,y2)是抛物线上的两个点,则y1<y2;④方程ax2+bx+c=0的两根为x1=﹣3,x2=1;⑤当x=﹣1时,函数y=ax2+(b﹣k)x有最大值.其中正确的个数是()A.2B.3C.4D.5【答案】A【解答】解:∵抛物线的开口方向向下,∴a<0.∵抛物线的对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a,b<0.∵a<0,b<0,∴ab>0,∴①的结论正确;∵抛物线y=ax2+bx+c经过点(﹣3,0),∴9a﹣3b+c=0,∴9a﹣3×2a+c=0,∴3a+c=0.∴4a+c=a<0,∴②的结论不正确;∵抛物线的对称轴为直线x=﹣1,∴点(﹣2,y1)关于直线x=﹣1对称的对称点为(0,y1),∵a<0,∴当x>﹣1时,y随x的增大而减小.∵>0>﹣1,∴y1>y2.∴③的结论不正确;∵抛物线的对称轴为直线x=﹣1,抛物线经过点(﹣3,0),∴抛物线一定经过点(1,0),∴抛物线y=ax2+bx+c与x轴的交点的横坐标为﹣3,1,∴方程ax2+bx+c=0的两根为x1=﹣3,x2=1,∴④的结论正确;∵直线y=kx+c经过点(﹣3,0),∴﹣3k+c=0,∴c=3k.∵3a+c=0,∴c=﹣3a,∴3k=﹣3a,∴k=﹣a.∴函数y=ax2+(b﹣k)x=ax2+(2a+a)x=ax2+3ax=a﹣a,∵a<0,∴当x=﹣时,函数y=ax2+(b﹣k)x有最大值,∴⑤的结论不正确.综上,结论正确的有:①④,故选:A.【变式4-2】(2022•烟台)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,其对称轴为直线x=﹣,且与x轴的一个交点坐标为(﹣2,0).下列结论:①abc>0;②a=b;③2a+c=0;④关于x的一元二次方程ax2+bx+c﹣1=0有两个相等的实数根.其中正确结论的序号是()A.①③B.②④C.③④D.②③【答案】D【解答】解:①由图可知:a>0,c<0,<0,∴b>0,∴abc<0,故①不符合题意.②由题意可知:=﹣,∴b=a,故②符合题意.③将(﹣2,0)代入y=ax2+bx+c,∴4a﹣2b+c=0,∵a=b,∴2a+c=0,故③符合题意.④由图象可知:二次函数y=ax2+bx+c的最小值小于0,令y=1代入y=ax2+bx+c,∴ax2+bx+c=1有两个不相同的解,故④不符合题意.故选:D.【变式4-3】(2022•梧州)如图,已知抛物线y=ax2+bx﹣2的对称轴是直线x =﹣1,直线l∥x轴,且交抛物线于点P(x1,y1),Q(x2,y2),下列结论错误的是()A.b2>﹣8aB.若实数m≠﹣1,则a﹣b<am2+bmC.3a﹣2>0D.当y>﹣2时,x1•x2<0【答案】C【解答】解:根据函数图象可知a>0,根据抛物线的对称轴公式可得x=﹣=﹣1,∴b=2a,∴b2>0,﹣8a<0,∴b2>﹣8a.故A正确,不符合题意;∵函数的最小值在x=﹣1处取到,∴若实数m≠﹣1,则a﹣b﹣2<am2+bm﹣2,即若实数m≠﹣1,则a﹣b<am2+bm.故B正确,不符合题意;∵l∥x轴,∴y1=y2,令x=0,则y=﹣2,即抛物线与y轴交于点(0,﹣2),∴当y1=y2>﹣2时,x1<0,x2>0.∴当y1=y2>﹣2时,x1•x2<0.故D正确,不符合题意;∵a>0,∴3a>0,没有条件可以证明3a>2.故C错误,符合题意;故选:C.【变式4-4】(2022•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,0<a<c)经过点(1,0),有下列结论:①2a+b<0;②当x>1时,y随x的增大而增大;③关于x的方程ax2+bx+(b+c)=0有两个不相等的实数根.其中,正确结论的个数是()A.0B.1C.2D.3【答案】C【解答】解:①∵抛物线y=ax2+bx+c经过点(1,0),∴a+b+c=0,∵a<c,∴a+b+a<0,即2a+b<0,本小题结论正确;②∵a+b+c=0,0<a<c,∴b<0,∴对称轴x=﹣>1,∴当1<x<﹣时,y随x的增大而减小,本小题结论错误;③∵a+b+c=0,∴b+c=﹣a,对于方程ax2+bx+(b+c)=0,Δ=b2﹣4×a×(b+c)=b2+4a2>0,∴方程ax2+bx+(b+c)=0有两个不相等的实数根,本小题结论正确;故选:C.【变式4-5】(2021•福建)二次函数y=ax2﹣2ax+c(a>0)的图象过A(﹣3,y1),B(﹣1,y2),C(2,y3),D(4,y4)四个点,下列说法一定正确的是()A.若y1y2>0,则y3y4>0B.若y1y4>0,则y2y3>0C.若y2y4<0,则y1y3<0D.若y3y4<0,则y1y2<0【答案】C【解答】解:如图,由题意对称轴为直线x=1,观察图象可知,y1>y4>y2>y3,若y1y2>0,如图1中,则y3y4<0,选项A不符合题意,若y1y4>0,如图2中,则y2y3<0,选项B不符合题意,若y2y4<0,如图3中,则y1y3<0,选项C符合题意,若y3y4<0,如图4中,则y1y2>0,选项D不符合题意,故选:C.【变式4-6】(2021•恩施州)如图,已知二次函数y=ax2+bx+c的图象与x轴交于(﹣3,0),顶点是(﹣1,m),则以下结论:①abc>0;②4a+2b+c>0;③若y≥c,则x≤﹣2或x≥0;④b+c=m.