函数导数选择填空练习题
- 格式:doc
- 大小:432.00 KB
- 文档页数:5
高中数学函数与导数练习题及参考答案一、选择题(每小题3分,共30分)1. 设函数f(x)=2x^3-3x^2+4x-1,则f'(x)的值为:A. 6x^2-6x+4B. 6x^2-3x+4C. 6x^2-6x-4D. 6x^2-3x-42. 已知函数f(x)=e^(2x)-x,下列说法正确的是:A. f(x)的定义域为RB. f(x)的值域为RC. 对任意x∈R,f(x)≥0D. f(x)在R上递增3. 函数f(x)=log(2x+1)的定义域为:A. x>1/2B. x≥1/2C. x>1D. x≥-1/24. 函数f(x)=(x-2)^2-1的图像对称于:A. x轴B. y轴C. 原点D. 直线x=25. 函数f(x)=x^3+3x^2-x+2的最小值为:A. -∞B. -4C. 1D. 66. 函数f(x)=log_a(x^2-4)的定义域为:A. x>2B. x<-2C. x>2或x<-2D. x>07. 设函数f(x)=(x+1)e^x,则f'(x)=:A. (x+2)e^xB. xe^xC. (x+1)e^x+e^xD. (x+1)e^x+18. 函数y=2^(x^2)的图像在y轴的左侧为:A. 上拋曲线B. 下落曲线C. 开口向上的曲线D. 开口向下的曲线9. 函数f(x)=√(x-1)的定义域为:A. x>1B. x≥1C. x>0D. x≥010. 设函数f(x)=x^3-3x^2+2,则f''(x)的值为:A. 6x-6B. 6x-2C. 6x-3D. 6x-4二、计算题(每小题5分,共40分)1. 计算函数f(x)=e^(2x)-3x在x=1处的导数f'(1)的值。
解答:f'(x)=2e^(2x)-3f'(1)=2e^2-32. 已知函数y=log_a(x^2-4),求f(x)在x=0处的导数f'(0)。
2024届高考数学专题:同构、构造函数选择填空压轴题一、单选题1.若对∀x ∈12e ,12,不等式(ax -4)ln x <2ln a -ax ln2恒成立,则实数a 的取值范围是()A.(0,4e ]B.(4e ,+∞)C.[4e ,+∞)D.(4e ,+∞)【答案】C【分析】不等式(ax -4)ln x <2ln a -ax ln2变形为ln (2x )2x <ln (ax 2)ax 2,令f x =ln xx ,利用导数研究函数单调性,解不等式求实数a 的取值范围.【详解】由已知得:a >0,由ax -4 ln x <2ln a -ax ln2,得ax ln 2x <2ln a +2ln x 即ax ln (2x )2<ln (ax 2),可得ln (2x )2x <ln (ax 2)ax 2.令f x =ln xx,x ∈0,+∞ ,则f (2x )<f (ax 2),求导得f (x )=1-ln x x2,f(x )>0,解得0<x <e ;f (x )<0,解得x >e ,∴f (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,且当0<x <1时f (x )<0;当x >1时,f (x )>0,函数图像如图所示.∵x ∈12е,12,∴2x ∈1е,1,∴f (2x )<0,由f (2x )<f (ax 2)及f x =ln x x 的图像可知,2x <ax 2恒成立,即a >2x成立,而2x ∈(4,4e ),∴a ≥4е,实数a 的取值范围是[4e ,+∞).故选:C .2.对任意x ∈0,+∞ ,k e kx +1 -1+1xln x >0恒成立,则实数k 的可能取值为()A.-1B.13C.1eD.2e【答案】D【分析】将恒成立的不等式化为e kx +1 ln e kx >x +1 ln x ,构造函数f x =x +1 ln x ,利用导数可求得f x 单调性,从而得到e kx >x ,分离变量可得k >ln x x ;令h x =ln xx,利用导数可求得h x 最大值,由此可得k 的范围,从而确定k 可能的取值.【详解】当x >0时,由k e kx +1 -1+1xln x >0得:kx e kx +1 >x +1 ln x ,∴e kx +1 ln e kx >x +1 ln x ,令f x =x +1 ln x ,则f x =ln x +1+1x,令g x =f x ,则g x =1x -1x 2=x -1x 2,∴当x ∈0,1 时,g x <0;当x ∈1,+∞ 时,g x >0;∴f x 在0,1 上单调递减,在1,+∞ 上单调递增,∴f x ≥f 1 =2>0,∴f x 在0,+∞ 上单调递增,由e kx +1 ln e kx >x +1 ln x 得:f e kx >f x ,∴e kx >x ,即k >ln xx;令h x =ln x x ,则h x =1-ln xx 2,∴当x ∈0,e 时,h x >0;当x ∈e ,+∞ 时,h x <0;∴h x 在0,e 上单调递增,在e ,+∞ 上单调递减,∴h x ≤h e =1e,∴当x >0时,k >ln x x 恒成立,则k >1e,∴实数k 的可能取值为2e,ABC 错误,D 正确.故选:D .【点睛】关键点点睛:本题考查利用导数求解恒成立问题,解题关键是能够对于恒成立的不等式进行同构变化,将其转化为同一函数的两个函数值之间的大小关系的问题,从而利用函数的单调性来进行求解.3.已知对任意的x ∈0,+∞ ,不等式kx e kx +1 -x +1 ln x >0恒成立,则实数k 的取值范围是()A.e ,+∞B.1e ,eC.1e,+∞D.1e2,1e【答案】C【分析】对已知不等式进行变形,通过构造函数法,利用导数的性质、常变量分离法进行求解即可.【详解】因为kx e kx +1 >(x +1)ln x ,所以e kx +1 ln e kx >(x +1)ln x ①,令f (x )=(x +1)ln x ,则f (x )=1x +1+ln x ,设g (x )=f (x )=1x+1+ln x ,所以g (x )=-1x 2+1x =x -1x2,当0<x <1时,g(x )<0,当x >1时,g (x )>0,所以f (x )在(0,1)单调递减,在(1,+∞)单调递增,所以f x ≥f 1 =2,所以f (x )在(0,+∞)单调递增,因为①式可化为f e kx >f (x ),所以e kx >x ,所以k >ln xx,令h (x )=ln x x ,则h (x )=1-ln xx 2,当x ∈(0,e )时,h (x )>0,当x ∈(e ,+∞)时,h (x )<0,所以h (x )在(0,e )单调递增,在(e ,+∞)单调递减,所以h (x )max =h (e )=1e ,所以k >1e,故选:C .4.设实数a >0,对任意的x ∈1e3,+∞,不等式e 2ax -ln x 2a ≥1a -e 2ax ax 恒成立,则实数a 的取值范围是()A.1e ,+∞B.12e,+∞ C.0,1eD.1e2,+∞【答案】B【分析】将e 2ax-ln x 2a ≥1a -e 2ax ax化简为e 2ax 2ax +2 ≥x ln x +2 ,再构造函数f x =x ln x +2 ,求导分析单调性可得e 2ax ≥x 在区间1e3,+∞上恒成立,再参变分离构造函数求最值解决恒成立问题即可.【详解】因为e 2ax-ln x 2a ≥1a -e 2ax ax恒成立即2axe 2ax -x ln x ≥2x -2e 2ax ,可得e 2ax 2ax +2 ≥x ln x +2 ,令f x =x ln x +2 ,则f e 2ax ≥f x 恒成立.又f x =ln x +3,故当x ∈1e 3,+∞时,fx >0,故f x =x ln x +2 在区间1e3,+∞上为增函数.又f e 2ax ≥f x 恒成立,则e 2ax ≥x 在区间1e3,+∞上恒成立,即2ax ≥ln x ,2a ≥ln xx .构造g x =ln x x ,x ∈1e 3,+∞,则g x =1-ln xx2,令g x =0有x =e ,故当x ∈1e3,e时g x >0,g x 为增函数;当x ∈e ,+∞ 时g x <0,g x 为减函数.故g x ≤g e =1e ,故2a ≥1e ,即a ≥12e.故选:B 【点睛】方法点睛:恒(能)成立问题的解法:若f (x )在区间D 上有最值,则(1)恒成立:∀x ∈D ,f x >0⇔f x min >0;∀x ∈D ,f x <0⇔f x max <0;(2)能成立:∃x ∈D ,f x >0⇔f x max >0;∃x ∈D ,f x <0⇔f x min <0.若能分离常数,即将问题转化为:a >f x (或a <f x ),则(1)恒成立:a >f x ⇔a >f x max ;a <f x ⇔a <f x min ;(2)能成立:a >f x ⇔a >f x min ;a <f x ⇔a <f x max .5.已知函数f x =ln x +ax 2,若对任意两个不等的正实数x 1,x 2,都有f x 1 -f x 2x 1-x 2>2,则实数a 的取值范围是()A.14,+∞B.12,+∞C.14,+∞ D.12,+∞ 【答案】D【分析】构造函数g (x )=f (x )-2x =ln x +ax 2-2x (x >0),则转化得到g x 在(0,+∞)上单调递增,将题目转化为g (x )=1x+2ax -2≥0在(0,+∞)上恒成立,再利用分离参数法即可得到答案.【详解】由题意,不妨设x 1>x 2>0,因为对任意两个不等的正实数x 1,x 2,都有f x 1 -f x 2x 1-x 2>2,所以f x 1 -f x 2 >2x 1-2x 2,即f x 1 -2x 1>f x 2 -2x 2,构造函数g(x)=f(x)-2x=ln x+ax2-2x(x>0),则g x1>g x2,所以g(x)在(0,+∞)上单调递增,所以g (x)=1x+2ax-2≥0在(0,+∞)上恒成立,即a≥1x-12x2在(0,+∞)上恒成立,设m(x)=1x-12x2(x>0),则m (x)=-1x2+1x3=1-xx3,所以当x∈(0,1)时,m (x)>0,m(x)单调递增,x∈(1,+∞)时,m (x)<0,m(x)单调递减,所以m(x)max=m(1)=1-12=12,所以a≥1 2 .故选:D.6.已知f x 是定义在R上的函数f x 的导函数,且f x +xf x <0,则a=2f2 ,b=ef e ,c=3f3 的大小关系为()A.a>b>cB.c>a>bC.c>b>aD.b>a>c【答案】A【分析】构建g x =xf x ,求导,利用导数判断g x 的单调性,进而利用单调性比较大小.【详解】构建g x =xf x ,则g x =f x +xf x ,因为f x +xf x <0对于x∈R恒成立,所以g x <0,故g x 在R上单调递减,由于a=2f2 =g2 ,b=ef e =g e ,c=3f3 =g3 ,且2<e<3,所以g2 >g e >g3 ,即a>b>c.故选:A.【点睛】结论点睛:1.f x +xf x 的形式,常构建xf x ;f x -xf x 的形式,常构建f x x;2.f x +f x 的形式,常构建e x⋅f x ;f x -f x 的形式,常构建f x e x.7.若函数f x =e x2-2ln x-2a ln x+ax2有两个不同的零点,则实数a的取值范围是()A.-∞,-eB.-∞,-eC.-e,0D.