列一元一次方程解应用题 行程问题
- 格式:ppt
- 大小:500.50 KB
- 文档页数:18
一元一次方程应用题一、行程问题行程问题的基本关系:路程=速度×时间,1. 相遇问题:速度和×相遇时间=路程和甲、乙二人分别从A 、B 两地相向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A 、B 两地相距1000米,问甲、乙二人经过多长时间能相遇?200x+300x=1000 x=22. 追赶问题:速度差×追赶时间=追赶距离1. 甲、乙二人分别从A 、B 两地同向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A 、B 两地相距1000米,问几分钟后乙能追上甲?直线追击 200x+1000=300x x=102. .甲乙两站相距300km ,一列慢车从甲站开往乙站,每小时行40km ,一列快车从乙站开往甲站,每小时行80km ,已知慢车先行1.5h ,快车再开出,问快车开出多少小时后与慢车相遇? 40*1.5+40x+80x=3003. 汽车上坡时每小时走28千米,下坡时每小时走35千米,去时,下坡比上坡路的2倍还少14千米,原路返回比去时多用12分钟,求去时上、下坡路程各多少千米?去 :上坡路程x 下坡路程y352860123528x y y x +=++ 回 :上坡路程y 上坡路程x3. 环行问题:环行问题的基本关系:同时同地同向而行,第一次相遇:快者路程-慢者路程=环行周长.同时同地背向而行,第一次相遇:甲路程+乙路程=环形周长.1 王丛和张兰绕环行跑道行走,跑道长400米,王丛的速度是200米/分钟,张兰的速度是300米/分钟,二人如从同地同时同向而行,经过几分钟二人相遇?跑慢的路程+一圈=跑快的 200X+400=300X X=42 甲乙两个人在400米的环形跑道上同时同点出发,甲的速度是6米/秒,乙的速度4米/秒,乙跑几分钟后,甲可超过乙一圈?乙跑几圈后,甲可超过乙一圈?4X+400=6X X=2004X+400=6X X=200 200*4=800 800/400=2圈3 有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.解:设第一铁桥的长为x 米,那么第二铁桥的长为(2x-50)米,•过完 第一铁桥所需的时间为600x 分 过完第二铁桥所需的时间为250600x -分. 依题意,可列出方程600x +560=250600x - 解方程得x=100∴2x-50=2×100-50=1504.·顺(逆)风(水)行驶问题顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度一架飞机在两城之间飞行,顺风需要4小时,逆风需要4.5小时;测得风速为45千米/时,求两城之间的距离。
七年级一元一次方程解应用题一、行程问题。
1. 甲、乙两人相距285米,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,如果甲先走12米,那么甲出发几秒与乙相遇?- 设甲出发x秒与乙相遇。
- 甲先走12米,然后甲、乙共同走的路程为(285 - 12)米。
- 甲的速度是每秒8米,乙的速度是每秒6米,根据路程 = 速度×时间,可列方程:8x+6(x - (12)/(8))=285(这里x-(12)/(8)表示乙走的时间,因为甲先走了12米这段时间乙没走)。
- 化简方程得8x + 6x-9 = 285。
- 移项合并得14x=294。
- 解得x = 21。
- 所以甲出发21秒与乙相遇。
2. 一艘船在两个码头之间航行,水流速度是3千米/小时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。
- 设船在静水中的速度为x千米/小时。
- 顺水速度 = 船在静水中的速度+水流速度,即(x + 3)千米/小时;逆水速度=船在静水中的速度 - 水流速度,即(x-3)千米/小时。
- 根据路程相等,可列方程2(x + 3)=3(x - 3)。
- 展开括号得2x+6 = 3x - 9。
- 移项得3x-2x=6 + 9。
- 两码头之间的距离为2×(15 + 3)=36千米。
3. 甲、乙两人在400米的环形跑道上练习跑步,甲每秒跑6米,乙每秒跑4米。