其中正确的有()个.A.1B.2C.3D.4【答案】B【解答】解:①∵抛物线开口向上,对称轴在y轴左边,与y轴交于负半轴,∴a>0,b>0,c<0,∴abc<0,故结论①错误;②∵二次函数y=ax2+bx+c的图象与x轴交于(﹣3,0),顶点是(﹣1,m),∴抛物线与x轴的另一个交点为(1,0),∵抛物线开口向上,∴当x=2时,y=4a+2b+c>0,故结论②正确;③由题意可知对称轴为:直线x=﹣1,∴x=,∴b=2a,把y=c,b=2a代入y=ax2+bx+c得:ax2+2ax+c=c,∴x2+2x=0,解得x=0或﹣2,∴当y≥c,则x≤﹣2或x≥0,故结论③正确;④把(﹣1,m),(1,0)代入y=ax2+bx+c得:a﹣b+c=m,a+b+c=0,∴b=,∵b=2a,∴a=,∵抛物线与x轴的另一个交点为(1,0),∴a+b+c=0,∴c=,∴b+c=,故选:B.。
专题32函数与几何综合问题(10道)一、单选题1.(2023·山东泰安·统考中考真题)如图,在平面直角坐标系中,Rt AOB △的一条直角边OB 在x 轴上,点A 的坐标为(64)-,;Rt COD 中,904330COD OD D ∠=︒=∠=︒,,,连接BC ,点M 是BC 中点,连接AM .将Rt COD 以点O 为旋转中心按顺时针方向旋转,在旋转过程中,线段AM 的最小值是()A .3B .624-C .2132-D .2【答案】A 【分析】如图所示,延长BA 到E ,使得AE AB =,连接OE CE ,,根据点A 的坐标为(64)-,得到8BE =,再证明AM 是BCE 的中位线,得到12AM CE =;解Rt COD 得到4OC =,进一步求出点C 在以O 为圆心,半径为4的圆上运动,则当点M 在线段OE 上时,CE 有最小值,即此时AM 有最小值,据此求出CE 的最小值,即可得到答案.【详解】解:如图所示,延长BA 到E ,使得AE AB =,连接OE CE ,,∵Rt AOB △的一条直角边OB 在x 轴上,点A 的坐标为(64)-,,∴46AB OB ==,,∴4AE AB ==,∴8BE =,∵点M 为BC 中点,点A 为BE 中点,∴AM 是BCE 的中位线,∴12AM CE =;在Rt COD 中,904330COD OD D ∠=︒=∠=︒,,,∴343OC OD ==,∵将Rt COD 以点O 为旋转中心按顺时针方向旋转,∴点C 在以O 为圆心,半径为4的圆上运动,【点睛】本题主要考查了一点到圆上一点的最值问题,勾股定理,三角形中位线定理,坐标与图形,含度角的直角三角形的性质等等,正确作出辅助线是解题的关键.2.(2023·江苏无锡·统考中考真题)如图若点D为直线BC下方一点,且△△的重心;②若点E不一定是ABD长为23;④若ABC BCD△∽△,则当A.①④B.②③【答案】A【分析】①有3种情况,分别画出图形,得出得最大值,进而根据已知数据,结合勾股定理,求得△,根据相似三角形的性质求得∽△CABC BD解;④如图6,根据相似三角形的性质得出+性质,即可求AC CD如图2,四边形ABDC 是平行四边形,F 是AD 中点,点E 是重心;如图3,点F 不是AD 中点,所以点E 不是重心;①正确②当60α=︒,如图4时AD 最大,4AB =,∴2AC BE ==,23BC AE ==,36BD BC ==,∴8DE =,∴21927AD =≠,∴②错误;③如图5,若60α=︒,C ABC BD ∽△△,∴60BCD ∠=︒,90CDB ∠=︒,4AB =,2AC =,23BC =,3OE =,1CE =,∴3CD =,32GE DF ==,32CF =,∴52EF DG ==,32OG =,∴723OD =≠,二、填空题∴()1,0A ,()5,0B ,()0,5C a ,设直线BM 解析式为y kx b =+,∴5031k b k b +=⎧⎨+=⎩解得:1252k b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线BM 解析式为1522y x =-+,当0x =时,52y =,则直线BM 与y 轴交于50,2⎛⎫ ⎪⎝⎭,∵12a >,∴552a >,∴点M 必在ABC 内部.1)、当分成两个三角形时,直线必过三角形一个顶点,平分面积,必为中线设直线AM 的解析式为y mx n=+∴031k b k b +=⎧⎨+=⎩,解得:1212m n ⎧=⎪⎪⎨⎪=-⎪⎩则直线AM 的解析式为1122y x =-①如图1,直线AM 过BC 中点,,BC 中点坐标为55,22a ⎛⎫ ⎪⎝⎭,代入直线求得31102a =<,不成立;②如图2,直线BM 过AC 中点,直线BM 解析式为1522y x =-+,AC 中点坐标为15,22a ⎛⎫ ⎪⎝⎭,待入直线求得910a =;5⑤如图5,直线ME ∥AC ,MN CO ∥,则EMN ACO∽∴12BE AB =,又4AB =,∴22BE =,∵53222BN =-=<,∴不成立;⑥如图6,直线ME ∥BC ,同理可得12AE AB =,∴22AE =,222NE =-,tan tan MEN CBO ∠∠=,∴155222a =-,解得212a +=;综上所述,910a =或225+或212+.【点睛】本题考查了二次函数的综合问题,解直角三角形,相似三角形的性质与判定,熟练掌握以上知识,并分类讨论是解题的关键.三、解答题4.