-e,0【答案】A【分析】将问题转化为函数y=-a与y=e x2-2ln xx2-2ln x图象有两个不同的交点,根据换元法将函数y=e x2-2ln x x2-2ln x 转化为g t =e tt,利用导数讨论函数的单调性求出函数的值域,进而得出参数的取值范围.【详解】函数f(x)的定义域为(0,+∞),f x =e x2-2ln x-2a ln x+ax2=e x2-2ln x+a x2-2ln x,设h(x)=x2-2ln x(x>0),则h (x)=2x-2x=2(x+1)(x-1)x,令h (x)>0⇒x>1,令h (x)<0⇒0<x<1,所以函数h (x )在(0,1)上单调递减,在(1,+∞)上单调递增,且h (1)=1,所以h (x )min =h (1)=1,所以h (x )≥1,函数f (x )有两个不同的零点等价于方程f (x )=0有两个不同的解,则e x 2-2ln x+a x 2-2ln x =0⇒-a =e x 2-2ln x x 2-2ln x,等价于函数y =-a 与y =e x 2-2ln xx 2-2ln x 图象有两个不同的交点.令x 2-2ln x =t ,g t =e t t ,t >1,则函数y =-a 与g t =e tt ,t >1图象有一个交点,则g t =te t -et t 2=e t t -1 t2>0,所以函数g (t )在(1,+∞)上单调递增,所以g t >g 1 =e ,且t 趋向于正无穷时,g t =e tt趋向于正无穷,所以-a >e ,解得a <-e.故选:A .【点睛】方法点睛:与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图象,讨论其图象与x 轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.对于不适合分离参数的等式,常常将参数看作常数直接构造函数,常用分类讨论法,利用导数研究单调性、最值,从而得出参数范围.8.函数f x 是定义在0,+∞ 上的可导函数,其导函数为f x ,且满足f x +2xf x >0,若不等式ax ⋅f ax ln x ≥f ln x ⋅ln xax在x ∈1,+∞ 上恒成立,则实数a 的取值范围是()A.0,1eB.1e ,+∞C.0,eD.1e,+∞【答案】B【分析】根据题目条件可构造函数g x =x 2f x ,利用导函数判断出函数单调性,将不等式转化成g ax≥g ln x ,即a ≥ln x x 在x ∈1,+∞ 上恒成立,求出函数ln xx在1,+∞ 上的最大值即可得a 的取值范围.【详解】设g x =x 2f x ,x >0,g x =x 2f x +2xf x =x 2fx +2x f x >0所以函数g x 在0,+∞ 上为增函数.由f x 的定义域为0,+∞ 可知ax >0,得a >0,将不等式ax ⋅f ax ln x ≥f ln x ⋅ln xax整理得a 2x 2⋅f ax ≥f ln x ⋅ln 2x ,即g ax ≥g ln x ,可得ax ≥ln x 在x ∈1,+∞ 上恒成立,即a ≥ln xx在x ∈1,+∞ 上恒成立;令φx =ln xx ,其中x >1,所以a ≥φx maxφ x =1-ln xx2,令φ x =0,得x =e .当x ∈1,e 时,φ x >0,所以φx 在1,e 上单调递增;当x ∈e ,+∞ 时,φ x <0,所以φx 在e ,+∞ 上单调递减;所以φx max =φe =1e ,即a ≥1e故选:B .9.已知函数f (x )=xe x -a ln x +x -x a +1,若f (x )>0在定义域上恒成立,则实数a 的取值范围是()A.(-∞,e )B.0,eC.(-∞,1)D.0,1【答案】B【分析】构造函数g x =x +e x ,从而原不等式可转化为g x +ln x >g a ln x +ln x ,根据g x 的单调性可得x -a ln x >0,根据a 不同取值分类讨论求解即可.【详解】由f x >0得xe x +x >a ln x +x a +1,所以xe x +x +ln x >a ln x +ln x +x a +1,即e x +ln x +x +ln x >a ln x +ln x +x a +1,构造函数g x =x +e x ,则不等式转化为g x +ln x >g a ln x +ln x ,又易知g x 在R 上单调递增,故不等式等价于x +ln x >a ln x +ln x ,即x -a ln x >0.设h x =x -a ln x ,若a <0,h e1a=e1a-a lne 1a =e 1a-1<0,不符合题意;若a =0,则当x >0时,h x =x >0,符合题意;若a >0,则h x =1-ax,h x 在0,a 上单调递减,在a ,+∞ 上单调递增,所以h (x )min =h a ,要使h x >0恒成立,只需h a =a 1-ln a >0,所以0<a <e.综上可知a 的取值范围是0,e .故选:B .10.已知函数f (x )=xe x +e x ,g (x )=x ln x +x ,若f x 1 =g x 2 >0,则x 2x 1可取()A.-1 B.-1eC.1D.e【答案】A【分析】探讨函数g x 在1e 2,+∞上单调性,由已知可得x 2=e x 1(x 1>-1),再构造函数并求出其最小值即可判断作答.【详解】依题意,由g x 2 =x 2(ln x 2+1)>0得x 2>1e,令g x =2+ln x >0,函数g x 在1e 2,+∞上单调递增,由f x 1 =e x 1x 1+1 >0得x 1>-1,则f x =e x ln e x +1 =g (e x ),由f x 1 =g x 2 >0得:g (e x 1)=g (x 2),又e x 1>1e ,x 2>1e,于是得x 2=e x 1(x 1>-1),x 2x 1=ex1x 1,令h (x )=e x x (x >-1),求导得h(x )=e x (x -1)x 2,当-1<x <0,0<x <1时,h (x )<0,当x >1时,h (x )>0,即函数h (x )在(-1,0),(0,1)上单调递减,在(1,+∞)上单调递增,当x >0时,h (x )min =h (1)=e ,且x →+∞,h (x )→+∞,h (-1)=-1e ,且x →0-,h (x )→-∞,故h (x )∈-∞,-1e∪[e ,+∞)即x 2x 1∈-∞,-1e ∪[e ,+∞),显然选项A 符合要求,选项B ,C ,D 都不符合要求.故选:A 一、填空题11.设实数m >0,若对∀x ∈0,+∞ ,不等式e mx -ln xm≥0恒成立,则m 的取值范围为.【答案】m ≥1e【分析】构造函数f x =xe x 判定其单调性得mx ≥ln x ,分离参数根据恒成立求y =ln xx max即可.【详解】由e mx -ln xm≥0⇔mxe mx ≥x ln x =ln x ⋅e ln x ,构造函数f x =xe x x >0 ⇒f x =x +1 e x >0,∴f x 在0,+∞ 为增函数,则mx ⋅e mx ≥ln x ⋅e ln x ⇔mx ≥ln x 即对∀x ∈0,+∞ ,不等式mx ≥ln x 恒成立,则∀x ∈0,+∞ ,m ≥ln xx max,构造函数g x =ln x x ⇒g x =1-ln xx 2,令g x >0,得0<x <e ;令g x <0,得x >e ;∴g x =ln xx在0,e 上单调递增,在e ,+∞ 上单调递减,∴g x max =g e =1e ,即m ≥1e .故答案为:m ≥1e .12.已知函数f (x )=e x +1-a ln x ,若f (x )≥a (ln a -1)对x >0恒成立,则实数a 的取值范围是.【答案】0,e 2【分析】对不等式进行合理变形同构得e x +1-ln a +x +1-ln a ≥x +ln x ,构造函数利用函数的单调性计算即可.【详解】易知a >0,由e x +1-a ln x ≥a (ln a -1)可得e x +1a+1-ln a ≥ln x ,即e x +1-ln a +1-ln a ≥ln x ,则有e x +1-ln a +x +1-ln a ≥x +ln x ,设h (x )=e x +x ,易知h x 在R 上单调递增,故h (x +1-ln a )≥h (ln x ),所以x +1-ln a ≥ln x ,即x -ln x ≥ln a -1,设g (x )=x -ln x ⇒g x =x -1x,令g x >0⇒x >1,g x <0⇒0<x <1,故g x 在0,1 上单调递减,在1,+∞ 上单调递增,所以g x ≥g 1 =1,则有1≥ln a -1,解之得a ∈0,e 2 .故答案为:0,e 2 .13.已知a >1,若对于任意的x ∈13,+∞,不等式13x -2x +ln3x ≤1ae2x +ln a 恒成立,则a 的最小值为.【答案】32e【分析】根据题意可得13x +ln3x ≤1ae2x +ln ae 2x ,再构造f (x )=1x +ln x (x ≥1),利用导数研究该函数的单调性,从而利用函数的单调性,可得3x ≤ae 2x ,然后再参变量分离,将恒成立问题转为变量的最值,最后利用导数求出变量式的最值,从而得解.【详解】因为ln a +2x =ln a +ln e 2x =ln ae 2x ,所以13x -2x +ln3x ≤1ae 2x +ln a 可化为13x +ln3x ≤1ae2x +ln ae 2x ,设f (x )=1x +ln x (x ≥1),则f (x )=-1x 2+1x =x -1x 2≥0,∴f (x )在1,+∞ 上单调递增,因为a >1,x ∈13,+∞,所以3x ≥1,e 2x ≥e 23>1,ae 2x >1,所以13x +ln3x ≤1ae 2x +ln ae 2x 可化为f (3x )≤f (ae 2x ),所以3x ≤ae 2x ,∴a ≥3x e2x 在x ∈13,+∞ 上恒成立,∴a ≥3x e2xmax ,x ∈13,+∞ ,设g (x )=3x e 2x ,x ∈13,+∞ ,则g(x )=3(1-2x )e 2x,令g (x )>0,得13≤x <12;g (x )<0,得x >12,所以g (x )在13,12上单调递增,在12,+∞ 上单调递减,所以g x max =g 12 =32e ,所以a ≥32e ,即a 的最小值为32e .故答案为:32e.【点睛】关键点睛:本题的关键是将式子同构成13x +ln3x ≤1ae 2x +ln ae 2x ,再构造函数.14.若不等式ae 3x +2x +ln a ≥ln x 对任意x ∈0,+∞ 成立,则实数a 的最小值为.【答案】13e【分析】将不等式变形为e 3x +ln a +3x +ln a ≥e ln x +ln x 对任意x ∈0,+∞ 成立,构造函数g x =e x +x ,求导得单调性,进而问题进一步转化为ln a ≥ln x -3x 成立,构造h x =ln x -3x ,即可由导数求最值求解.【详解】因为ae 3x +2x +ln a ≥ln x 对任意x ∈0,+∞ 成立,不等式可变形为:ae 3x +3x +ln a ≥ln x +x ,即e ln a e 3x +3x +ln a ≥ln x +e ln x ,即e 3x +ln a +3x +ln a ≥e ln x +ln x 对任意x ∈0,+∞ 成立,记g x =e x +x ,则g x =e x +1>0,所以g x 在R 上单调递增,则e 3x +ln a +3x +ln a ≥e ln x +ln x 可写为g 3x +ln a ≥g ln x ,根据g x 单调性可知,只需3x +ln a ≥ln x 对任意x ∈0,+∞ 成立即可,即ln a ≥ln x -3x 成立,记h x =ln x -3x ,即只需ln a ≥h x max ,因为h x =1x -3=1-3x x ,故在x ∈0,13 上,h x >0,h x 单调递增,在x ∈13,+∞ 上,h x <0,h x 单调递减,所以h x max =h 13 =ln 13-1=ln 13e,所以只需ln a ≥ln 13e 即可,解得a ≥13e.