数学建模插值方法共77页文档
- 格式:ppt
- 大小:6.64 MB
- 文档页数:77
数学建模插值及拟合详解Word版插值和拟合实验⽬的:了解数值分析建模的⽅法,掌握⽤Matlab进⾏曲线拟合的⽅法,理解⽤插值法建模的思想,运⽤Matlab⼀些命令及编程实现插值建模。
实验要求:理解曲线拟合和插值⽅法的思想,熟悉Matlab相关的命令,完成相应的练习,并将操作过程、程序及结果记录下来。
实验内容:⼀、插值1.插值的基本思想·已知有n +1个节点(xj,yj),j = 0,1,…, n,其中xj互不相同,节点(xj, yj)可看成由某个函数 y= f(x)产⽣;·构造⼀个相对简单的函数 y=P(x);·使P通过全部节点,即 P (xk) = yk,k=0,1,…, n ;·⽤P (x)作为函数f ( x )的近似。
2.⽤MATLAB作⼀维插值计算yi=interp1(x,y,xi,'method')注:yi—xi处的插值结果;x,y—插值节点;xi—被插值点;method—插值⽅法(‘nearest’:最邻近插值;‘linear’:线性插值;‘spline’:三次样条插值;‘cubic’:⽴⽅插值;缺省时:线性插值)。
注意:所有的插值⽅法都要求x是单调的,并且xi不能够超过x的范围。
练习1:机床加⼯问题x035791112131415y0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6⽤程控铣床加⼯机翼断⾯的下轮廓线时每⼀⼑只能沿x⽅向和y⽅向⾛⾮常⼩的⼀步。
表3-1给出了下轮廓线上的部分数据但⼯艺要求铣床沿x⽅向每次只能移动0.1单位.这时需求出当x坐标每改变0.1单位时的y坐标。
试完成加⼯所需的数据,画出曲线.步骤1:⽤x0,y0两向量表⽰插值节点;步骤2:被插值点x=0:0.1:15; y=y=interp1(x0,y0,x,'spline');步骤3:plot(x0,y0,'k+',x,y,'r')grid on答:x0=[0 3 5 7 9 11 12 13 14 15 ];y0=[0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6 ];x=0:0.1:15;y=interp1(x0,y0,x,'spline');plot(x0,y0,'k+',x,y,'r')grid on0510150.511.522.53.⽤MATLAB 作⽹格节点数据的插值(⼆维) z=inte rp2(x0,y0,z0,x,y,’method’) 注:z —被插点值的函数值;x0,y0,z0—插值节点;x ,y —被插值点;method —插值⽅法(‘nearest’ :最邻近插值;‘linear’ :双线性插值; ‘cubic’ :双三次插值;缺省时:双线性插值)。
数学模型实验报告——插值专业:姓名:李学号:姓名:刘学号:姓名:汪学号:数学模型实验报告(插值)一、 实验目的:1、了解插值的基本内容。
2、掌握用数学软件包求解插值问题。
二、实验内容:(一)一维插值一、插值的定义 已知n+1个节点,,1,0(),(n j y x j j =其中 j x 互不相同,不妨设),10b x x x a n =<<<= 求任一插值点 )(*j x x ≠处的插值.*y构造一个(相对简单的)函数),(x f y =通过全部节点, 即 ),1,0()(n j y x f j j ==再用)(x f 计算插值,即).(**x f y =二、插值的方法拉格朗日(Lagrange)插值已知函数f (x )在n +1个点x 0,x 1,…,xn 处的函数值为 y 0,y 1,…,yn 。
求一n 次多项式函数Pn (x ),使其满足:Pn (xi )=yi ,i =0,1,…,n .解决此问题的拉格朗日插值多项式公式如下∑=⋅=ni i i n y x L x P 0)()(其中Li (x ) 为n 次多项式:)())(())(()())(())(()(11101110n i i i i i i i n i i i x x x x x x x x x x x x x x x x x x x x x L ----------=+-+-称为拉格朗日插值基函数。
特别地:两点一次(线性)插值多项式:()101001011y x x x x y x x x x x L --+--=三点二次(抛物)插值多项式:()()()()()()()()()()()()()2120210121012002010212y x x x x x x x x y x x x x x x x x y x x x x x x x x x L -⋅--⋅-+-⋅--⋅-+-⋅--⋅-=().,满足插值条件直接验证可知x L n例55,11)(2≤≤-+=x xx g 采用拉格朗日多项式插值:选取不同插值节点个数n +1,其中n 为插值多项式的次数,当n 分别取2,4,6,8,10时,绘出插值结果图形.拉格朗日多项式插值的这种振荡现象叫 Runge 现象 解:编写M 文件程序如下: m=101;x=-5:10/(m-1):5; y=1./(1+x.^2);z=0*x;plot(x,z,'r',x,y,'LineWidth',1.5), gtext('y=1/(1+x^2)'),pause n=3; x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y1=lagr1(x0,y0,x); hold on ,plot(x,y1,'b'),gtext('n=2'),pause,hold off n=5; x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y2=lagr1(x0,y0,x); hold on ,plot(x,y2,'b:'),gtext('n=4'),pause,hold offn=7;x0=-5:10/(n-1):5; y0=1./(1+x0.