(2023·四川绵阳·统考中考真题)如图,抛物线2(0)y ax bx c a =++≠的图象的顶点坐标是(2,1),并且经过点(4,2),直线112y x =+与抛物线交于B ,D 两点,以BD 为直径作圆,圆心为点C ,圆C 与直线m 交于对称轴右侧的点(,1)M t ,直线m 上每一点的纵坐标都等于1.(1)求抛物线的解析式;(2)证明:圆C 与x 轴相切;(3)过点B 作BE m ⊥,垂足为E ,再过点D 作DF m ⊥,垂足为F ,求:BE MF 的值.【答案】(1)2124y x x =-+(2)见解析(3)512+【分析】〔1〕可设抛物线的顶点式,再结合抛物线过点(4,2),可求得抛物线的解析式;〔2〕联立直线和抛物线解析式可求得B 、D 两点的坐标,那么可求得C 点坐标和线段BD 的长,可求得圆的半径,可证得结论;〔3〕过点C 作CH m ⊥于点H ,连接CM ,可求得MH ,利用〔2〕中所求B 、D 的坐标可求得FH ,那么可求得MF 和BE 的长,可求得其比值.【详解】(1)解: 抛物线2(0)y ax bx c a =++≠的图象的顶点坐标是(2,1),∴可设抛物线解析式为2(2)1y a x =-+,抛物线经过点(4,2),∴22(42)1a =-+,解得14a =,5553512222BE =--=- ,355122252BE MF -+∴==-.【点睛】此题为二次函数的综合应用,涉及待定系数法、函数图象的交点、切线的判定和性质、勾股定理等知识.在〔1〕中注意利用抛物线的顶点式,在〔2〕中求得B 、D 的坐标是解题的关键,在〔3〕中求得BE 、MF 的长是解题的关键.此题考查知识点较多,综合性较强,计算量较大,难度较大.5.(2023·浙江·统考中考真题)小贺在复习浙教版教材九上第81页第5题后,进行变式、探究与思考:如图1,O 的直径CD 垂直弦AB 于点E ,且8CE =,2DE =.(1)复习回顾:求AB 的长.(2)探究拓展:如图2,连接AC ,点G 是 BC上一动点,连接AG ,延长CG 交AB 的延长线于点F .①当点G 是 BC的中点时,求证:GAF F ∠=∠;②设CG x =,CF y =,请写出y 关于x 的函数关系式,并说明理由;③如图3,连接DF BG ,,当CDF 为等腰三角形时,请计算BG 的长.【答案】(1)8AB =(2)①见解析;②80y x =;③BG 的长为455或4322-【分析】(1)先求得O 的直径为10,再利用垂径定理求得AE BE =,在Rt OAE △中,利用勾股定理即可求解;(2)①连接DG ,由点G 是 BC的中点,推出GAF D ∠=∠,根据等角的余角相等即可证明结论成立;②利用勾股定理求得45AC =,利用垂径定理得到 AC BC=,推出CAF CGA ∠=∠,证明CAF CGA ∽△△,利用相似三角形的性质即可求解;③分两种情况讨论,当10CF CD ==和10DF CD ==时,证明FGB FAC ∽△△,利用相似三角形的性质求解即可.【详解】(1)解:连接OA ,∵O 的直径CD 垂直弦∴10CD CE DE =+=,∴152OA OD CD ===在Rt OAE △中,AE =∴28AB AE ==;(2)解:①连接DG ,∵点G 是 BC的中点,∴»»CGBG =,∴GAF D ∠=∠,∵O 的直径CD 垂直弦AB ∴90CGD CEF ∠=∠=︒,∴90F DCG D ∠=︒-∠=∠,∴GAF F ∠=∠;②∵8CE =,4AE =,CEA ∠∴2224AC AE CE =+=+∵O 的直径CD 垂直弦AB 于点E ,∴ AC BC=,∴CAF CGA ∠=∠,∵ACF GCA =∠∠,∴CAF CGA ∽△△,∴AC CF CG AC =,即4545y x =,∴80y x=;③当10CF CD ==时,在Rt CEF △中,22221086EF CF CE =-=-=,∴2BF EF BE =-=,∵180FGB BGC FAC ∠=︒-∠=∠,∴FGB FAC ∽△△,∴BG BFAC CF=,即21045BG =,∴455BG =;当10DF CD ==时,在Rt DEF △中,2EF DF DE =-在Rt CEF △中,2CF CE EF =+∴464BF EF BE =-=-,同理FGB FAC ∽△△,∴BG BF AC CF =,即46445410BG -=∴4322BG =-;综上,BG 的长为455或432-【点睛】本题考查了圆周角定理,垂径定理,相似三角形的判定和性质,勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件.6.(2023·江苏泰州·统考中考真题)在平面直角坐标系函数1(0)my x x=>、2(m a y x x -=数1y 的图像相交于点E ,CD 边与函数与y 轴相交于点P ,连接PH .(1)2m =,4a =,求函数3y 的表达式及(2)当a 、m 在满足0a m >>的条件下任意变化时,(3)试判断直线PH 与BC 边的交点是否在函数2y 的图像上?并说明理由.