故答案为:13e【点睛】方法点睛:利用导数求解不等式恒成立或者存在类问题:1.通常要构造新函数,利用导数研究函数的单调性与极值(最值),从而得出不等关系;2.利用可分离变量,构造新函数,直接把问题转化为函数的最值问题,从而判定不等关系;3.适当放缩构造法:根据已知条件适当放缩或利用常见放缩结论,从而判定不等关系;4.构造“形似”函数,变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.15.已知函数f x =ln x +ax 2,若对任意两个不相等的正实数x 1,x 2,都有f x 1 -f x 2x 1-x 2>2,则实数a 的取值范围是【答案】12,+∞ 【分析】设x 2>x 1>0,令g x =f x -2x ,将问题转化为g x 在0,+∞ 上单调递增,即g x ≥0在0,+∞ 上恒成立,采用分离变量的方式可得2a ≥-1x 2+2x ,结合二次函数性质可确定2a ≥1,由此可得结果.【详解】不妨设x 2>x 1>0,由f x 1 -f x 2x 1-x 2>2得:f x 1 -2x 1<f x 2 -2x 2,令g x =f x -2x ,则g x 在0,+∞ 上单调递增,∴g x =1x +2ax -2≥0在0,+∞ 上恒成立,∴2a ≥-1x 2+2x ,当1x =1,即x =1时,y =-1x2+2x 取得最大值1,∴2a ≥1,解得:a ≥12,∴实数a 的取值范围为12,+∞ .故答案为:12,+∞ .16.已知函数f x =12x 2-a ln x +1,当-2≤a <0,对任意x 1,x 2∈1,2 ,不等式f x 1 -f x 2 ≤m1x 1-1x 2恒成立,则m 的取值范围为.【答案】12,+∞【分析】构造新函数,利用导数研究函数的单调性与最值,求m 的取值范围即可.【详解】因为-2≤a <0,函数f x 在1,2 上单调递增,不妨设1≤x 1≤x 2≤2,则f x 1 -f x 2 ≤m1x 1-1x 2,可化为f x 2 +m x 2≤f x 1 +mx 1,设h x =f x +mx=12x2-a ln x+1+mx,则h x1≥h x2,所以h x 为1,2上的减函数,即h x =x-ax-mx2≤0在1,2上恒成立,等价于m≥x3-ax在1,2上恒成立,设g x =x3-ax,所以m≥g(x)max,因-2≤a<0,所以g x =3x2-a>0,所以函数g x 在1,2上是增函数,所以g(x)max=g2 =8-2a≤12(当且仅当a=-2时等号成立).所以m≥12.故答案为:12,+∞.17.已知实数x,y满足e x=xy2ln x+ln y,则xy的取值范围为.【答案】[e,+∞)【分析】把e x=xy2ln x+ln y化为xe x=x2y⋅ln(x2y),构造函数f(x)=xe x(x>0),可得xy=e xx,再求出函数g(x)=e xx(x>0)的值域即可得答案.【详解】依题意有x>0,y>0,设f(x)=xe x(x>0),则f (x)=(x+1)e x>0,所以f(x)在(0,+∞)上单调递增,由e x=xy2ln x+ln y,得xe x=x2y⋅ln(x2y),即有f(x)=f(ln(x2y)),因为f(x)在(0,+∞)上单调递增,所以有x=ln(x2y),即x2y=e x,所以xy=e x x,设g(x)=e xx(x>0),则g (x)=(x-1)e xx2,令g (x)=0,得x=1,x∈(0,1)时,g (x)<0,g(x)单调递减,x∈(1,+∞)时,g (x)>0,g(x)单调递增,所以g(x)min=g(1)=e,所以x∈(0,+∞)时,g(x)∈[e,+∞),所以xy的取值范围为[e,+∞).故答案为:[e,+∞)18.已知x0是方程e3x-ln x+2x=0的一个根,则ln x0x0=.【答案】3【分析】依题意得e3x0+3x0=x0+ln x0,构造函数f(x)=e x+x,则有f(3x0)=f(ln x0),得出f(x)的单调性即可求解.【详解】因为x0是方程e3x-ln x+2x=0的一个根,则x0>0,所以e3x0-ln x0+2x0=0,即e3x0+3x0=x0+ln x0,令f(x)=e x+x,则f (x)=e x+1>0,所以f(x)在R单调递增,又e3x0+3x0=x0+ln x0,即f(3x0)=f(ln x0),所以3x0=ln x0,所以ln x0x0=3.故答案为:319.已知函数f x =e ax-2ln x-x2+ax,若f x >0恒成立,则实数a的取值范围为.【答案】2e,+∞ 【分析】根据f x >0恒成立,可得到含有x ,a 的不等式,再进行分离变量,将“恒成立”转化为求函数的最大值或最小值,最后得出a 的范围.【详解】已知函数f x =e ax -2ln x -x 2+ax ,若f x >0恒成立,则实数a 的取值范围为令g x =e x +x ,g x =e x +1>0,所以g x 单调递增,因为f x =e ax -2ln x -x 2+ax >0x >0 ,所以e ax +ax >ln x 2+e ln x 2,可得g ax >g ln x 2 ,所以ax >ln x 2,所以a >ln x 2xx >0 恒成立,即求ln x 2x max x >0 ,令F x =ln x 2x x >0 ,F x =ln x 2 x -x ln x 2x 2=21-ln x x 2,当x ∈0,e 时,F x >0,F x 单调递增,当x ∈e ,+∞ 时,F x <0,F x 单调递减,所以F x ≤F e =2e ,可得a <2e .故答案为:2e ,+∞ .【点睛】对于“恒成立问题”,关键点为:对于任意的x ,使得f x >a 恒成立,可得出f x min >a ;对于任意的x ,使得f x <a 恒成立,可得出f x max <a .20.若ln x +ln2a -1-2a x -e x ≤0,则实数a 的取值范围为.【答案】0<a ≤e 2【分析】利用同构法,构造函数f (x )=ln x +x ,将问题转化为f (2ax )≤f (e x),从而得到2a ≤e x x恒成立问题,再构造g (x )=e x x,利用导数求得其最小值,由此得解.【详解】因为ln x +ln2a -1-2a x -e x ≤0,a >0,x >0⇔ln (2ax )-x +2ax -e x ≤0,⇔ln (2ax )+2ax ≤x +e x =ln e x +e x ,令f (x )=ln x +x ,x >0,则原式等价于f (2ax )≤f (e x ),f (x )=1x +1=1+x x>0恒成立,所以f (x )在定义域内单调递增,所以2ax ≤e x ⇒2a ≤e x x,令g (x )=e x x (x >0),g (x )=e x (x -1)x 2,则x >1时,g (x )>0,g (x )在(1,+∞)单调递增,0<x <1时,g (x )<0,g (x )在(0,1)单调递减,所以g (x )min =g (1)=e ,则2a ≤e ,a ≤e 2.又a 为正数,故答案为:0<a ≤e 2.【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.21.已知a <0,不等式xe x +a ln x x a ≥0对∀x ∈1,+∞ 恒成立,则实数a 的最小值为.【答案】-e 【分析】将不等式等价变形为xe x ≥-a ln x ⋅e -a ln x ,构造函数f x =xe x ,进而问题转化成x ≥-a ln x ,构造g (x )=x ln x ,利用导数求解单调性进而得最值.【详解】xe x ≥-a ln x x a =-a ln x ⋅e -a ln x ,构造函数f x =xe x ,f x =x +1 e x >0x >0 ,故f x 在0,+∞ 上单调递增,故f x ≥f -a ln x 等价于x ≥-a ln x ,即a ≥-x ln x 任意的实数x >1恒成立.令g (x )=x ln x ,x >1则g (x )=ln x -1ln 2x ,故g (x )在(1,e )上单调递减,在(e ,+∞)上单调递增,g (x )min =e ,得a ≥-x ln x max=-e .故答案为:-e【点睛】对于利用导数研究函数的综合问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别22.关于x 的不等式a 2e 2x +1-ln x +x +1+2ln a ≥0在0,+∞ 上恒成立,则a 的最小值是.【答案】22e【分析】不等式转化为e 2x +1+2ln a +2x +1+2ln a ≥ln x +x =e ln x +ln x ,构造函数f x =e x +x ,判断函数单调递增得到2x +1+ln a ≥ln x ,转化为2x +1-ln x +ln a ≥0,构造函数g x =2x +1-ln x +ln a ,根据函数的单调性计算最小值即得到答案.【详解】a 2e 2x +1-ln x +x +1+2ln a ≥0,即e 2x +1+2ln a +2x +1+2ln a ≥ln x +x =e ln x +ln x ,设f x =e x +x ,f x =e x +1>0恒成立,故f x 单调递增.原不等式转化为f 2x +1+2ln a ≥f ln x ,即2x +1+2ln a ≥ln x ,即2x +1-ln x +2ln a ≥0在(0,+∞)上恒成立.设g x =2x +1-ln x +2ln a ,g x =2x -1x ,当x ∈12,+∞ 时,g x >0,函数单调递增;当x ∈0,12 时,g x <0,函数单调递减;故g x min =g 12=2+ln2+2ln a ≥0,即2ln a ≥-2-ln2=-ln2e 2,解得a ≥22e.所以a 的最小值是22e.故答案为:22e.【点睛】方法点睛:将不等式a 2e 2x +1-ln x +x +1+2ln a ≥0化为e 2x +1+2ln a +2x +1+2ln a ≥e ln x +ln x ,这种方法就是同构法,同构即结构形式相同,对于一个不等式,对其移项后通过各种手段将其变形,使其左右两边呈现结构形式完全一样的状态,接着就可以构造函数,结合函数单调性等来对式子进行处理了.。
