大数据时代下数据挖掘技术的应用
- 格式:pdf
- 大小:1.37 MB
- 文档页数:1
大数据通过数据挖掘技术应用的案例分析随着互联网的普及,数据的规模不断增大,大数据的时代已经到来。
如何利用这些海量的数据,掌握信息,提高效率,成为当前科技领域的重要课题。
在这个领域,数据挖掘技术是至关重要的一环,它可以让我们通过大数据的洪流,深度挖掘出有价值的信息,从而为企业带来更多的商业价值。
本文将介绍几个大数据应用案例,探讨数据挖掘技术的实际应用。
案例一:天猫双十一数据分析天猫是中国最大的电商平台之一,每年的双十一成为了消费者购物的狂欢节。
在这样的一个大流量的场景中,数据挖掘技术可以发挥重要的作用。
对于天猫来说,通过对消费者的分析,掌握他们的购物偏好、需求及购买力等信息,格外重要。
针对双十一活动,天猫进行了多个方面的数据挖掘。
首先是用户画像的挖掘,即对各个消费者的行为数据进行分析,挖掘他们的购物心理,掌握购物偏好,进行更有的推荐;其次是商品消费大数据分析,通过对商品的销售数据进行分析,找出最受欢迎的商品,进行更优质的推广。
此外还可以通过大数据分析来制定精准的营销计划,调配资源,提高商品成交率。
案例二:零售巨头沃尔玛的大数据应用沃尔玛是世界上最大的零售商之一,除了传统的销售模式之外,沃尔玛还利用独特的大数据技术,通过数据的分析来优化生产、供应链等方面。
例如,对销售数据和消费者的行为数据进行分析,可以预测出某一时间段内销售额的变化,助于制定销售策略;再如对供应链数据进行分析,可以及时发现供应链中的问题,对此加以解决;最后,基于自身的数据优势,沃尔玛还着眼于提高用户体验,实现了用户画像和个性化推荐等应用。
案例三:社交网站中的数据挖掘应用社交网站中有着大量的用户数据,数据挖掘技术的应用可以为企业创造更多的价值。
例如,美国的LinkedIn就利用职业履历等信息为企业提供高质量的招聘及推荐服务;Facebook通过营销平台等应用实现了个性化的广告投放;Twitter则是针对舆情进行了大量的研究,为政府、企业和社会大众提供相关的分析报告。
大数据分析与挖掘技术随着互联网时代的发展,大数据分析与挖掘技术在各个领域的应用日益广泛。
本文将探讨大数据分析与挖掘技术的定义、应用场景以及其对社会发展的影响。
一、大数据分析与挖掘技术的定义大数据分析与挖掘技术是指利用先进的算法和技术,对大规模数据进行智能化的分析、处理和挖掘的过程。
这些技术包括数据收集、数据预处理、数据建模、数据挖掘和数据可视化等环节。
通过对大数据的整理和分析,可以从中挖掘出有价值的信息,从而为决策者提供科学的依据。
二、大数据分析与挖掘技术的应用场景1. 商业决策大数据分析与挖掘技术可以帮助企业了解市场需求、消费者行为和竞争对手情报等信息,为商业决策提供重要支持。
通过对大量数据进行分析,企业可以发现潜在市场机会、提高运营效率、优化产品设计等。
2. 医疗健康大数据分析与挖掘技术在医疗健康领域的应用也日益普遍。
通过分析患者的病历数据、基因组数据和医疗影像数据等,可以实现个性化诊疗和精准医学。
同时,大数据技术还可以预测疾病的爆发和传播趋势,并提供相应的预防和控制策略。
3. 城市管理应用大数据分析与挖掘技术,可以实现智慧城市的建设和管理。
通过收集和分析城市中的各种数据,如交通数据、环境数据和人口数据,可以优化城市交通、提升环境质量,并且实现资源的合理配置。
4. 金融风控大数据分析与挖掘技术在金融领域有着重要的应用。
通过对大数据的分析,可以实现对金融风险的评估和控制。
同时,大数据技术还可以预测市场走势、优化投资组合,并提供个性化的金融服务。