【答案】(1)函数3y 的表达式为325y x =-+,PGH △的面积为12(2)不变,理由见解析(3)在,理由见解析【分析】(1)由2m =,4a =,可得(20)A ,,()20B -,,12y x=,22y x-=,则4AB =,当2x =,1212y ==,则()21E ,;当14y =,24x =,解得12x =,则142G ⎛⎫⎪⎝⎭,;当24y =,24x -=,解得12x =-,则142H ⎛⎫- ⎪⎝⎭,;待定系数法求一次函数3y 的解析式为325y x =-+,当0x =,35y =,则()05P ,,根据()11154222PGH S ⎡⎤⎛⎫=⨯--⨯- ⎪⎢⎥⎝⎭⎣⎦△,计算求解即可;(2)求解过程同(1);(3)设直线PH 的解析式为22y k x b =+,将()01P a +,,m a H a a -⎛⎫⎪⎝⎭,,代入22y k x b =+得,2221b am ak b a a =+⎧⎪-⎨+=⎪⎩,解得221b aa k a m =+⎧⎪⎨=⎪-⎩,即1a x a a m y +-=+,当x m a =-,()11y a m a a a m ⨯+=-+=-,则直线PH 与BC 边的交点坐标为()1m a -,,当x m a =-,21m ay m a-=-=,进而可得结论.【详解】(1)解:∵2m =,4a =,∴(20)A ,,()20B -,,12y x=,22y x-=,∴4AB =,当2x =,1212y ==,则()21E ,;当14y =,24x =,解得12x =,则142G ⎛⎫⎪⎝⎭,;当24y =,24x -=,解得12x =-,则142H ⎛⎫- ⎪⎝⎭,;设一次函数3y 的解析式为3y kx b =+,将()21E ,,142G ⎛⎫⎪⎝⎭,,代入3y kx b =+得,21142k b k b +=⎧⎪⎨+=⎪⎩,解得25k b =-⎧⎨=⎩,∴325y x =-+,当x m a =-,21m ay m a-=-=,∴直线PH 与BC 边的交点在函数2y 的图像上.【点睛】本题考查了正方形的性质,一次函数解析式,反比例函数解析式,交点坐标.解题的关键在于对知识的熟练掌握与灵活运用.7.(2023·黑龙江牡丹江·统考中考真题)如图,在平面直角坐标系中,ABCD Y 的顶点B ,C 在x 轴上,D 在y 轴上,OB ,OC 的长是方程2680x x -+=的两个根(OB OC >).请解答下列问题:(1)求点B 的坐标;(2)若:2:1OD OC =,直线y x b =-+分别交x 轴、y 轴、AD 于点E ,F ,M ,且M 是AD 的中点,直线EF 交DC 延长线于点N ,求tan MND ∠的值;(3)在(2)的条件下,点P 在y 轴上,在直线EF 上是否存在点Q ,使NPQ △是腰长为5的等腰三角形?若存在,请直接写出等腰三角形的个数和其中两个点Q 的坐标;若不存在,请说明理由.【答案】(1)()4,0B -(2)1tan 3MND ∠=(3)存在,等腰三角形的个数是8个,1652524,22Q ⎛⎫-- ⎪ ⎪⎝⎭,2652524,22Q ⎛⎫++- ⎪ ⎪⎝⎭,()34,3Q -,()44,3Q -【分析】(1)解方程得到OB ,OC 的长,从而得到点B 的坐标;(2)由:2:1OD OC =,2OC =,得4OD =.由6AD BC ==,M 是AD 中点,得到点M 的坐标,代入直线y x b =-+中,求得b 的值,从而得到直线的解析式,进而求得点E ,点F 的坐标,由坐标特点可得45FEO ∠=︒.过点C 作CH EN ⊥于H ,过点N 作NK BC ⊥于K .从而DOC NKC △∽△,::2:1DO OC NK CK ==,进而得到2NK CK =,易证45KEN KNE ∠=∠=︒,可得2EK NK CK ==,因此EC CK =,由211EC OC OE =-=-=可得1CK =,2NK =,2EK =,从而通过解直角三角形在Rt ENK 中,得到22cos EK EN KEN ==∠,在Rt ECH △中,2cos 2CH EH EC CEH ==⋅∠=,因此求得∴在Rt ENK 中,222cos cos 45EK EN KEN ===∠︒在Rt ECH △中,2cos 1cos 452CH EH EC CEH ==⋅∠=⋅︒=∴2322222NH EN EH =-=-=∴212tan 3322CH MND NH ∠===(3)解:由(2)知:直线EF 解析式为1y x =-+,()3,2N -,设()0,P p ,(),1Q q q -+,①当5PN QN ==时,()()2223025p -+--=,()()2223215q q -+-+-=,解得6p =-或2p =,6522q +=或6522q -=,∴1652524,22Q ⎛⎫-- ⎪ ⎪⎝⎭,2652524,22Q ⎛⎫++- ⎪ ⎪⎝⎭,()10,6P -,()20,2P ,如图,11PQ N 、12PQ N 、21P Q N 、22P Q N 都是以5为腰的等腰三角形,;;③当5PN PQ ==时,由①知:()10,6P -,()20,2P ,当()10,6P -时,()()22061q q -+-+-解得13q =(舍去),24q =,∴()34,3Q -,如图,当()20,2P 时,()()220215q q -++-=,解得13q =(舍去),24q =-,∴()44,3Q -,如图,综上,等腰三角形的个数是8个,符合题意的Q 坐标为1652524,22Q ⎛⎫-- ⎪ ⎪⎝⎭,2652524,22Q ⎛⎫++- ⎪ ⎪⎝⎭,()34,3Q -,()44,3Q -【点睛】本题考查了一次函数的图像与性质,一次函数与平行四边形,等腰三角形的综合问题,数形结合思想是解题的关键.8.(2023·湖南·统考中考真题)如图,点A ,B ,C 在O 上运动,满足222AB BC AC =+,延长AC 至点D ,使得DBC CAB ∠=∠,点E 是弦AC 上一动点(不与点A ,C 重合),过点E 作弦AB 的垂线,交AB 于点F ,交BC 的延长线于点N ,交O 于点M (点M 在劣弧 AC 上).