导数构造辅导助函数问题选择填空题专练A 组一、选择题1.已知()'f x 是函数()()0f x x R x ∈≠且的导函数,当0x >时 ,()()'0xf x f x -<成立,记()()()0.2220.22220.2log 5,,20.2log 5f f f a b c ===,则( ) A .a b c << B .b a c << C .c a b << D .c b a << 【答案】C 【解析】()()2'()()0xf x f x f x x x -'=<,所以函数()()f x g x x =在(0,)+∞上单调递减,又20.220.2122log 5<<<<,所以c a b <<,选C.2.已知定义域为的奇函数的导函数为,当时,,若,,,则的大小关系是( )A .B .C .D . 【答案】D 【解析】构造函数,则,由已知,为偶函数,所以,又,即,当时,,即,所以函数在单调递减,又,所以 ,即.3.定义在(0,)2π上的函数()f x ,'()f x 是它的导函数,且恒有'()()tan f x f x x >成立.则有( )A()()63f ππ< B()2cos1(1)6f f π>C .2()()f ππ< D ()()f ππ<R ()y f x =()'y f x =0x ≠()()'0f x f x x+>1122a f ⎛⎫=⎪⎝⎭()22b f =--11ln ln 22c f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭a b c ,,a b c <<b c a <<c a b <<a c b <<)()(x xf x g =)(')()('x xf x f x g +=)(x g )21(21)21(21--=f f ()()'0f x f x x +>0)()('>+xx f x xf 0<x 0)(')(<+x xf x f 0)('<x g )(x g )0,(-∞2121ln2-<<-)21(21)21(ln )21(ln )2(2-->>--f f f a c b <<【解析】 由'()()tan f x f x x >且(0,)2x π∈,则'()cos ()sin 0f x x f x x ->,设()()cos g x f x x =,则'()'()cos ()sin g x f x x f x x =-0>,所以()g x 在(0,)2π上是增函数,所以()()36g g ππ>,即()cos()cos 3366f f ππππ>,即()()36f ππ>.故选A . 4.函数)(x f 是定义在)0,(-∞上的可导函数,其导函数为)('x f 且有'3()()0f x xf x +<,则不等式3(2016)(2016)8(2)0x f x f +++-<的解集为( )A .()2018,2016--B .(),2018-∞-C .()2016,2015--D .(),2012-∞- 【答案】A【解析】依题意,有()()()'32'30x f x x f x xf x ⎡⎤⎡⎤=+<⎣⎦⎣⎦,故()3x f x 是减函数,原不等式化为()()()()332016201622x f x f ++<--,即()020162,2018,2016x x >+>-∈--.5.定义域为R 的可导函数()y f x =的导函数为()f x ',满足()()f x f x '>,且()02f =,则不等式()2x f x e <的解集为( )A .(),0-∞B .(),2-∞C .()0,+∞D .()2,+∞ 【答案】C【解析】构造函数()()()()()'',0x xf x f x f x F x F x e e -==<,()F x 在R 上单调递减,故()2x f x e <等价于()()02,0x f x f x e e<=>. 6.设f (x )是定义在R 上的奇函数,且f (2)=0,当x>0时,有2xf x -f x x'()()<0恒成立,则不等式x 2f (x )>0的解集是( ) A .(-2,0)∪(2,+∞) B .(-2,0)∪(0,2) C .(-∞,-2)∪(2,+∞) D .(-∞,-2)∪(0,2)因为当0>x 时,有()()02<-'x x f x f x 恒成立,即()0<'⎥⎦⎤⎢⎣⎡x x f 恒成立,所以()x x f 在()+∞,0内单调递减.因为()02=f ,所以在()2,0内恒有()0>x f ;在()+∞,2内恒有()0<x f .又因为()x f 是定义在R 上的奇函数,所以在()2,-∞-内恒有()0>x f ;在()0,2-内恒有()0<x f .又不等式()02>x f x 的解集,即不等式()0>x f 的解集.故答案为:()()2,02,⋃-∞-,选D.7.设函数'()f x 是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,'()()0xf x f x ->,则使得()0f x >成立的x 的取值范围是( )A .(,1)(0,1)-∞-B .(1,0)(1,)-+∞C .(,1)(1,0)-∞--D .(0,1)(1,)+∞【答案】B 【解析】考虑取特殊函数3()f x x x =-,是奇函数,且(1)0f -=,2'()31f x x =-,当0x >时,'233()()(31)()2xf x f x x x x x x -=---=>0,满足题设条件.直接研究函数3()f x x x =-,图象如下图,可知选B 答案.8.定义在[]0,+∞的函数()f x 的导函数为()'f x ,对于任意的0x ≥,恒有()()()()32',2,3f x f x a e f b e f >==,则,a b 的大小关系是( )A .a b >B .a b <C .a b =D .无法确定 【答案】B 【解析】构造函数x e x f x F )()(=,因0)()()(//>-=x e x f x f x F ,故xe xf x F )()(=在[0,]+∞上单调递增,则)3()2(F F <,即32)3()2(ef e f <,也即)3()2(23f e f e <,所以b a <,则不等1ln 3)(ln +>x x f 的解集为( )A .),1(+∞B .),(+∞eC .)1,0(D .),0(e 【答案】D 【解析】令ln t x =,则;1ln 3)(ln +>x x f ,()31,()310f t t f t t >+-->, 可构造函数,()=f(t)-3t-1,()=f (t)-3,f (t)<3,()0g t g t g t ''''<,为减函数. 又,4)1(=f 可得;(1)(1)310g f =--=,使1ln 3)(ln +>x x f 成立, 即;1,ln 1,(0,)t x x e <<∈ 10.设ln 24a =,ln 39b =,ln 525c =,则( ) A .b a c >> B .a b c << C .b a c <<D .a b c >> 【答案】D 【解析】令2ln (2)x y x x =≥,则42ln 02x x x y x x -'==⇒=,因此2ln xy x =在[2,)+∞上单调递,减,从而a b c >>,选D.11.已知()f x 在()0,+∞上非负可导,且满足0)()(/≤-x f x xf ,对于任意正数,m n ,若m n <,则必有( )A .()()nf m mf n ≤B .()()mf m f n ≤C .()()nf n f m ≤D .()()mf n nf m ≤ 【答案】D【解析】构造函数x x f x F )()(=,则由0)()()(2//≤-=x x xf x f x F 可知函数xx f x F )()(=是单调递减函数,因为n m ≤,所以)()(n F m F ≥,即nn f m m f )()(≥,也即)()(n mf m nf ≥,因此应选D .12.已知定义在R 上的函数()f x 的导函数为()f x ',且满足()()f x f x '>,则下列结论正确的是( )A. (1)e (0)f f >B. (1)e (0)f f <C. (1)(0)f f >D. (1)(0)f f < 【答案】A 【解析】令x e x f x g )()(=)()()()()()()'''2x x x x x f x e f x e f x f x g g x xe e --∴== ∵f ′(x )>f (x ),∴g ′(x )>0,g (x )递增,∴g (1)>g (0),即()()010f f >,二、填空题13.定义在R 上的函数)(x f 满足:1)(')(>+x f x f ,4)0(=f ,则不等式3)(+>x x e x f e (其中e 为自然对数的底数)的解集为 .【答案】),0(+∞ 【解析】设()()xxex f e x g -=,则()()()()()[]1-'+=-'+='x f x f ee xf e x f e xg xxxx,()()1>'+x f x f ,()()01>-'+∴x f x f ,()0>'∴x g ,()x g y =∴在定义域上单调递增,()3+>xx e x f e ,()3>∴x g ,又()30=g ,()()0g x g >∴,0>∴x .故答案为()+∞,0.B 组一、选择题1.已知函数()f x 对定义域R 内的任意x 都有()()4f x f x =-,且当2x ≠时其导函数()'fx 满足()()''2xf x f x >,若24a <<,则( )A. ()()()223log a f f f a << B. ()()()23log 2a f f a f << C. ()()()2log 32a f a f f << D. ()()()2log 23a f a f f <<【答案】C 【解析】∵函数f (x )对定义域R 内的任意x 都有f (x )=f (4-x ),∴f (x )关于直线x=2对称;又当x ≠2时其导函数f ′(x )满足xf ′(x )>2f ′(x )⇔f ′(x )(x-2)>0, ∴当x >2时,f ′(x )>0,f (x )在(2,+∞)上的单调递增; 同理可得,当x <2时,f (x )在(-∞,2)单调递减; ∵2<a <4,∴21log 2a <<,∴2<4- 2log a <3,又4<2a<16,f (2log a )=f (4- 2log a ),f (x )在(2,+∞)上的单调递增;∴f (2log a )<f (3)<f (2a )2.已知()f x 为定义在(),-∞+∞上的可导函数,且()()f x f x '>对于x R ∈恒成立(e 为自然对数的底),则( ) A .()()2015201620162015e f e f ⋅>⋅ B .()()2016201620162015ef e f ⋅=⋅C .()()2015201620162015e f e f ⋅<⋅ D .()20152016ef ⋅与()20162015e f ⋅大小不确定【答案】C 【解析】令xe xf xg )()(=,则0)()()(''<-=x e x f x f x g ,所以)(x g 在R 上单调递减。
【巩固练习】一、选择题1.设函数310()(12)f x x =-,则'(1)f =( )A .0B .―1C .―60D .602.(2014 江西校级一模)若2()2ln f x x x =-,则'()0f x >的解集为( )A.(0,1)B.()(),10,1-∞-C. ()()1,01,-+∞D.()1,+∞3.(2014春 永寿县校级期中)下列式子不正确的是( )A.()'23cos 6sin x x x x +=-B. ()'1ln 22ln 2x x x x -=- C. ()'2sin 22cos 2x x = D.'2sin cos sin x x x x x x -⎛⎫= ⎪⎝⎭ 4.函数4538y x x =+-的导数是( ) A .3543x + B .0 C .3425(43)(38)x x x ++- D .3425(43)(38)x x x +-+- 5.(2015 安徽四模)已知函数()f x 的导函数为'()f x ,且满足关系式2'()3(2)ln f x x xf x =++,则'(2)f 的值等于( )A. 2B.-2C.94 D.94- 6.设曲线1(1)1x y x x +=≠-在点(3,2)处的切线与直线ax+y+1=0垂直,则a=( ) A .2 B .12 C .―12D .―2 7.23log cos (cos 0)y x x =≠的导数是( )A .32log tan e x -⋅B .32log cot e x ⋅C .32log cos e x -⋅D .22log cos e x 二、填空题8.曲线y=sin x 在点,12π⎛⎫ ⎪⎝⎭处的切线方程为________。