^2);y3=lagr1(x0,y0,x);hold on , plot(x,y3,'r'),gtext('n=6'), pause,hold off n=9; x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y4=lagr1(x0,y0,x);hold on ,plot(x,y4,'r:'),gtext('n=8'),pause,hold off n=11; x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y5=lagr1(x0,y0,x);hold on , plot(x,y5,'m'),gtext('n=10')分段线性插值计算量与n 无关; n 越大,误差越小.n n n x x x x g x L ≤≤=∞→0),()(lim例66,11)(2≤≤-+=x xx g 用分段线性插值法求插值,并观察插值误差. 1. 在[-6,6]中平均选取5个点作插值 2. 在[-6,6]中平均选取11个点作插值 3. 在[-6,6]中平均选取21个点作插值 4. 在[-6,6]中平均选取41个点作插值 解:编写M 文件程序如下:x=linspace(-6,6,100); y=1./(x.^2+1);x1=linspace(-6,6,5);%第三个参数表示插值点的个数,可分别改为11,21,41 y1=1./(x1.^2+1);plot(x,y,x1,y1,x1,y1,'o','LineWidth',1.5), gtext('n=4'),运行结果如下图:结果分析:插值点越多越接近原函数⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤≤--≤≤--==+++---=∑其它,0,,)()()(111111j j j j j jj j jj j nj j j n x x x x x x x x x x x x x x x l x l y x L三次样条插值比分段线性插值更光滑。
由实验或测量得到的某一函数在一系列点处的值要构造一个简单函数作为函数的近似表达式:,使得(6-1> 插值问题。
称为被插值函数,称为插值函数,称为插值条件取次多项式作为插值函数其系数行列式为的解存在而且是唯一的。
<6-4次多项式点以外,其他所有的节点都是次多项式为待定常数。
由就是满足插值条件,特别地,当时称为线性插值,其插值多项式为:从几何上看,为过两点的直线。
当时,称为抛物线插值,其插值多项式为:从几何上看为过点和插值的误差估计见书中138上,要求插值多项式)式给出了个条件,因此可以唯一确定一个次数不超过,其形式为。
)式来确定仿照拉格朗日插值多项式的基函数方法,可先求插值基函数个,每一个基函数都是次多项式,且满足条件)的插值多项式可写成利用拉格朗日插值基函数,令整理得:两边取对数求导可得同理仿照拉格朗日插值余项的证明方法,若内的余项为,三次样条函数记作,①在每个小区间②在每个内节点上具有二次连续导数。
由三次样条函数中的条件①知,有个待定系数。
由条件②知,在内节点上具有二阶连续导数,即满足条件:个条件。
由条件③,知,共有定一个三次样条,还需要外加个条件,最常用的三次样条函数第一类边界条件:第二类边界条件:特别地,,称为自然边界条件。
第三类边界条件:称为周期边界条件。
三次样条插值不仅光滑性好,而且稳定性和收敛性都有保证,具有良好的逼近性质。
构造满足条件的三次样条插值函数的表达式可以有多种方法。
下面我们利用表达,由于在区间上是三次多项式,故在其中积分两次并利用数,于是得三次样条表达式<6-12上式中是未知的,为确定,对求导得由此可得在区间上的表达式,从而得可得<6-14)对第一类边界条件如果令。
对于第二类边界条件,直接得端点方程如果令)的形式。
,求解上述矩阵可得通过实验等方法观测到反映某个函数的数据,要求利用这些数据构造出,上面介绍的插值法就是寻求近似函数的方法之一。
但由于实验观测数据不可避免地带有误差,甚至是较大的误差,所以使用插值法满足,而只要求偏差按某种标准最小,以反映所给数据的总体趋势,消除局部波动的影响,这就是曲线拟合问题。
数学建模精品教材-第九章插值与拟合第九章插值与拟合插值:求过已知有限个数据点的近似函数。
拟合:已知有限个数据点,求近似函数,不要求过已知数据点,只要求在某种意义下它在这些点上的总偏差最小。
插值和拟合都是要根据一组数据构造一个函数作为近似,由于近似的要求不同,二者的数学方法上是完全不同的。
而面对一个实际问题,究竟应该用插值还是拟合,有时容易确定,有时则并不明显。
§1 插值方法下面介绍几种基本的、常用的插值:拉格朗日多项式插值、牛顿插值、分段线性插值、Hermite 插值和三次样条插值。
1.1 拉格朗日多项式插值1.1.1 插值多项式用多项式作为研究插值的工具,称为代数插值。
其基本问题是:已知函数 f x 在区间[a,b]上n +1个不同点x ,x , L,x 处的函数值 y f x i 0,1, L,n,求一个0 1 n i i至多n次多项式nx a +a x + L +a x (1)n 0 1 n使其在给定点处与 f x同值,即满足插值条件 x f x y i 0,1, L,n(2) n i i ix称为插值多项式,x i 0,1, L,n称为插值节点,简称节点,[a,b]称为插值区n i间。
从几何上看,n次多项式插值就是过n +1个点 x , f x i 0,1, L,n,作一条i i多项式曲线 y x近似曲线 y f x。
nn次多项式(1)有n +1个待定系数,由插值条件(2)恰好给出n +1个方程2 na +a x +a x + L +a x y0 1 0 2 0 n 0 02 na +a x +a x + L +a x y0 1 1 2 1 n 1 1(3)L L L L L L L L L L L L2 na +a x +a x + L +a x y0 1 n 2 n n n n 记此方程组的系数矩阵为A,则2 n1 x x L x0 0 02 n1 x x L x1 1 1 detAL L L L L L L2 n1 x x L xn n n是范德蒙特Vandermonde行列式。