(1)BD 是O 的切线吗?请作出你的判断并给出证明;(2)记BDC ABC ADB ,,的面积分别为12S S S ,,,若()212S S S ⋅=,求()2tan D 的值;(3)若O 的半径为1,设FM x =,11FE FN y BC BN AE AC⋅⋅+=⋅⋅,试求y 关于x 的函数解析式,并写出自变量x 的取值范围.∴D ABC ∠=∠.∴tan tan BC AC D ABC CD BC∠==∠=.∴2BC CD AC=.又()2CD CD AC AC +=,∴4222BC BC AC AC+=.∴4224BC AC BC AC +⋅=.∴241AC AC BC BC ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭.由题意,设()2tan D m =,∴2AC m BC ⎛⎫= ⎪⎝⎭.∴21m m +=.∴152m ±=.∵0m >,∴152m +=.∴()22t 5an 1D +=.(3)设A α∠=,∵90A ABC ABC DBC ABC N ∠+∠=∠+∠=∠+∠=︒,∴A DBC N α∠=∠=∠=.如图,连接OM .∴在Rt OFM △中,2221OF OM FM x =-=-.(1)当45QPB ∠=︒时,求四边形(2)当点P 在线段AB 上移动时,设【答案】(1)438+(2)23234312x S x =++【分析】(1)连接BD 、BQ ,根据菱形的性质以及已知条件可得BDC 为等边三角形,根据45QPB ∠=︒,可得PBQ 为等腰直角三角形,则23PB =,62PQ =,根据翻折的性质,可得90BPB ∠='︒,PB PB '=,则26BB '=,6PE =;同理2CQ =,22CC '=,2QF =;进而根据2PBB CQC BB C C PBCQ S S S S ''''=-+ 四边形梯形,即可求解;(2)等积法求得22312xBE x =+,则21212QE x =+,根据三角形的面积公式可得212312QEB x S x =+ ,证明BEQ QFC ~ ,根据相似三角形的性质,得出24312QFC x S x =+ ,根据()2QEB BQC QFC S S S S =++ 即可求解.【详解】(1)如图,连接BD 、BQ ,四边形ABCD 为菱形,∴4CB CD ==,60A C ∠=∠=︒,∴BDC 为等边三角形.Q 为CD 中点,∴2CQ =,BQ CD ⊥,∴23BQ =,QB PB ⊥.45QPB ∠=︒,∴PBQ 为等腰直角三角形,∴23PB =,62PQ =,翻折,∴90BPB ∠='︒,PB PB '=,∵1223232BQC S =⨯⨯= ,∴()22212343323222343121212QEB BQC QFC x x x S S S S x x x ⎛⎫=++=++=+ ⎪ ⎪+++⎝⎭.【点睛】本题考查了菱形与折叠问题,勾股定理,折叠的性质,相似三角形的性质与判定,熟练掌握菱形的性质以及相似三角形的性质与判定是解题的关键.10.(2023·湖北鄂州·统考中考真题)如图1,在平面直角坐标系中,直线l y ⊥轴,交y 轴的正半轴于点A ,且2OA =,点B 是y 轴右侧直线l 上的一动点,连接OB .(1)请直接写出点A 的坐标;(2)如图2,若动点B 满足30ABO ∠=︒,点C 为AB 的中点,D 点为线段OB 上一动点,连接CD .在平面内,将BCD △沿CD 翻折,点B 的对应点为点P ,CP 与OB 相交于点Q ,当CP AB ⊥时,求线段DQ 的长;(3)如图3,若动点B 满足2AB OA=,EF 为OAB 的中位线,将BEF △绕点B 在平面内逆时针旋转,当点O 、E 、F 三点共线时,求直线EB 与x 轴交点的坐标;(4)如图4,OC 平分AOB ∠交AB 于点C ,AD OB ⊥于点D ,交OC 于点E ,AF 为AEC △的一条中线.设ACF △,ODE ,OAC 的周长分别为1C ,2C ,3C .试探究:在B 点的运动过程中,当1232118c c c +=时,请直接写出点B 的坐标.【答案】(1)(0,2)(2)31-(3)(4,0)或20(,0)3(4)(23,2)【分析】(1)根据2OA =,点A 位于y 轴的正半轴即可得出答案;(2)根据折叠性质和特殊角解三角形,先求出3BC =,2QB =,再过点D 作DH AB ⊥,得出CH DH =,3BH DH =解三角形即可求出33DB =-,从而求出31DQ BQ BD =-=-,(3)将BEF △绕点B 在平面内逆时针旋转,当点O 、E 、F 三点共线时,有两种情况,当将BEF △绕点B∴tan tan 45DH DH CH DH BCD ===∠︒3tan tan 30DH DH BH DH ABO ===∠︒∴3BC BH CH DH DH =+=+,即∴332DH -=,∴33233sin sin 30DH DB ABO -===-∠︒,∴2(33)31DQ BQ BD =-=--=-,(3)解:∵2AB OA=,2OA =,∴4AB =,又∵EF 为OAB 的中位线,∴2BE =,1EF =,EF OA ∥,∴90BEF ∠=︒,I .如图,将BEF △绕点B 在平面内逆时针旋转90︒,到如解(3)-1图所示位置时,∴BE l ⊥,直线l y ⊥轴,∴BE OA∥又∵2BE OA ==,∴四边形OABE 是矩形,∴点E 、F 恰好落在x 轴,4OE AB ==,此时直线EB 与x 轴交点的坐标为(4,0),II .