9.设y=(2x+a)2,且2'|20x y ==,则a=________。
10.31sin x x '⎛⎫-= ⎪⎝⎭____________,()2sin 25x x '+=⎡⎤⎣⎦____________。
用导数法求函数的最值的练习题解析一、选择题1.函数y =f (x )在区间[a ,b ]上的最大值是M ,最小值是m ,若M =m ,则f ′(x )( )A .等于0B .大于0C .小于0D .以上都有可能[答案] A[解析] ∵M =m ,∴y =f (x )是常数函数 ∴f ′(x )=0,故应选A.2.设f (x )=14x 4+13x 3+12x 2在[-1,1]上的最小值为( ) A .0 B .-2 C .-1D.1312[答案] A[解析] y ′=x 3+x 2+x =x (x 2+x +1) 令y ′=0,解得x =0.∴f (-1)=512,f (0)=0,f (1)=1312 ∴f (x )在[-1,1]上最小值为0.故应选A.3.函数y =x 3+x 2-x +1在区间[-2,1]上的最小值为( ) A.2227 B .2 C .-1D .-4 [答案] C[解析] y ′=3x 2+2x -1=(3x -1)(x +1) 令y ′=0解得x =13或x =-1当x =-2时,y =-1;当x =-1时,y =2; 当x =13时,y =2227;当x =1时,y =2. 所以函数的最小值为-1,故应选C.4.函数f (x )=x 2-x +1在区间[-3,0]上的最值为( ) A .最大值为13,最小值为34 B .最大值为1,最小值为4 C .最大值为13,最小值为1 D .最大值为-1,最小值为-7 [答案] A[解析] ∵y =x 2-x +1,∴y ′=2x -1,令y ′=0,∴x =12,f (-3)=13,f ⎝ ⎛⎭⎪⎫12=34,f (0)=1.5.函数y =x +1-x 在(0,1)上的最大值为( ) A. 2 B .1 C .0D .不存在[答案] A[解析] y ′=12x -121-x =12·1-x -x x ·1-x由y ′=0得x =12,在⎝⎛⎭⎪⎫0,12上y ′>0,在⎝⎛⎭⎪⎫12,1上y ′<0.∴x =12时y 极大=2, 又x ∈(0,1),∴y max = 2. 6.函数f (x )=x 4-4x (|x |<1)( ) A .有最大值,无最小值 B .有最大值,也有最小值 C .无最大值,有最小值 D .既无最大值,也无最小值 [答案] D[解析] f ′(x )=4x 3-4=4(x -1)(x 2+x +1). 令f ′(x )=0,得x =1.又x ∈(-1,1) ∴该方程无解,故函数f (x )在(-1,1)上既无极值也无最值.故选D.7.函数y =2x 3-3x 2-12x +5在[0,3]上的最大值和最小值分别是( )A .5,-15B .5,4C .-4,-15D .5,-16[答案] A[解析] y ′=6x 2-6x -12=6(x -2)(x +1), 令y ′=0,得x =2或x =-1(舍). ∵f (0)=5,f (2)=-15,f (3)=-4, ∴y max =5,y min =-15,故选A.8.已知函数y =-x 2-2x +3在[a,2]上的最大值为154,则a 等于( )A .-32 B.12 C .-12 D.12或-32[答案] C[解析] y ′=-2x -2,令y ′=0得x =-1. 当a ≤-1时,最大值为f (-1)=4,不合题意. 当-1<a <2时,f (x )在[a,2]上单调递减, 最大值为f (a )=-a 2-2a +3=154, 解得a =-12或a =-32(舍去).9.若函数f (x )=x 3-12x 在区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是( )A .k ≤-3或-1≤k ≤1或k ≥3B .-3<k <-1或1<k <3C .-2<k <2D .不存在这样的实数 [答案] B[解析] 因为y ′=3x 2-12,由y ′>0得函数的增区间是(-∞,-2)和(2,+∞),由y ′<0,得函数的减区间是(-2,2),由于函数在(k -1,k +1)上不是单调函数,所以有k -1<-2<k +1或k -1<2<k +1,解得-3<k <-1或1<k <3,故选B.10.函数f (x )=x 3+ax -2在区间[1,+∞)上是增函数,则实数a 的取值范围是( )A .[3,+∞)B .[-3,+∞)C .(-3,+∞)D .(-∞,-3)[答案] B[解析] ∵f (x )=x 3+ax -2在[1,+∞)上是增函数,∴f ′(x )=3x 2+a ≥0在[1,+∞)上恒成立即a ≥-3x 2在[1,+∞)上恒成立 又∵在[1,+∞)上(-3x 2)max =-3 ∴a ≥-3,故应选B. 二、填空题11.函数y =x 32+(1-x )32,0≤x ≤1的最小值为______. [答案] 22由y ′>0得x >12,由y ′<0得x <12.此函数在⎣⎢⎡⎦⎥⎤0,12上为减函数,在⎣⎢⎡⎦⎥⎤12,1上为增函数,∴最小值在x =12时取得,y min =22.12.函数f (x )=5-36x +3x 2+4x 3在区间[-2,+∞)上的最大值________,最小值为________.[答案] 不存在;-2834[解析] f ′(x )=-36+6x +12x 2,令f ′(x )=0得x 1=-2,x 2=32;当x >32时,函数为增函数,当-2≤x ≤32时,函数为减函数,所以无最大值,又因为f (-2)=57,f ⎝ ⎛⎭⎪⎫32=-2834,所以最小值为-2834.13.若函数f (x )=x x 2+a (a >0)在[1,+∞)上的最大值为33,则a的值为________.[答案]3-1[解析] f ′(x )=x 2+a -2x 2(x 2+a )2=a -x 2(x 2+a )2令f ′(x )=0,解得x =a 或x =-a (舍去) 当x >a 时,f ′(x )<0;当0<x <a 时,f ′(x )>0; 当x =a 时,f (x )=a 2a =33,a =32<1,不合题意. ∴f (x )max =f (1)=11+a=33,解得a =3-1.14.f (x )=x 3-12x +8在[-3,3]上的最大值为M ,最小值为m ,则M -m =________.[答案] 32[解析] f ′(x )=3x 2-12 由f ′(x )>0得x >2或x <-2,由f ′(x )<0得-2<x <2.∴f (x )在[-3,-2]上单调递增,在[-2,2]上单调递减,在[2,3]上单调递增.又f (-3)=17,f (-2)=24,f (2)=-8, f (3)=-1,∴最大值M =24,最小值m =-8, ∴M -m =32. 三、解答题15.求下列函数的最值: (1)f (x )=sin2x -x ⎝ ⎛⎭⎪⎫-π2≤x ≤π2;(2)f (x )=x +1-x 2.[解析] (1)f ′(x )=2cos2x -1. 令f ′(x )=0,得cos2x =12.又x ∈⎣⎢⎡⎦⎥⎤-π2,π2,∴2x ∈[-π,π],∴2x =±π3,∴x =±π6.∴函数f (x )在⎣⎢⎡⎦⎥⎤-π2,π2上的两个极值分别为f ⎝ ⎛⎭⎪⎫π6=32-π6,f ⎝ ⎛⎭⎪⎫-π6=-32+π6. 又f (x )在区间端点的取值为f ⎝ ⎛⎭⎪⎫π2=-π2,f ⎝ ⎛⎭⎪⎫-π2=π2. 比较以上函数值可得f (x )max =π2,f (x )min =-π2. (2)∵函数f (x )有意义,∴必须满足1-x 2≥0,即-1≤x ≤1, ∴函数f (x )的定义域为[-1,1].f ′(x )=1+12(1-x 2)-12·(1-x 2)′=1-x1-x 2.令f ′(x )=0,得x =22 . ∴f (x )在[-1,1]上的极值为f ⎝ ⎛⎭⎪⎫22=22+1-⎝ ⎛⎭⎪⎫222= 2. 又f (x )在区间端点的函数值为f (1)=1,f (-1)=-1,比较以上函数值可得f (x )max =2,f (x )min =-1.16.设函数f (x )=ln(2x +3)+x 2.求f (x )在区间⎣⎢⎡⎦⎥⎤-34,14上的最大值和最小值.[解析] f (x )的定义域为⎝ ⎛⎭⎪⎫-32,+∞.f ′(x )=2x +22x +3=4x 2+6x +22x +3=2(2x +1)(x +1)2x +3.当-32<x <-1时,f ′(x )>0; 当-1<x <-12时,f ′(x )<0; 当x >-12时,f ′(x )>0,所以f (x )在⎣⎢⎡⎦⎥⎤-34,14上的最小值为f ⎝ ⎛⎭⎪⎫-12=ln2+14. 又f ⎝ ⎛⎭⎪⎫-34-f ⎝ ⎛⎭⎪⎫14=ln 32+916-ln 72-116=ln 37+12=12⎝ ⎛⎭⎪⎫1-ln 499<0,所以f (x )在区间⎣⎢⎡⎦⎥⎤-34,14上的最大值为 f ⎝ ⎛⎭⎪⎫14=ln 72+116.17.(2010·安徽理,17)设a 为实数,函数f (x )=e x -2x +2a ,x ∈R . (1)求f (x )的单调区间及极值;(2)求证:当a >ln2-1且x >0时,e x >x 2-2ax +1.[分析] 本题考查导数的运算,利用导数研究函数的单调区间,求函数的极值和证明函数不等式,考查运算能力、综合分析和解决问题的能力.解题思路是:(1)利用导数的符号判定函数的单调性,进而求出函数的极值.(2)将不等式转化构造函数,再利用函数的单调性证明.[解析] (1)解:由f (x )=e x -2x +2a ,x ∈R 知f ′(x )=e x -2,x ∈R . 令f ′(x )=0,得x =ln2.于是当x 变化时,f ′(x ),f (x )的变化情况如下表:ln2)∞) f ′(x ) - 0 + f (x )单调递减2(1-ln2+a )单调递增故f (x )的单调递减区间是(-∞,ln2),单调递增区间是(ln2,+∞),f (x )在x =ln2处取得极小值,极小值为f (ln2)=e ln 2-2ln2+2a =2(1-ln2+a ).(2)证明:设g (x )=e x -x 2+2ax -1,x ∈R ,于是g ′(x )=e x -2x +2a ,x ∈R .由(1)知当a >ln2-1时,g ′(x )最小值为g ′(ln2)=2(1-ln2+a )>0.于是对任意x ∈R ,都有g ′(x )>0,所以g (x )在R 内单调递增. 于是当a >ln2-1时,对任意x ∈(0,+∞),都有g (x )>g (0). 而g (0)=0,从而对任意x ∈(0,+∞),g (x )>0. 即e x -x 2+2ax -1>0,故e x >x 2-2ax +1. 18.已知函数f (x )=4x 2-72-x ,x ∈[0,1].(1)求f (x )的单调区间和值域;(2)设a ≥1,函数g (x )=x 3-3a 2x -2a ,x ∈[0,1].若对于任意x 1∈[0,1],总存在x 0∈[0,1],使得g (x 0)=f (x 1)成立,求a 的取值范围.[解析] (1)对函数f (x )求导,得f ′(x )=-4x 2+16x -7(2-x )2=-(2x -1)(2x -7)(2-x )2令f ′(x )=0解得x =12或x =72.当x 变化时,f ′(x ),f (x )的变化情况如下表:x 0 (0,12) 12 (12,1) 1 f ′(x ) - 0 +f (x )-72-4-3所以,当x ∈(0,12)时,f (x )是减函数;当x ∈⎝ ⎛⎭⎪⎫12,1时,f (x )是增函数. 当x ∈[0,1]时,f (x )的值域为[-4,-3]. (2)g ′(x )=3(x 2-a 2).因为a ≥1,当x ∈(0,1)时,g ′(x )<0.因此当x ∈(0,1)时,g (x )为减函数,从而当x ∈[0,1]时有g (x )∈[g (1),g (0)].又g (1)=1-2a -3a 2,g (0)=-2a ,即x ∈[0,1]时有g (x )∈[1-2a -3a 2,-2a ].任给x 1∈[0,1],f (x 1)∈[-4,-3],存在x 0∈[0,1]使得g (x 0)=f (x 1)成立,则[1-2a -3a 2,-2a ]⊇[-4,-3].即⎩⎨⎧1-2a -3a 2≤-4,①-2a ≥-3.②解①式得a ≥1或a ≤-53;解②式得a ≤32. 又a ≥1,故a 的取值范围为1≤a ≤32.。