三、大数据分析与挖掘技术对社会发展的影响1. 经济增长大数据分析与挖掘技术的应用,可以帮助企业提高效率和创新能力,从而推动经济的快速增长。
通过对大数据的分析和挖掘,可以发现新的商业机会和市场需求,推动产业的升级和转型。
2. 公共决策大数据分析与挖掘技术可以为政府和决策者提供科学的依据,帮助他们做出更加明智的决策。
通过分析公共数据和社交媒体数据等,可以及时掌握社会民意和公众需求,从而更好地制定政策和规划。
大数据环境下的数据挖掘与分析技术研究在大数据时代,数据的积累和分析成为了企业和机构的重要任务。
数据挖掘与分析技术就是在大数据环境下进行数据处理和提取有用信息的关键技术。
本文将深入探讨大数据环境下的数据挖掘与分析技术,并分析其研究进展和应用场景。
一、大数据环境下的数据挖掘技术研究1. 数据预处理技术大数据环境下的数据往往是庞大而复杂的,包含噪声和缺失值。
数据预处理技术主要包括数据清洗、数据集成、数据变换和数据规约。
数据清洗用于处理噪声和异常值,数据集成用于将多个数据源的数据进行整合,数据变换用于将数据转换为可分析的形式,数据规约用于减少数据集的大小。
2. 数据挖掘算法数据挖掘算法是大数据环境下进行数据分析的核心。
常用的数据挖掘算法包括关联规则挖掘、分类与预测、聚类分析和异常检测等。
关联规则挖掘用于发现数据集中的关联关系,分类与预测用于根据已有数据来预测未知数据的属性,聚类分析用于将数据集中的对象分成不同的群组,异常检测用于发现与其他对象不同的数据。
3. 数据可视化技术数据可视化技术用于将大数据转化为图表、图形和动画等,便于人们理解和分析数据。
在大数据环境下,数据量庞大,通过可视化技术可以直观地展示数据的模式和趋势,帮助用户发现隐藏在数据中的模式和规律。
二、大数据环境下的数据分析技术研究1. 基于模型的数据分析基于模型的数据分析通过建立数学模型来描述数据之间的关系,然后利用模型进行数据分析和预测。
常用的模型包括回归模型、时间序列模型和神经网络模型等。
通过模型分析,可以揭示数据之间的潜在关系和规律。
2. 数据挖掘与业务智能的结合大数据环境下的数据分析不仅要关注数据本身的分析,还要与业务智能进行结合,从而为决策提供更加准确和可靠的依据。
数据挖掘和业务智能的结合可以帮助企业和机构实现更好的业绩和竞争优势。
3. 文本分析与情感分析大数据环境下的数据不仅包括结构化数据,还包括非结构化数据,如文本、语音和图像等。
大数据时代的数据分析与挖掘应用随着互联网技术的迅速发展和普及,每天都有数以亿计的数据在我们周围产生和流动。
这些数据包含了各行各业的信息,对于企业与个人而言,是宝贵的经济资源和商业资产。
但是面对如此庞大的数据量,如何进行有效的分析和挖掘,将其转化为实际利益,成为了摆在很多企业和个人面前的难题。
一、数据分析的基本概念首先,我们需要明确数据分析的基本概念。
所谓数据分析,就是利用相关的统计学、数学运算和机器学习算法等方法,去发现和提取数据中的有用信息,并将其转化为有意义的结论或决策支持。
数据分析可以应用于各种类型的数据,包括数值、字符、图像、音频和视频等等。
它的主要目的是为了去理解数据所反映的问题和现象,并从中发掘商业机会,做出有效的决策。
二、数据分析的基本流程数据分析的流程包含了以下几个步骤:1. 数据收集:通过各种手段(如网络、传感器等)收集数据,并对数据进行初步的清理和预处理,比如去除噪音、处理缺失值、标准化和归一化等等。
2. 数据存储:将收集到的数据存储到相应的数据库或文件中,以便后续进行查询和分析。