如图,将BEF △绕点B 在平面内逆时针旋转到点O 、E 、F 三点共线时,,如解(3)-2图所示位置时,延长EB 交x 轴于点K ,∵90BEF OAB ∠=∠=︒,2BE OA ==,OB OB =,∴Rt Rt (HL)OAB BOE ≅∴13c AF c OA=,23c OD c OA =,∵1232118c c c +=,∴1212333222118c c c c AF OD c c c OA ++=+==,∴1111284AF OD OA +==,∴1124AF OD =-,延长AF 交OB 于H 点,如解(4)图,∵ACO OED ∠=∠,90AFO HFO ∠=∠=︒,OF OF =,∴(ASA)AFO HFO ≅ ∴2OH OA ==,AF FH =,∴1124AH AF OD ==-,2DH OH OD OD =-=-,∵222AD OA OD =-,222AD AH DH =-,∴2222112()(2)4OD OD OD -=---解得:3OD OA =>(不合题意,舍去),1OD =,故1OD =,∴22213AD =-=,∴tan 3AD AOD OD∠==,∴tan 23AB OA AOB =∠= ,所以点B 坐标为(23,2).【点睛】本题考查全等三角形的判定与性质,等腰三角形的判定和性质、解三角形、相似三角形的判定和性质,难度较大,确定运动后线段之间的位置关系、正确作出辅助线是解题的关键.。
卜人入州八九几市潮王学校函数与几何图形的综
合题
1、 函数与几何图形的综合题往往作为中考压轴题出现,其题型特点是函数图象与几何图形一共存,既要掌握函数知识,又
要熟悉几何图形的知识,这类试题灵敏性强,难度大,解决此类问题,需要有解决数学问题的综合才能。
2、 存在性问题是函数与几何图形综合题的重要题型之一,需要先猜想是否存在某个点〔位置〕或者图形,再进展相应的说
明。
典例:
抛物线
c bx x y ++=2交x 轴于A(1,0)、B 〔3,0〕两点,交y 轴于点C ,其顶点为D ,如下列图
(1) 求b ,c 的值,并写出抛物线的对称轴。
(2) 连接BC ,过点O 作直线OE ⊥BC 交抛物线的对称轴于点E 。
求证:四边形ODBE 是等腰梯形。
(3) 抛物线上是否存在点Q ,使得△OBQ 的面积等于四边形ODBE 面积的
3
1
?假设存在,求出点Q 的坐标;假设不存在,请说明理由。
练习:
如下列图,过点F(0,1)的直线
b kx y +=与抛物线
y =
(其中
)0,021 x x 。
(1) 求b 的值。
(2) 求21x x •的值。
(3) 分别过M ,N 作直线L :1-=y 并证明你的结论。
(4) 对于过点F 的任意直线MN ,是否存在一条直线m ,使m 与以MN 为直径的圆相切?假设存在,恳求出这条直线m 的
解析式;假设不存在,请说明理由。
L。
函数与几何图形的综合题1.已知抛物线y=ax2+bx-8(a≠0)的对称轴是直线x =1,(1)求证:2a+b=0;(2)若关于x的方程ax2+bx-8=0,有一个根为4,求方程的另一个根.解:(1)∵抛物线的对称轴为直线x=1,∴,∴2a+b=0;(2)∵关于x的方程ax2+bx-8=0,有一个根为4,∴抛物线与x轴的一个交点为(4,0),∵抛物线的对称轴为x=1,∴抛物线与x轴的另一个交点为(-2,0),∴方程的另一个根为x=-2.2.在平面直角坐标系xOy中,直线y=x+1与y轴交于点A,—1—并且经过点B(3,n).(1)求点B的坐标;(2)如果抛物线y=ax2-4ax+4a-1(a>0)与线段AB有唯一公共点,求a的取值范围.第2题图解:(1)把x=3代入y=x+1,得y=3+1=4,∴点B的坐标为B(3,4);(2)由题意可知线段AB的解析式为:y=x+1(0≤x≤3),∵y=ax2-4ax+4a-1=a(x-2)2-1,∴抛物线的对称轴为直线x=2,顶点坐标为(2,-1),—2—— 3 —∵点A (0,1),点B(3,4),∵当抛物线y =ax 2-4ax +4a -1(a >0)与线段AB 有唯一公共点时,∴ 4a −1≥1,32a −4×3a+4a −1<4①或4a −1<1,32a −4×3a +4a −1≥4②第2题解图3.已知抛物线y =2x 2+bx +c 经过点A (2,-1).— 4 — (1)若抛物线的对称轴为x =1,求b ,c 的值.(2)求证:抛物线与x 轴有两个不同的交点;(3)设抛物线顶点为P ,若O 、A 、P 三点共线(O 为坐标原点),求b 的值解:(1)由题意得: 8+2b +c =−1,-22b=1.解得:b =−4 ,c =−1;(2)证明:把A (2,-1)代入抛物线y =2x 2+bx +c 得:8+2b +c =-1,c =-9-2b ,Δ=b 2-4×2×c =b 2-8(-9-2b )=(b +8)2+8>0,∴抛物线与x 轴有两个不同的交点;(3)∵A (2,-1),O (0,0),∴直线OA 的解析式为:y∵O 、A 、P 三点共线,∴P 在直线OA 上,4.已知二次函数y=ax2-4ax +3a.(Ⅰ)求该二次函数的对称轴;(Ⅱ)若该二次函数的图象开口向下,当1≤x≤4时,y的最大值是2,且当1≤x≤4时,函数图象的最高点为点P,最低点为点Q,求△OPQ的面积;(Ⅲ)若二次函数的图象开口向下,对于该抛物线上的两点P(x1,y1),Q(x2,y2),当t≤x1≤t+1,x2≥5时,均满足y1≥y2,请结合图象,直接写出t的最大值.