导数数学试题及答案一、选择题1. 函数 \( f(x) = 3x^2 + 2x - 5 \) 的导数是:A. \( 6x + 4 \)B. \( 6x^2 + 2 \)C. \( 3x + 2 \)D. \( 6x - 1 \)2. 如果 \( f(x) \) 的导数为 \( f'(x) = 4x^3 - 6x^2 + 8x - 10 \),那么 \( f'(1) \) 的值是:A. -2B. 0C. 2D. 4二、填空题3. 求函数 \( g(x) = x^3 - 4x + 1 \) 的导数,并计算 \( g'(2) \) 。
\( g'(x) = \) ________ , \( g'(2) = \) ________ 。
4. 若 \( h(t) = t^4 + 3t^2 + 2 \),求 \( h'(t) \) 。
\( h'(t) = \) ________ 。
三、解答题5. 已知 \( f(x) = \ln(x) + 2x \),求 \( f'(x) \) 并找出\( f'(x) \) 的零点。
6. 给定函数 \( y = \frac{1}{x} \),求其导数,并讨论其在 \( x= 1 \) 处的切线斜率。
四、应用题7. 一个物体从静止开始,其速度随时间变化的函数为 \( v(t) =3t^2 - 2t \),求其加速度函数 \( a(t) \) 并计算 \( t = 2 \) 秒时的加速度。
8. 一个物体在 \( x \) 轴上的位移函数为 \( s(x) = x^3 - 6x^2 + 11x + 10 \),求其速度函数 \( v(x) \) 并找出 \( x = 2 \) 时的速度。
答案:一、选择题1. A. \( 6x + 4 \)2. C. 2二、填空题3. \( g'(x) = 3x^2 - 4 \) , \( g'(2) = 8 \)4. \( h'(t) = 12t^3 + 6t \)三、解答题5. \( f'(x) = \frac{1}{x} + 2 \),令 \( f'(x) = 0 \) 解得\( x = 1 \)。
用导数法求函数的最值的练习题解析一、选择题1.函数y =f (x )在区间[a ,b ]上的最大值是M ,最小值是m ,若M =m ,则f ′(x )( )A .等于0B .大于0C .小于0D .以上都有可能[答案] A[解析] ∵M =m ,∴y =f (x )是常数函数 ∴f ′(x )=0,故应选A.2.设f (x )=14x 4+13x 3+12x 2在[-1,1]上的最小值为( )A .0B .-2C .-1D.1312[答案] A[解析] y ′=x 3+x 2+x =x (x 2+x +1) 令y ′=0,解得x =0.∴f (-1)=512,f (0)=0,f (1)=1312∴f (x )在[-1,1]上最小值为0.故应选A.3.函数y =x 3+x 2-x +1在区间[-2,1]上的最小值为( ) A.2227B .2C .-1D .-4[答案] C[解析] y ′=3x 2+2x -1=(3x -1)(x +1) 令y ′=0解得x =13或x =-1当x =-2时,y =-1;当x =-1时,y =2; 当x =13时,y =2227;当x =1时,y =2.所以函数的最小值为-1,故应选C.4.函数f (x )=x 2-x +1在区间[-3,0]上的最值为( ) A .最大值为13,最小值为34B .最大值为1,最小值为4C .最大值为13,最小值为1D .最大值为-1,最小值为-7 [答案] A[解析] ∵y =x 2-x +1,∴y ′=2x -1,令y ′=0,∴x =12,f (-3)=13,f ⎝ ⎛⎭⎪⎫12=34,f (0)=1.5.函数y =x +1-x 在(0,1)上的最大值为( )A.2B .1C .0D .不存在[答案] A[解析] y ′=12x -121-x =12·1-x -x x ·1-x由y ′=0得x =12,在⎝ ⎛⎭⎪⎫0,12上y ′>0,在⎝ ⎛⎭⎪⎫12,1上y ′<0.∴x =12时y 极大=2, 又x ∈(0,1),∴y max =2.6.函数f (x )=x 4-4x (|x |<1)( ) A .有最大值,无最小值 B .有最大值,也有最小值 C .无最大值,有最小值 D .既无最大值,也无最小值 [答案] D[解析] f ′(x )=4x 3-4=4(x -1)(x 2+x +1).令f ′(x )=0,得x =1.又x ∈(-1,1) ∴该方程无解,故函数f (x )在(-1,1)上既无极值也无最值.故选D.7.函数y =2x 3-3x 2-12x +5在[0,3]上的最大值和最小值分别是( )A .5,-15B .5,4C .-4,-15D .5,-16[答案] A[解析] y ′=6x 2-6x -12=6(x -2)(x +1), 令y ′=0,得x =2或x =-1(舍). ∵f (0)=5,f (2)=-15,f (3)=-4, ∴y max =5,y min =-15,故选A.8.已知函数y =-x 2-2x +3在[a,2]上的最大值为154,则a 等于( )A .-32B.12 C .-12D.12或-32[答案] C[解析] y ′=-2x -2,令y ′=0得x =-1. 当a ≤-1时,最大值为f (-1)=4,不合题意. 当-1<a <2时,f (x )在[a,2]上单调递减, 最大值为f (a )=-a2-2a +3=154,解得a =-12或a =-32(舍去).9.若函数f (x )=x 3-12x 在区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是( )A .k ≤-3或-1≤k ≤1或k ≥3B .-3<k <-1或1<k <3C .-2<k <2D .不存在这样的实数 [答案] B[解析] 因为y ′=3x 2-12,由y ′>0得函数的增区间是(-∞,-2)和(2,+∞),由y ′<0,得函数的减区间是(-2,2),由于函数在(k -1,k +1)上不是单调函数,所以有k -1<-2<k +1或k -1<2<k +1,解得-3<k <-1或1<k <3,故选B.10.函数f (x )=x 3+ax -2在区间[1,+∞)上是增函数,则实数a 的取值范围是( )A .[3,+∞)B .[-3,+∞)C .(-3,+∞)D .(-∞,-3)[答案] B[解析] ∵f (x )=x 3+ax -2在[1,+∞)上是增函数,∴f ′(x )=3x 2+a ≥0在[1,+∞)上恒成立即a ≥-3x 2在[1,+∞)上恒成立 又∵在[1,+∞)上(-3x 2)max =-3 ∴a ≥-3,故应选B. 二、填空题11.函数y =x 32+(1-x )32,0≤x ≤1的最小值为______.[答案]22由y ′>0得x >12,由y ′<0得x <12.此函数在⎣⎢⎡⎦⎥⎤0,12上为减函数,在⎣⎢⎡⎦⎥⎤12,1上为增函数,∴最小值在x =12时取得,y min =22.12.函数f (x )=5-36x +3x 2+4x 3在区间[-2,+∞)上的最大值________,最小值为________.[答案] 不存在;-2834[解析] f ′(x )=-36+6x +12x 2,令f ′(x )=0得x 1=-2,x 2=32;当x >32时,函数为增函数,当-2≤x ≤32时,函数为减函数,所以无最大值,又因为f (-2)=57,f ⎝ ⎛⎭⎪⎫32=-2834,所以最小值为-2834.13.若函数f (x )=xx 2+a(a >0)在[1,+∞)上的最大值为33,则a 的值为________.[答案]3-1[解析] f ′(x )=x 2+a -2x 2(x 2+a )2=a -x 2(x 2+a )2令f ′(x )=0,解得x =a 或x =-a (舍去)当x >a 时,f ′(x )<0;当0<x <a 时,f ′(x )>0;当x =a 时,f (x )=a2a=33,a =32<1,不合题意.∴f (x )max =f (1)=11+a =33,解得a =3-1.14.f (x )=x 3-12x +8在[-3,3]上的最大值为M ,最小值为m ,则M -m =________.[答案] 32[解析] f ′(x )=3x 2-12 由f ′(x )>0得x >2或x <-2, 由f ′(x )<0得-2<x <2.∴f (x )在[-3,-2]上单调递增,在[-2,2]上单调递减,在[2,3]上单调递增.又f (-3)=17,f (-2)=24,f (2)=-8,f (3)=-1,∴最大值M =24,最小值m =-8, ∴M -m =32. 三、解答题15.求下列函数的最值:(1)f (x )=sin2x -x ⎝ ⎛⎭⎪⎪⎫-π2≤x ≤π2;(2)f (x )=x +1-x 2.[解析] (1)f ′(x )=2cos2x -1. 令f ′(x )=0,得cos2x =12.又x ∈⎣⎢⎢⎡⎦⎥⎥⎤-π2,π2,∴2x ∈[-π,π],∴2x =±π3,∴x =±π6.∴函数f (x )在⎣⎢⎢⎡⎦⎥⎥⎤-π2,π2上的两个极值分别为f ⎝ ⎛⎭⎪⎪⎫π6=32-π6,f ⎝ ⎛⎭⎪⎪⎫-π6=-32+π6.又f (x )在区间端点的取值为f ⎝ ⎛⎭⎪⎪⎫π2=-π2,f ⎝ ⎛⎭⎪⎪⎫-π2=π2.比较以上函数值可得f (x )max =π2,f (x )min =-π2.(2)∵函数f (x )有意义,∴必须满足1-x 2≥0,即-1≤x ≤1, ∴函数f (x )的定义域为[-1,1].f ′(x )=1+12(1-x 2)-12·(1-x 2)′=1-x1-x2.令f ′(x )=0,得x =22.∴f (x )在[-1,1]上的极值为f ⎝⎛⎭⎪⎫22=22+1-⎝⎛⎭⎪⎫222= 2.