3. 数据预处理:对于收集到的大数据进行一些初步的处理和筛选,以保证数据的质量和可靠性。
这包括了数据采样、特征抽取和变量选择等等。
4. 数据分析:选择合适的算法,对数据进行分析和挖掘,提取数据中的有用信息,包括发现数据间的关联性、分析数据中的趋势和偏差、构建数据模型等等。
5. 结果解释:将分析出来的结果解释给客户或相关方(如企业高管、政府官员、科研人员等),并给出相应的建议或决策支持。
三、数据挖掘的基本技术除了数据分析之外,数据挖掘也是将大数据转化为实际效益的重要手段。
所谓数据挖掘,是指从大量数据中发掘隐含的、未知的有意义的信息和知识,以发现数据中的价值。
数据挖掘涉及的技术包括了分类、聚类、关联规则挖掘、序列模式挖掘、时序模式挖掘、异常检测等等。
其中,分类技术是将数据集合分成若干个群体,根据不同的属性将数据进行归类。
大数据背景下数据挖掘技术在银行中的应用
随着数字化时代的到来,数据量也在快速增长,为了更好的处理这些数据,大数据技
术被广泛应用。
在银行业中,大数据技术也得到了广泛应用,数据挖掘技术便是其中之一。
数据挖掘技术是利用计算机技术和统计学方法,从大量数据中挖掘出有价值的信息和
知识的过程。
在银行业中,数据挖掘技术主要应用于以下领域:
1、客户关系管理
银行可以通过采集客户的信息,如姓名、年龄、收入、职业等数据,然后通过数据挖
掘技术分析,得到客户的趋势和偏好,进而为客户提供个性化的服务,提高客户满意度和
忠诚度。
2、风险控制
银行需要对风险进行有效地管理和控制,数据挖掘技术可以帮助银行对风险因素进行
分析和预测。
例如,银行可以通过数据挖掘技术确定逾期贷款的客户的特征和贷款风险,
进而调整贷款政策和风险控制措施。
3、市场营销
银行可以通过数据挖掘技术,分析市场和竞争对手的信息,进而确定自己的营销策略
和目标客户群体。
例如,银行可以通过数据挖掘技术分析顾客在某个时间段频繁出现的地方,推出促销活动等。
4、信用评估
银行可以通过数据挖掘技术,分析客户的历史支付行为,从而评估客户的信用等级和
借贷能力。
例如,可以利用数据挖掘技术预测客房是否会申请贷款,并为申请者提供更优
惠的利率和更高的额度。
综上所述,数据挖掘技术在银行中的应用范围广泛,不仅可以帮助银行提高效率和减
少风险,还可以为银行提供个性化服务和提高客户满意度,进而增加银行的收益。
因此,
数据挖掘技术已成为银行业中的重要工具。
数据挖掘在大数据分析中的应用随着信息技术的飞速发展和互联网的普及,数据正以前所未有的速度呈爆炸式增长。
大数据时代的到来给我们带来了巨大的机遇和挑战。
在这个海量信息的背后,隐藏着许多有价值的洞察和知识,而利用数据挖掘技术进行大数据分析可以帮助我们发现这些潜在的机会,并做出更明智的决策。
数据挖掘,顾名思义,就是通过对大数据进行挖掘和分析,提取出其中的有用信息和模式。
它是统计学、机器学习、数据库技术、人工智能等多个领域的交叉学科,常用的技术包括聚类、分类、关联规则挖掘等。
数据挖掘的目的是发现数据集中的潜在关系、规律和趋势,从而为决策者提供有针对性的分析结果。
在大数据分析中,数据挖掘扮演着重要的角色。
首先,数据挖掘可以帮助我们发现数据中的异常。
在大量的数据中,可能存在一些异常情况,如欺诈交易、异常行为等。
利用数据挖掘技术,我们可以构建模型来检测这些异常情况,从而及时采取相应措施。
其次,数据挖掘可以帮助我们找到数据中的模式和趋势。
在大数据背景下,数据中可能存在许多随机性和噪声,而数据挖掘技术可以帮助我们从中发现规律和趋势。
比如,在金融领域,我们可以利用数据挖掘技术对历史交易数据进行分析,从而预测未来的市场走势。