若两人同时同地同向出发,几秒后两人首次相遇?- 设x秒后两人首次相遇。
- 同向出发首次相遇时,甲比乙多跑一圈,即400米。
- 根据路程差 = 速度差×时间,可列方程(6 - 4)x=400。
- 化简得2x = 400。
- 解得x = 200。
- 所以200秒后两人首次相遇。
二、工程问题。
4. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天完成?- 设还需要x天完成。
- 把这项工程的工作量看作单位“1”,甲的工作效率是(1)/(10),乙的工作效率是(1)/(15)。
1、甲乙两站相距318千米,一列慢车从甲站开往乙站,每小时行48千米,慢车开了1小时后,一列快车从乙站开往甲站,每小时行72千米,慢车开了几小时与快车相遇?2、甲乙两人从A地前往B地,乙比甲晚出发40分钟,结果在甲行到离B地还差5千米处,乙追上甲,已知甲每小时行6千米,比乙每小时少行2千米,求AB两地间的路程。
3、一船从甲地沿河顺流而下,9小时到达乙地,按原路返回,则需11小时,已知水流速度是2千米/时,求甲乙两地间的距离。
4、一辆汽车用40千米/时的速度由甲地驶向乙地,车行了3小时后,因遭雨平均速度被迫每小时减少10千米,结果到达乙地的时间比预计时间晚了45分钟,求甲乙两地间的距离。
5、甲骑自行车从A地B地,2小时后,乙步行由A地向B地走去,乙出发2小时后,甲到达B 地,此时乙距B地32千米,乙继续前进,甲在B地休息2小时30分钟后沿原路返回,经过1小时与乙在P地相遇,求此时乙距B地多远?6、一个通讯员骑自行车需要在规定的时间内,把信送到某地,如果每小时走15千米,就早到24分钟;如果每小时走12千米,就要迟到15分钟,问原定时间是多少?他去某地的路程有多远?7、一辆卡车从甲地开往乙地,出发3小时后,一辆轿车也从甲地开往乙地,轿车比卡车晚20分钟到达乙地,已知卡车速度是20千米/时,轿车速度比卡车速度快2倍,求甲乙两地间的距离。
8、甲乙两辆汽车,甲车以每小时40千米的速度从A地出发到B 地,当行了全程的时,乙车从A地以同样的速度出发,这时甲在原地休息了15分钟,乙接到命令要与甲同时到达B地,此时乙车速度每小时增加20千米。
求AB两地间的距离。
9、甲在南北方向的街道上,由南往北走,乙在东西的大路上由西往东走,甲的出发地点距离交叉点1120米,乙的出发地点在交叉点,二人同时出发56分钟后,甲行过交叉点,此时二人所在位置与交叉点距离相等。
已知甲乙的速度比是15:13,求甲乙二人的速度。
10、A、B两地相距630千米,甲乙两人从A地到B地,甲骑摩托车,乙开汽车,甲出发1小时后,乙也从A地出发,又2小时后,在途中遇到甲,两人继续以原速度前进,乙到B地后立即沿原路返回,途中又与甲相遇,已知从甲乙第一次相遇到第二次相遇共用6小时,求甲乙二人的速度。
1. 某人从家里骑自行车到学校。
假设每小时行15千米,可比预定的时间早到15分钟;假设每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?2.在800米跑道上有两人练中长跑,甲每分钟跑320米,乙每分钟跑280米,•两人同时同地同向起跑,t分钟后第一次相遇,t等于多少分钟.3.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?4.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时40分钟,逆风飞行需要3小时,求两城市间距离?5.轮船在静水中的速度是20千米/小时,从甲港顺流到乙港需8小时,返航时行走了6小时在距甲港68千米处发生故障,求水流速度?6.甲、乙两站相距280千米,一列慢车从甲站出发,每小时行驶60千米,一列快车从乙站出发,每小时行驶80千米,问两车同时开出,相向而行,出发后多少小时相遇?7.甲、乙两列火车,长为144米和180米,甲车比乙车每秒钟多行4米,两列火车相向而行,从相遇到错开需要9秒钟,问两车的速度各是多少?8.甲、乙两人分别同时从相距300米的A、B两地相向而行,甲每分钟走15米,乙每分钟走13米,问几分钟后,两个相距20米?9.甲乙两人骑自行车,从相距42千米的两地相向而行,甲每小时走12千米,乙每小时走10千米,如甲走12分钟后乙再出发,问甲出发后几小时与乙相遇?10.小红和小军两人同时从各自的家里出发去找对方,两家的直线距离为1200米,小红每分走55米,两人最后用61小时在途中某点相遇,那么小军每分钟走多少米?11.A 、B 两地相距80米,甲从A 地出发,每秒走1米,乙从B 地出发每秒走1.5米,如甲先走15米,求乙出发后多少秒与甲相遇?12.某汽车和电动车从相距298千米的两地同时出发相对而行,汽车的速度比电动车速度的6倍还多15千米,半小时后相遇。