又f (x )在区间端点的函数值为f (1)=1,f (-1)=-1,比较以上函数值可得f (x )max =2,f (x )min =-1.16.设函数f (x )=ln(2x +3)+x 2.求f (x )在区间⎣⎢⎡⎦⎥⎤-34,14上的最大值和最小值.[解析]f (x )的定义域为⎝ ⎛⎭⎪⎫-32,+∞.f ′(x )=2x +22x +3=4x 2+6x +22x +3=2(2x +1)(x +1)2x +3.当-32<x <-1时,f ′(x )>0;当-1<x <-12时,f ′(x )<0;当x >-12时,f ′(x )>0,所以f (x )在⎣⎢⎡⎦⎥⎤-34,14上的最小值为 f ⎝ ⎛⎭⎪⎫-12=ln2+14. 又f ⎝ ⎛⎭⎪⎫-34-f ⎝ ⎛⎭⎪⎫14=ln 32+916-ln 72-116=ln 37+12=12⎝ ⎛⎭⎪⎫1-ln 499<0, 所以f (x )在区间⎣⎢⎡⎦⎥⎤-34,14上的最大值为 f ⎝ ⎛⎭⎪⎫14=ln 72+116. 17.(2010·安徽理,17)设a 为实数,函数f (x )=e x -2x +2a ,x ∈R .(1)求f (x )的单调区间及极值;(2)求证:当a >ln2-1且x >0时,e x >x 2-2ax +1.[分析] 本题考查导数的运算,利用导数研究函数的单调区间,求函数的极值和证明函数不等式,考查运算能力、综合分析和解决问题的能力.解题思路是:(1)利用导数的符号判定函数的单调性,进而求出函数的极值.(2)将不等式转化构造函数,再利用函数的单调性证明.[解析] (1)解:由f (x )=e x -2x +2a ,x ∈R 知f ′(x )=e x -2,x ∈R .令f′(x)=0,得x=ln2.于是当x变化时,f′(x),f(x)的变化情况如下表:x (-∞,ln2)ln2(ln2,+∞)f′(x)-0+f(x)单调递减2(1-ln2+a)单调递增故f(x)的单调递减区间是(-∞,ln2),单调递增区间是(ln2,+∞),f(x)在x=ln2处取得极小值,极小值为f(ln2)=e ln2-2ln2+2a =2(1-ln2+a).(2)证明:设g(x)=e x-x2+2ax-1,x∈R,于是g′(x)=e x-2x+2a,x∈R.由(1)知当a>ln2-1时,g′(x)最小值为g′(ln2)=2(1-ln2+a)>0.于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.于是当a>ln2-1时,对任意x∈(0,+∞),都有g(x)>g(0).而g(0)=0,从而对任意x∈(0,+∞),g(x)>0.即e x -x 2+2ax -1>0,故e x >x 2-2ax +1.18.已知函数f (x )=4x 2-72-x,x ∈[0,1]. (1)求f (x )的单调区间和值域;(2)设a ≥1,函数g (x )=x 3-3a 2x -2a ,x ∈[0,1].若对于任意x 1∈[0,1],总存在x 0∈[0,1],使得g (x 0)=f (x 1)成立,求a 的取值范围.[解析] (1)对函数f (x )求导,得f ′(x )=-4x 2+16x -7(2-x )2=-(2x -1)(2x -7)(2-x )2 令f ′(x )=0解得x =12或x =72. 当x 变化时,f ′(x ),f (x )的变化情况如下表:x0 (0,12) 12 (12,1) 1 f ′(x)- 0 +f (x ) -72 -4 -3所以,当x ∈(0,12)时,f (x )是减函数;当x ∈⎝ ⎛⎭⎪⎫12,1时,f (x )是增函数. 当x ∈[0,1]时,f (x )的值域为[-4,-3].(2)g ′(x )=3(x 2-a 2).因为a ≥1,当x ∈(0,1)时,g ′(x )<0.因此当x ∈(0,1)时,g (x )为减函数,从而当x ∈[0,1]时有g (x )∈[g (1),g (0)].又g (1)=1-2a -3a 2,g (0)=-2a ,即x ∈[0,1]时有g (x )∈[1-2a -3a 2,-2a ].任给x 1∈[0,1],f (x 1)∈[-4,-3],存在x 0∈[0,1]使得g (x 0)=f (x 1)成立,则[1-2a -3a 2,-2a ]⊇[-4,-3].即⎩⎨⎧ 1-2a -3a 2≤-4,①-2a ≥-3.②解①式得a ≥1或a ≤-53;解②式得a ≤32. 又a ≥1,故a 的取值范围为1≤a ≤32.THANKS !!!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考。
学生姓名年级高三授课日期教师学科数学上课时段教学步骤及教学内容导数综合测试达标题一、选择题(每题5分,共50分)1. 一个物体的运动方程为S=1+t+t^2其中s的单位是米,t的单位是秒,那么物体在3秒末的瞬时速度是()A 7米/秒B 6米/秒C 5米/秒D 8米/秒2. 已知函数f(x)=ax2+c,且(1)f'=2,则a的值为()A.1B.2C.-1D. 03.若函数bbxxxf33)(3+-=在()1,0内有极小值,则()(A)10<<b(B)1<b(C)0>b(D)21<b4. 函数3y x x=+的递增区间是()A )1,(-∞ B )1,1(- C ),(+∞-∞ D ),1(+∞5.若函数f(x)在区间(a ,b)内函数的导数为正,且f(b)≤0,则函数f(x)在(a, b)内有()A. f(x) 〉0B.f(x)〈 0C.f(x) = 0D.无法确定6.'()f x=0是可导函数y=f(x)在点x=x0处有极值的 ( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.非充分非必要条件7.曲线3()2f x x x=+-在p处的切线平行于直线41y x=-,则p点的坐标为()A (1,0) B (2,8)C (1,0)和(1,4)-- D (2,8)和(1,4)--8.函数313y x x=+-有()A.极小值-1,极大值1B. 极小值-2,极大值3C.极小值-1,极大值3D. 极小值-2,极大值29.设2:()e ln 21x p f x x x mx =++++在(0)+∞,内单调递增,:5q m -≥,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件10.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( )A. 1个B.2个C.3个D.4个 二、填空题(每题5分,共25分)11.函数32y x x x =--的单调区间为___________________________________. 12.已知函数3()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是 . 13.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________. 14.函数()ln (0)f x x x x =>的单调递增区间是____.15.已知函数3()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为,M m ,则M m -=三、解答题:()16.(12分)求垂直于直线2610x y -+=并且与曲线3235y x x =+-相切的直线方程abxy)(x f y '=O17.(12分)如图,一矩形铁皮的长为8cm ,宽为5cm ,在四个角上截去 四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长 为多少时,盒子容积最大?18.(12分)已知c bx ax x f ++=24)(的图象经过点(0,1),且在1x =处的切线方程是2y x =-,请解答下列问题:(1)求)(x f y =的解析式; (2)求)(x f y =的单调递增区间。
(新高考地区)2023届高三数学一轮复习 同步练习函数与导数____班____号 姓名_________一、选择题(1-6单选,7-8多选)1. 已知函数()f x 的导数为()f x ‘,且()()220sin f x x f x x '=++,则()'0f =A .-2B .-1C .1D .22.函数f (x )=2|sinx |+cos2x 在[-π2,π2]上的单调递增区间为 A .[-π2,-π6]和[0,π6] B .[-π6,0]和[π6,π2] C .[-π2,-π6]和[π6,π2] D .[-π6,π6] 3. 设函数()219ln 2f x x x =-在区间[]1,1a a -+上单调递减,则实数a 的取值范围是A .(]1,2B .[)4,+∞C .(],2-∞D .(]0,34. 已知过点(),0A a 作曲线()1e x y x =-的切线有且仅有1条,则=aA .3-B .3C .3-或1D .3或15. 已知函数()e ,0ln ,0x x f x x x ⎧≤⎪=⎨>⎪⎩,(e 为自然对数的底数),则函数()()()211e =--⎡⎤⎣⎦F x f f x f x 的零点个数为A .8B .7C .6D .46. 设a ,b 都为正数,e 为自然对数的底数,若1a ae b ++ln b b <,则A .ab e >B .1a b e >+C .ab e <D .1a b e <+7.已知定义在上的函数的导函数为,且,,则下列判断中正确的是 A . B . C . D . 8. 已知()f x 是定义在R 上的奇函数,当0x >时,121,02()1(2),22x x f x f x x -⎧-<≤⎪=⎨->⎪⎩,下列结论中正确的有A.函数()f x 在()6,5--上单调递增0,2π⎡⎫⎪⎢⎣⎭()f x ()f x '()00f =()cos ()sin 0f x x f x x '+<64f f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ln 03f π⎛⎫> ⎪⎝⎭63f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭43f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭B.函数()f x 的图象与直线y x =有且仅有2个不同的交点C.若关于x 的方程2[()](1)()0()f x a f x a a -++=∈R 恰有4个不相等的实数根,则这4个实数根之和为8D.记函数()f x 在[]()*21,2k k k -∈N 上的最大值为k a ,则数列{}n a 的前7项和为12764. 二、填空题9. 若函数f (x )=x 3+ax 2+bx +a 2在x =1处取得极值10,则a =________,b =________.10. 已知函数()ln 2f x x ax =--在区间(1,2)上不单调,则实数a 的取值范围为___________.11.已知不等式e (3)20(1)+--<<x a x x a 恰有2个整数解,则a 的取值范围为___________.12.已知函数()()ln 1f x x x a x a =+-+,.a Z ∈若存在01x >,使得()00f x <,则实数a 的最小值为________.三、解答题13. 已知函数2()(1)ln 1f x a x ax =+++.(1)当2a =时,求曲线()y f x =在()1,(1)f 处的切线方程;(2)设2a ≤-,证明:对任意1x ,2(0,)x ∈+∞,1212|()()|4||f x f x x x -≥-.14. 已知函数()()x f x e ln x m =-+.(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m 时,证明:()0f x >.15.已知函数()()2ln 21f x x ax a x =++++,其中a ∈R .(1)求函数()f x 的单调区间;(2)设Z a ∈,若对任意的0x >,()0f x ≤恒成立,求a 的最大值.1ln22n++<17. 已知函数()()ln 1f x x =+,2()1g x x bx =++(b 为常数),()()()h x f x g x =-.(1)若存在过原点的直线与函数()f x 、()g x 的图象相切,求实数b 的值;(2)当2b =-时,[]12,0,1x x ∃∈使得()()12h x h x M -≥成立,求M 的最大值;(3)若函数()h x 的图象与x 轴有两个不同的交点()1,0A x 、()2,0B x ,且120x x <<,求证:12'02x x h +⎛⎫< ⎪⎝⎭.。