此外,数据挖掘还可以帮助我们进行市场分析。
在市场竞争激烈的商业环境中,了解消费者需求和行为是至关重要的。
通过对大数据的分析,我们可以了解消费者的偏好、购买行为和兴趣爱好,从而制定更加精准的市场营销策略。
另一方面,数据挖掘在医疗领域也有广泛的应用。
通过对大量的病历数据进行挖掘,我们可以发现疾病的规律和趋势,从而改进诊疗方案。
此外,数据挖掘还可以帮助我们预测患者的病情发展和风险因素,为医生提供决策支持。
总的来说,数据挖掘在大数据分析中发挥着重要的作用。
它可以帮助我们发现数据中的异常情况,找到数据中的模式和趋势,进行市场分析和预测,提供决策支持等。
然而,数据挖掘也面临着一些挑战,如数据隐私保护、算法效率和可解释性等。
浅谈大数据下财务数据挖掘及应用大数据下财务数据挖掘及应用引言:随着大数据时代的到来,企业面临着海量的数据,其中包括财务数据。
财务数据是企业经营活动的重要组成部分,通过对财务数据进行挖掘和分析,可以帮助企业发现潜在的商业机会、风险和问题,提供决策支持。
本文将探讨大数据下财务数据挖掘的意义、方法和应用。
一、大数据下财务数据挖掘的意义1. 提供全面的财务分析:大数据技术可以帮助企业从海量的财务数据中提取有用的信息,进行全面的财务分析。
通过对财务数据的挖掘,可以了解企业的财务状况、经营绩效和风险状况,为企业提供全面的财务分析报告。
2. 发现商业机会:大数据技术可以帮助企业发现潜在的商业机会。
通过对财务数据的挖掘,可以发现市场需求的变化、产品销售的趋势等信息,为企业提供商业机会的预测和分析。
3. 风险管理:大数据技术可以帮助企业进行风险管理。
通过对财务数据的挖掘,可以发现企业的财务风险,如财务造假、资金流动性风险等,及时采取措施进行风险控制。
二、大数据下财务数据挖掘的方法1. 数据清洗:财务数据通常包含大量的噪声和异常值,需要进行数据清洗。
数据清洗包括数据去重、数据填充、异常值处理等。
2. 数据集成:财务数据通常来自不同的系统和部门,需要进行数据集成。
数据集成包括数据格式转换、数据字段映射等。
3. 数据挖掘算法:财务数据挖掘可以采用多种算法,如关联规则挖掘、分类算法、聚类算法等。
根据具体的需求和问题,选择合适的算法进行数据挖掘。
4. 数据可视化:通过数据可视化技术,将挖掘到的财务数据以图表、报表等形式展示出来,便于用户理解和分析。
三、大数据下财务数据挖掘的应用1. 财务风险预警:通过对财务数据的挖掘,可以建立财务风险预警模型,及时发现财务风险,并采取相应的措施进行风险控制。
2. 财务绩效评估:通过对财务数据的挖掘,可以评估企业的财务绩效,包括利润率、资产回报率等指标,为企业提供绩效评估报告。
3. 成本管理:通过对财务数据的挖掘,可以了解企业的成本结构和成本驱动因素,为企业提供成本管理的决策支持。
大数据时代的数据挖掘及应用在大数据时代,数据挖掘及应用成为了一项重要的技术和工作领域。
数据挖掘是指通过从大规模、复杂的数据集中提取出有用的模式、关联、趋势和知识等信息的过程。
它可以帮助企业和组织发现隐藏在数据背后的价值,从而做出更明智的决策和提供更好的服务。
数据挖掘的应用范围非常广泛,涉及到各个领域。
以下是一些常见的数据挖掘应用场景:1. 市场营销:通过对客户数据进行挖掘,可以帮助企业了解客户的需求和偏好,从而制定更精准的营销策略。
例如,通过分析客户购买历史和行为模式,可以预测客户的购买倾向,从而进行个性化推荐和定向广告投放。
2. 金融风险管理:银行和金融机构可以利用数据挖掘技术对客户的信用评级和风险进行分析和预测。