—5—(Ⅱ)∵该二次函数的图象开口向下,且对称轴为直线x=2,∴当x=2时,y取到在1≤x≤4上的最大值为2,即P(2,2),∴4a-8a+3a=2,∴a =-2,∴y =-2x2+8x-6,∵当1≤x≤2时,y随x的增大而增大,∴当x=1时,y取到在1≤x≤2上的最小值0.∵当2≤x≤4时,y随x的增大而减小,∴当x=4时,y取到在2≤x≤4上的最小值-6.∴当1≤x≤4时,y的最小值为-6,即Q(4,-6).∴△OPQ的面积为4×(2+6)-2×2÷2-4×6÷2-(4-2)×(2+6)÷2=10;(Ⅲ)∵当t≤x1≤t+1,x2≥5时,均满足y1≥y2,∴当抛物线开口向下,点P在点Q左边或重合时,满足条件,∴t+1≤5,—6—— 7 — ∴t ≤4,∴t 的最大值为4.5.已知直线y =2x +m 与抛物线y =ax 2+ax +b 有一个公共点M (1,0),且a <b .(1)求抛物线顶点Q 的坐标(用含a 的代数式表示);(2)说明直线与抛物线有两个交点;(3)直线与抛物线的另一个交点记为N ,若-1≤a ≤-12,求线段MN 长度的取值范围.解:(1)∵抛物线过点M (1,0),∴a +a +b =0,即b =-2a ,∵y =ax 2+ax +b =ax 2+ax -2a =a (x +12)2-9a 4, ∴抛物线顶点Q 的坐标为(-12,-9a 4); (2)∵直线y =2x +m 经过点M (1,0),— 8 —∴0=2×1+m ,解得m =-2,把y =2x -2代入y =ax 2+ax -2a ,得ax 2+(a -2)x -2a +2=0①,∴Δ=(a -2)2-4a (-2a +2)=9a 2-12a +4,又∵a <b ,b =-2a ,∴a <0,b >0,∴Δ=9a 2-12a +4>0,∴方程①有两个不相等的实数根,∴直线与抛物线有两个交点;(3) 把y =2x -2代入y =ax 2+ax -2a ,得ax 2+(a -2)x -2a +2=0,即x 2+(1-2a )x -2+2a=0, ∴[x +(12-1a )]2=(1a -32)2,解得x 1=1,x 2=2a-2, 将x =2a -2代入y =2x -2得y =4a-6, ∴点N (2a -2,4a-6), 由勾股定理可得,MN 2=[(2a -2)-1]2+(4a -6)2=20a 2-60a +45=20(1a -32)2,— 9 —∵-1≤a ≤-12,则-2≤1a≤-1, ∴1a -32<0, ∴MN =25(32-1a )=35-25a, 又∵-1≤a ≤-12, ∴55≤ MN ≤7 5.6.在平面直角坐标系中,抛物线y =-12x 2+bx +c 与x 轴交于点A ,B ,与y 轴交于点C ,直线y =x +4经过A ,C 两点.在AC 上方的抛物线上有一动点P ,设点P 的横坐标为m .(1)求抛物线的解析式;(2)如图,过点P 作PD ∥y 轴交AC 于点D ,当线段PD 取得最大值时,求m 的值.第6题图— 10 —解:(1)∵直线y =x +4经过A ,C 两点,∴A (-4,0),C (0,4),又∵抛物线y =-12x 2+bx +c 过A ,C 两点, ∴⎩⎪⎨⎪⎧-12×(-4)2-4b +c =0c =4, 解得⎩⎪⎨⎪⎧b =-1c =4, ∴抛物线的解析式为y =-12x 2-x +4; (2)∵抛物线的解析式为y =-12x 2-x +4,且点P 的横坐标为m (-4<m <0), ∴P (m ,-12m 2-m +4), ∵PD ∥y 轴,直线AC 的解析式为y =x +4,∴D (m ,m +4),∴PD =-12m 2-m +4-(m +4)=-12m 2-2m =-12(m +2)2+2, ∴当m =-2时,线段PD 取得最大值.7.如图,在平面直角坐标系中,直线y=12x+1与抛物线y=ax2+bx-3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.(1)求抛物线的解析式及sin∠ACP的值;(2)设点P的横坐标为m.连接PB,线段PC把△PDB分成两个三角形,是否存在适合的m值,使这两个三角形的面积之比为9 ∶10?若存在,直接写出m的值;若不存在,说明理由.第7题图—11—— 12 —解:(1)由12x +1=0,得x =-2,∴A (-2,0),由12x +1=3,得x =4,∴B (4,3). ∵y =ax 2+bx -3经过A 、B 两点,∴⎩⎪⎨⎪⎧(-2)2·a -2b -3=042·a +4b -3=3,解得⎩⎨⎧a =12b =-12,∴抛物线的解析式为y =21x 2-21x -3; 如解图,设直线AB 与y 轴交于点E ,则E (0,1). ∵PC ∥y 轴, ∴∠ACP =∠AEO .∴sin ∠ACP =sin ∠AEO =OAAE =222+12=255;(2) 存在,m =52 或 329.— 13 —【解法提示】如解图,过点D 、B 作DF ⊥PC ,BG ⊥PC ,垂足分别为点F 、G . 由图中几何关系可知∠FDP =∠DCP =∠AEO , ∴cos ∠FDP =cos ∠AEO =OEAE =122+12=55,在Rt △PDF 中,DF =cos ∠FDP ·PD =55PD =-15(m 2-2m -8). 