一元一次方程应用题公式大全一、行程问题。
1. 基本公式。
- 路程 = 速度×时间(s = vt)。
- 速度=s÷ t,时间=s÷ v。
2. 相遇问题。
- 公式:s_总=v_1t + v_2t=(v_1+v_2)t(s_总表示总路程,v_1、v_2分别表示两者的速度,t表示相遇时间)。
- 例题:甲、乙两人分别从相距20千米的两地同时出发相向而行,甲的速度是3千米/小时,乙的速度是2千米/小时,几小时后两人相遇?- 解析:设t小时后两人相遇。
根据相遇问题公式s_总=(v_1+v_2)t,这里s_总 = 20千米,v_1=3千米/小时,v_2=2千米/小时。
则(3 + 2)t=20,5t = 20,解得t = 4小时。
3. 追及问题。
- 公式:s_追及=v_1t - v_2t=(v_1-v_2)t(s_追及表示追及路程,v_1表示快者速度,v_2表示慢者速度,t表示追及时间)。
- 例题:甲、乙两人相距5千米,甲以6千米/小时的速度追赶乙,乙以4千米/小时的速度逃跑,甲几小时能追上乙?- 解析:设甲t小时能追上乙。
根据追及问题公式s_追及=(v_1-v_2)t,这里s_追及=5千米,v_1=6千米/小时,v_2=4千米/小时。
则(6 - 4)t=5,2t = 5,解得t = 2.5小时。
二、工程问题。
- 工作总量 = 工作效率×工作时间(W = p× t)。
- 工作效率=W÷ t,工作时间=W÷ p。
通常把工作总量看成单位“1”。
2. 合作问题。
- 公式:1=(p_1+p_2)t(p_1、p_2分别表示两者的工作效率,t表示合作时间)。
- 例题:一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作需要几天完成?- 解析:设两人合作需要t天完成。
甲的工作效率p_1=(1)/(10),乙的工作效率p_2=(1)/(15)。
根据合作问题公式1 = ((1)/(10)+(1)/(15))t,(1)/(10)+(1)/(15)=(3 +2)/(30)=(1)/(6),则(1)/(6)t = 1,解得t = 6天。
行程问题【基本关系式】(1)行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间(2)基本类型①相遇问题:快行距+慢行距=原距②追及问题:快行距-慢行距=原距③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度顺速–逆速 = 2水速;顺速 + 逆速 = 2船速顺水的路程 = 逆水的路程注意:抓住两码头间距离不变,水流速和船速(静水速)不变的特点考虑相等关系。
常见的还有:相背而行;环形跑道问题。
【经典例题】例1.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?例2.某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。
A、C两地之间的路程为10千米,求A、B两地之间的路程。
【专项训练】一、行程(相遇)问题A.基础训练1.小李和小刚家距离900米,两人同时从家出发相向行,小李每分走60米,小刚每分走90米,几分钟后两人相遇?2.小明和小刚家距离900米,两人同时从家出发相向行,5分钟后两人相遇,小刚每分走80米,小明每分走多少米?3.王强和赵文从相距2280米的两地出发相向而行,王强每分行60米,赵文每分行80米,王强出发3分钟后赵文出发,几分钟后两人相遇?4.两辆车从相距360千米的两地出发相向而行,甲车先出发,每小时行60千米,1小时后乙车出发,每小时行40千米,乙车出发几小时两车相遇?5.两村相距35千米,甲乙二人从两村出发,相向而行,甲每小时行5千米,乙每小时行4千米,甲先出发1小时后,乙才出发,当他们相距9千米时,乙行了多长时间?6.甲乙二人从相距45千米的两地同时出发相向而行,甲比乙每小时多行1千米,5小时后二人相遇,求两人的速度。