大学专升本数学函数练习题一、选择题1. 函数f(x) = 3x^2 - 5x + 2在x=1处的导数是()。
A. 1B. 6C. -2D. 02. 已知函数g(x) = 2x + 1,若g(a) = 5,则a的值为()。
A. 1B. 2C. 3D. 43. 函数h(x) = sin(x) + cos(x)在x=π/4处的值是()。
A. √2B. 1C. 2D. 0二、填空题4. 函数f(x) = x^3 - 2x^2 + x - 6的极小值点是________。
5. 若函数f(x) = x^2 + bx + c的图像关于直线x = -b/2a对称,则c的值为________。
三、解答题6. 求函数y = x^3 - 6x^2 + 9x + 2的单调区间。
7. 已知函数f(x) = x^3 - 3x^2 + 2x,求证f(x)在(-∞, 1)上单调递增。
8. 函数y = ln(x)的定义域是________。
四、证明题9. 证明函数f(x) = x^2 + 2x + 3在R上是严格递增的。
10. 证明函数g(x) = x^2 - 4x + 4在[2, +∞)上是严格递减的。
五、综合题11. 已知函数f(x) = x^2 - 4x + 4,求f(x)在区间[0, 5]上的最大值和最小值。
12. 函数y = 2x^2 + 3x - 5的图像与x轴的交点坐标是________。
六、应用题13. 某工厂生产产品,其成本函数为C(x) = 50x + 200,其中x为生产数量。
求当产量为100时的成本。
14. 某公司销售产品,其收入函数为R(x) = 60x - 0.5x^2,其中x为销售数量。
求当销售量为50时的收入。
七、开放题15. 给定函数f(x) = ax^2 + bx + c,若a < 0,b > 0,c < 0,讨论f(x)的图像特征。
八、附加题16. 函数y = x^2 - 2x + 1在x轴上的截距是________。
函数导数选择填空练习题一、选择题(本大题共12小题,每小题5分,共60分.每小题中只有一项符合题目要求) 1.已知112bia i i-=++ (,a b R ∈),其中i 为虚数单位,则a b +等于( A ) A .-4 B .4 C .-10 D .10 2.(2015·宜昌调研)下列说法中,正确的是( B ) A .命题“若22am bm <,则a b <”的逆命题是真命题B .命题“存在0x R ∈,2000x x ->”的否定是“对任意的x R ∈,20x x -≤” C .命题“p 或q ”为真命题,则命题p 和命题q 均为真命题 D .已知x R ∈,则“1x >”是“2x >”的充分不必要条件3.(天津市八校2016届高三12月联考)设13log 2a =,2log 3b =,0.31()2c =,则( D ). A .a b c >>B .b a c >>C .c b a >>D . b c a >>4.当0x >时,函数2()(1)x f x a =-的值总大于1,则实数a 的取值范围是( )A .1||2a <<B .||1a <C .||a >D .||a <【答案】C 【解析】∵x >0时,f (x )=(a 2-1)x 的值总大于1,∴a 2-1>1,∴a 2>2,∴|a |> 2.5.若函数()ln f x kx x =-在区间(1,)+∞上单调递增,则k 的取值范围是( ) A .(,2]-∞- B .(,1]-∞- C .[2,)+∞ D .[1,)+∞D [f ′(x )=k -1x ,由已知得f ′(x )≥0在x ∈(1,+∞)上恒成立,故k ≥1x 在(1,+∞)上恒成立.因为x >1,所以0<1x<1,故k 的取值范围是[1,+∞).]6.设函数(),()f x g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论中正确的是( )A .()()f x g x 是偶函数B .|()|()f x g x 是奇函数C .()|()|f x g x 是奇函数D . |()()|f x g x 是奇函数 【答案】C 【解析】=|-f (x )g (x )|=|f (x )g (x )|,所以|f (x )g (x )|是偶函数,故D 项错误,选C. 7.对于R 上可导的任意函数()f x ,若满足10()xf x -≤',则必有( ) A .(0)(2)2(1)f f f +> B .(0)(2)2(1)f f f +≤ C .(0)(2)2(1)f f f +< D .(0)(2)2(1)f f f +≥A [当x <1时,f ′(x )<0,此时函数f (x )递减,当x >1时,f ′(x )>0,此时函数f (x )递增, 即当x =1时,函数f (x )取得极小值同时也取得最小值f (1), 所以f (0)>f (1),f (2)>f (1),则f (0)+f (2)>2f (1).故选A.] 8.函数1()ln()f x x x=-的图象是( B )9.(2015·渭南质检一)已知函数()f x 满足()()f x f x -=和(2)()f x f x +=,且当[0,1]x ∈时,()1f x x =-,则关于x 的方程1()()3x f x =在[0,4]x ∈上解的个数是( )A .5B .4C .3D .2A [因为f (-x )=f (x ),故f (x )为偶函数;因为f (x +2)=f (x ),故T =2.作出f (x )在[0,4]上的图象如图所示,再作出g (x )=(13)x 的图象,可知f (x )和g (x )在[0,4]上有5个交点,即方程f (x )=(13)x在[0,4]上解的个数为5,故选A.]10. 【2007江苏,理8】设 2()lg()1f x a x=+-是奇函数,则使()0f x <的x 的取值范围是( )A. (1,0)-B. (0,1)C. (,0)-∞D. (,0)(1,)-∞+∞U 【答案】A 【解析】、、11.已知函数()()22021()121x x x f x x x x ⎧≥+-⎪=⎨<--⎪⎩则对任意12,x x R ∈,若120||||x x <<,下列不等式成立的是( ) A .12()()0f x f x +< B .12()()0f x f x +> C .12()()0f x f x ->D .12()()0f x f x -<D [函数f (x )的图象如图所示:且f (-x )=f (x ),从而函数f (x )是偶函数且在[0,+∞)上是增函数.又0<|x 1|<|x 2|,∴f (x 2)>f (x 1), 即f (x 1)-f (x 2)<0.]12若定义在R 上的函数()f x 满足()01f =- ,其导函数()f x ' 满足()1f x k '>> ,则下列结论中一定错误的是( )A .11f k k ⎛⎫<⎪⎝⎭ B .111f k k ⎛⎫>⎪-⎝⎭ C .1111f k k ⎛⎫< ⎪--⎝⎭ D . 111k f k k ⎛⎫> ⎪--⎝⎭【答案】C 【解析】由已知条件,构造函数()()g x f x kx =-,则''()()0g x f x k =->,故函数()g x 在R 上单调递增,且101k >-,故1()(0)1g g k >-,所以1()111k f k k ->---,11()11f k k >--,所以结论中一定错误的是C ,选项D 无法判断;构造函数()()h x f x x =-,则''()()10h x f x =->,所以函数()h x 在R 上单调递增,且10k >,所以1()(0)h h k>,即11()1f k k ->-,11()1f k k >-,选项A,B 无法判断,故选C .二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13. 【2005江苏,理15】函数y =为 . 【答案】]1,43()0,41[⋃-【解析】由题意得:0)34(log 25..0≥-x x则由对数函数性质得:13402≤-<x x即⎪⎩⎪⎨⎧≤--<13434022x x x x ,求得函数的定义域为:]1,43()0,41[⋃-.14. 【2014江苏,理11】在平面直角坐标系xoy 中,若曲线2by ax x=+(,a b 为常数)过点(2,5)P -,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b += . 【答案】3-. 【解析】曲线2b y ax x =+过点(2,5)P -,则452b a +=-①,又2'2by ax x=-,所以7442b a -=-②,由①②解得1,2,a b =-⎧⎨=-⎩所以3a b +=-. 15. 【2011江苏,理11】已知实数0≠a ,函数⎩⎨⎧≥--<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为 .【答案】43-【解析】本题考查了函数的概念及函数和方程的关系,是A 级要求, 中档题.由题意得,当0>a 时,11,11<->+a a ,a a a a 2)1()1(2-+-=+-,解之得23-=a ,不合舍去;当0<a 时,11,11>-<+a a ,a a a a 2)1()1(2---=++,解之得43-=a .本题只要根据题意对a 分类,把问题化为方程问题求解即可,而无需画图,否则较易错.要分析各类问题的特点,恰当转化是解决问题的关键,要培养相关的意识.16. 【2011江苏,理12】在平面直角坐标系xoy 中,已知P 是函数()(0)x f x e x =>的图象上的动点,该图象在点P 处的切线l 交y 轴于点M .过点P 作l 的垂线交y 轴于点N .设线段MN 的中点的纵坐标为t ,则t 的最大值是________.【答案】2e +12e.【解析】设P 点坐标为)0)(,(>m e m m ,由x e x f =')(得,l 的方程为)(m x e e y m m -=-,令0=x 得,m m me e y -=,过点P 的l 的垂线方程为)(m x e e y m m --=--,令0=x 得,m m me e y -+=,所以)(21m m m mme e me e t -++-=,令)(21)(m m m mme e me e m g -++-=,对函数)(m g 求导,当1=m 时,函数)(m g 的最大值为)(211-+e e .。