又∵BG =4-m ,∴PBCPCDS S ∆∆=DFBG =-15(m 2-2m -8)4-m=m +25. 当PBCPCD S S ∆∆=m +25=910时,解得m =52;当PBCPCD S S ∆∆=m +25=109时,解得m =329. 第7题解图∴m =52或329.8.如图,抛物线y =12x 2-32x -2与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,M 是直线BC 下方的抛物线G F— 14 —上一动点.(1)求A 、B 、C 三点的坐标;(2)连接MO 、MC ,并把△MOC 沿CO 翻折,得到四边形MOM ′C ,那么是否存在点M ,使四边形MOM ′C 为菱形?若存在,求出此时点M 的坐标;若不存在,说明理由;第8题图解:(1)令y =0,则12x 2-32x -2=0,解得x 1=4,x 2=-1,∵点A 在点B 的左侧,∴A (-1,0),B (4,0), 令x =0,则y =-2, ∴C (0,-2);— 15 —(2)存在点M ,使四边形MOM ′C 为菱形. 如解图,连接MM ′,设M 点坐标为(x ,12x 2-32x -2)(0<x <4),∵四边形MOM ′C 是菱形, ∴MM ′垂直平分OC , ∵OC =2,∴M 点的纵坐标为-1, 第8题解图 ∴12x 2-32x -2=-1, 解得x 1=3+172,x 2=3-172(不合题意,舍去),∴M 点的坐标为(3+172,-1).9.如图,一次函数y =-12x +2分别交y 轴、x 轴于A 、B 两点,抛物线y =-x 2+bx +c 过A 、B 两点. (1)求这个抛物线的解析式;— 16 —(2)作垂直x 轴的直线x =t ,在第一象限交直线AB 于M ,交这个抛物线于N ,求当t 取何值时,MN 有最大值?最大值是多少?(3)在(2)的情况下,以A 、M 、N 、D 为顶点作平行四边形,求第四个顶点D 的坐标.解:(1)∵y =-12x +2分别交y 轴、x 轴于A 、B 两点,令x =0,则y =2,令y =0,则x =4, ∴A 、B 点的坐标为:A (0,2),B (4,0), 将A (0,2),B (4,0)分别代入y =-x 2+bx +c 中, 得⎩⎪⎨⎪⎧c =2-16+4b +c =0,解得⎩⎪⎨⎪⎧b =72c =2,— 17 —∴抛物线的解析式为:y =-x 2+72x +2;(2)点N 的坐标为(t ,-t 2+72t +2),点M 的坐标为(t ,-12t +2),∴MN =-t 2+72t +2-(-12t +2)=-t 2+4t =-(t -2)2+4(0<t <4),∴当t =2时,MN 有最大值,最大值为4; (3)由(2)可知,A (0,2),M (2,1),N (2,5),①当以AN 和AM 为对角线时,AD ∥MN 且AD =MN , ∴点D 在y 轴上,设D (0,a ),由AD =MN ,得|a -2|=4,解得a 1=6,a 2=-2, 第9题解图 ∴D 1(0,6),D 2(0,-2); ②当以MN 为对角线时,由中点坐标公式可得x A +x D 3=x M +x N ,y A +y D 3=y M +y N ,∴x D 3=4,y D 3=4, ∴D 3(4,4),综上所述,点D 的坐标为(0,6)或(0,-2)或(4,4).10.如图,在平面直角坐标系xOy 中,抛物线y =-16x 2+bx +c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求抛物线的解析式;(2)当t为何值时,点D落在抛物线上;(3)是否存在t,使得以A,B,D为顶点的三角形与△AOP相似?若存在,求此时t的值;若不存在,请说明理由.第10题图解:(1)由抛物线y=-12+bx+c过点A(0,4)和C(8,0)可得,6x—18—— 19 —∴⎩⎪⎨⎪⎧c =4-16×64+8b +c =0,解得⎩⎪⎨⎪⎧b =56c =4. ∴抛物线的解析式为y =-16x 2+65x +4;(2)∵∠AOP =∠PEB =90°,∠OAP =∠EPB =90°-∠APO , ∴△AOP ∽△PEB ,则AO PE =APPB =2,∵AO =4,P (t ,0),∴PE =2,OE =OP +PE =t +2, 又∵DE =OA =4, ∴点D 的坐标为(t +2,4),∴点D 落在抛物线上时,有-16(t +2)2+56(t +2)+4=4,解得t =3或t =-2, ∵t >0,∴t =3.故当t 为3时,点D 落在抛物线上; (3)存在,理由:— 20 —由(2)知△AOP ∽△PEB , 则OP BE =APPB=2, ∵P (t ,0),即OP =t .∴BE =t2.①当0<t <8时,若△POA ∽△ADB ,则PO AD =AOBD ,即t t +2=44-12t, 整理得t 2+16=0,∴ t 无解; 第10题解图 若△POA ∽△BDA ,则PO BD =AO AD ,即t 4-12t =4t +2,解得t 1=-2+25或t 2=-2-25(舍去); ②当t >8时,如解图.若△POA ∽△ADB ,则PO AD =AOBD ,即t t +2=412t -4,解得t1=8+45或t2=8-45(负值舍去);若△POA∽△BDA,同理可得t无解.综上可知,当t=-2+25或8+45时,以A、B、D为顶点的三角形与△AOP 相似.—21—。