行程问题--一元一次方程经典应用题行程问题一、相遇问题:路程=速度×时间甲、乙相向而行,则:甲走的路程+乙走的路程=总路程二、追及问题:甲、乙同向不同地,则:追者走的路程= 前者走的路程+两地间的距离三、环形跑道问题:1、甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。
2、甲、乙两人在环形跑道上同时同地反向出发:两人第一次相遇时的总路程为环形跑道一圈的长度。
四、航行问题1、飞行问题,基本等量关系:顺风速度=无风速度+风速逆风速度=无风速度-风速顺风速度-逆风速度=2×风速2、航行问题,基本等量关系:顺水速度=静水速度+水速逆水速度=静水速度-水速顺水速度-逆水速度=2×水速一、相遇问题1、甲乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?2、甲、乙两人同时从相距27km的A、B两地相向而行,3h后相遇,甲比乙每小时多走1km,求甲、乙两人的速度3、甲乙两城相距100千米,摩托车和自行车同时从两城出发,相向而行,2.5小时后两车相遇,自行车的速率是4、A,B两村相距2800米,小明从A村出发向B村步行5 分钟后,小军骑自行车从B村向A村出发,又经过10分钟二人相遇,小军骑自行车比小明步行每分钟多走130 米,小明每分钟步行多少米?5、甲、乙两人骑自行车,同时从相距65千米的两地相向而行,甲的速率为每小时17.5千米,乙的速率为每小时15千米,求经过几小时,甲、乙两人相距32.5千米。
6、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5 小时后两车相遇。
乙车每小时行多少千米?二、追及问题1、A、B两地相距20km,甲、乙两人分别从A、B两发出发,甲的速度是6km/h,乙的速度是8km/h。
(1)若两人相向而行,甲先出发半小时,乙才出发,问乙出发后几小时与甲相遇?(2)若两人同时同向出发,甲在前,乙在后,问乙多少小时可追上甲?2、一个自行车队举行锻炼,锻炼时一切队员都以35千米/时的速率前进,忽然,1号队员以45千米/时的速率单独行进,行进10千米后掉转车头,仍以45千米/时的速度往回骑,知道与其他队员会和。
七年级一元一次方程应用题一、行程问题1. 例题:甲、乙两人从相距240千米的A、B两地同时出发,相向而行,3小时后相遇。
已知甲每小时行45千米,求乙每小时行多少千米?解析:设乙每小时行公式千米。
根据路程 = 速度×时间,甲行驶的路程为公式千米,乙行驶的路程为公式千米。
由于两人是相向而行,总路程为240千米,所以可列方程公式。
解方程:首先对公式进行移项,得到公式。
即公式,解得公式。
答案:乙每小时行35千米。
2. 追及问题例题:甲、乙两人在同一条路上同向而行,甲每小时走7千米,乙每小时走5千米,乙先走2小时后,甲才开始走,问甲几小时能追上乙?解析:设甲公式小时能追上乙。
乙先走2小时,则乙先走的路程为公式千米。
公式小时后,甲走的路程为公式千米,乙走的路程为公式千米。
当甲追上乙时,他们所走的路程相等,可列方程公式。
解方程:移项得公式。
即公式,解得公式。
答案:甲5小时能追上乙。
二、工程问题1. 例题:一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作需要多少天完成?解析:设两人合作需要公式天完成。
把这项工程的工作量看作单位“1”。
甲单独做需要10天完成,则甲每天的工作效率为公式;乙单独做需要15天完成,则乙每天的工作效率为公式。
根据工作量 = 工作效率×工作时间,两人合作的工作效率为公式,可列方程公式。
解方程:先对括号内进行通分,公式。
则方程变为公式,解得公式。
答案:两人合作需要6天完成。
2. 例题:一项工程,甲队单独做20天完成,乙队单独做30天完成。
现在两队合作,其间甲队休息了3天,乙队休息了若干天,从开始到完工共用了16天。
问乙队休息了几天?解析:设乙队休息了公式天。
甲队单独做20天完成,甲队每天的工作效率为公式;乙队单独做30天完成,乙队每天的工作效率为公式。
甲队工作了公式天,甲队完成的工作量为公式。
乙队工作了公式天,乙队完成的工作量为公式。
两队完成的工作量之和为单位“1”,可列方程公式。