通过挖掘大量的历史数据,可以建立风险模型,及时发现潜在的风险并采取相应的措施,降低损失。
3. 健康医疗:医疗行业可以利用数据挖掘技术对患者的病历、病理数据进行分析,发现疾病的规律和趋势,提高诊断的准确性和效率。
此外,还可以通过挖掘大量的医疗数据,发现新的治疗方法和药物。
4. 社交网络分析:社交网络中包含了大量的用户行为数据,通过对这些数据进行挖掘,可以了解用户的兴趣、关系和行为模式。
这对于社交媒体平台来说非常重要,可以帮助他们改善用户体验、提高用户黏性。
5. 物流和供应链管理:通过对物流和供应链数据进行挖掘,可以优化物流路径、减少运输成本、提高物流效率。
例如,通过分析历史订单数据和交通状况,可以预测最佳的配送路线和时间,提高送货准时率。
数据挖掘的过程包括数据收集、数据清洗、特征选择、模型构建和模型评估等步骤。
数据收集是指从各种数据源中获取数据,包括结构化数据和非结构化数据。
数据清洗是指对数据进行预处理,包括去除噪声、处理缺失值和异常值等。
特征选择是指从大量的特征中选择出对模型建立有用的特征。
模型构建是指选择适当的数据挖掘算法,对数据进行建模和训练。
模型评估是指对模型进行评估和优化,以提高模型的准确性和泛化能力。
大数据背景下的数据挖掘及应用案例研究在数十年前,我们并没有意识到数据的价值,我们将相同类型的数字进行简单处理,并将其存储在档案柜或文件夹中以备将来使用。
但是,今天,大多数数据都以数字形式存储在计算机上,大数据的时代正在到来。
随着互联网的飞速发展,我们创造、上传和分享的数据量正在指数增长。
大数据技术的发展为数据挖掘提供了许多机会。
在本文中,我们将探讨数据挖掘的概念、基本技术和应用案例,以及如何最大限度地利用大数据分析的价值。
一、什么是数据挖掘?数据挖掘是一种分析大量数据的技术,旨在发现有意义的模式、关系和规律。
它涉及大量数据的收集、存储和分析,以寻找隐藏的信息,并从中获取商业洞察和智能决策。
二、数据挖掘的基本技术2.1 聚类分析聚类分析是一种将相似数据归为一类的技术。
它被用于在数据集中查找相似性,并将数据分组成称为簇的相似组。
该技术可以在市场分析、风险管理和广告策略等领域得到广泛应用。
2.2 关联分析关联分析是一种查询数据集中不同元素之间的关联性的技术。
这种技术可以识别数据中的相关性,以便它们可以适当地应用于商业环境中。
当商品或服务购买的频率高于安卓手机被购买的频率时,商家将利用这个信息,提供更多的推荐服务。
2.3 分类分析分类分析是一种将数据分为预定义类别的技术。
该技术可以应用于客户行为分析、信用评估和安全检测等领域。
例如,一个银行可能根据借贷客户的职业、收入水平和财务记录将他们分为不同的信用等级。
2.4 时间序列分析时间序列分析是一种研究数据随时间变化的技术。
这种技术可以用于预测未来趋势。
用于股票市场预测,还可以识别出区域新闻事件对房地产市场价格走势的影响等。
三、数据挖掘的应用案例3.1 社交媒体社交媒体提供了大量的用户数据,这些数据可以用于数据挖掘分析。
例如,Facebook和Twitter的算法在大数据中进行分析,识别出人们最感兴趣的主题和文章。
此外,亚马逊等公司还可以对消费者进行精细的推荐,选择产品,并优化个性化营销策略。
浅谈大数据下财务数据挖掘及应用大数据下财务数据挖掘及应用在当今数字化时代,大数据已经成为企业决策和发展的重要工具。
财务数据作为企业经营的核心数据之一,也逐渐受到大数据技术的关注和应用。
本文将浅谈大数据下财务数据挖掘及应用的相关内容。
一、大数据对财务数据挖掘的影响1. 数据量的增加:大数据时代,财务数据的规模呈指数级增长。
传统的财务数据分析方法已经无法处理如此庞大的数据量,因此需要借助大数据技术进行数据的存储、处理和分析。
2. 数据的多样性:大数据时代,财务数据不再局限于传统的会计报表数据,还包括非结构化数据、社交媒体数据、市场数据等多种类型的数据。
这些多样化的数据可以为财务决策提供更全面、准确的信息。
3. 数据的实时性:传统的财务数据分析通常是基于历史数据进行的,而大数据技术可以实现对实时数据的分析和挖掘。
这使得财务决策可以更及时地做出,对企业的经营具有更大的灵活性和敏捷性。
二、财务数据挖掘的方法和技术1. 数据清洗和预处理:财务数据往往存在缺失值、重复值、异常值等问题,需要进行数据清洗和预处理。
常用的方法包括缺失值填充、重复值去除、异常值检测和处理等。
2. 数据可视化:通过可视化技术,将财务数据以图表、图形等形式展示出来,可以更直观地理解和分析数据。
常用的可视化工具包括Tableau、Power BI等。
3. 数据挖掘算法:常用的数据挖掘算法包括关联规则挖掘、分类算法、聚类算法、预测算法等。
这些算法可以帮助挖掘财务数据中的潜在规律和模式,为企业决策提供支持。
4. 机器学习:机器学习是大数据时代的重要技术之一,可以通过训练模型,实现对财务数据的分类、预测和优化。
常用的机器学习算法包括决策树、支持向量机、神经网络等。
三、财务数据挖掘的应用场景1. 风险管理:通过对财务数据的挖掘和分析,可以发现企业的风险点和潜在风险。
例如,通过分析财务数据中的异常交易行为,可以及时发现可能存在的欺诈风险。
2. 成本控制:财务数据挖掘可以帮助企业分析成本结构和成本驱动因素,找出成本的潜在降低点,实现成本的有效控制和优化。
应用
Technology Application
D
I G I T C W 技术
194DIGITCW
2019.01
1 大数据时代的发展历程及现状表现
通过对大数据的发展历程进行分析,大数据在出现到现在,短短的几年的时间内,大数据的信息容量个数据交流在呈直线上升。
目前大数据时代的流量总和能够满足全球人员每天消耗500G 以上。
就目前我国大数据发展的过程来说,已经逐渐的应用到我国各行各业中,能够从中获取信息资源。
企业可以利用大数据对产品进行综合性分析,还能根据用户的反馈对产品进行更新改造,大数据时代下,采用信息化管理,能够有效的提升企业的管理效率,进而提升企业的生产效益,所以要加强数据挖掘技术在大数据时代下的应用。
2 数据挖掘技术分析
2.1 数据挖掘
数据挖掘技术是在20世纪90年代初提出来的新兴技术,这种技术主要面对的是商业应用中的人工智能化研究方面。
大数据时代下数据挖掘技术的应用具有较高的使用价值,在实际应用中,能够及时的掌握产品的具体使用情况,能够在众多的数据信息中进行优化数据信息,进而为企业的发展提供参考方向。
在数据挖掘技术发展过程中,由原来的简单、清晰的数据中进行寻找信息到能够从复杂、模糊的数据中去寻找有利用价值的信息,实现了质的突破,说明技术要求较高,需要更好的利用互联网技术。
[1]2.2 聚类分析
在进行数据挖掘时,可以采用聚类分析技术来对数据进行处理。
聚类分析的主要作用是能够将难以理解的事物进行形象化分组,然后在根据不同性质将其划分为不同组的分析过程。
聚类分析的本质能够对庞大的数据进行划分处理,在从中发现可利用的信息资源。
但是在实际的使用中,聚类分析是区别于传统的分类方式,它的优势是能够在模糊对象下进行对信息数据进行分组。
在目前的聚类分析方式主要有两种分类方式,一种是硬聚类,这种分类方式更加的贴合数据信息。
另一种是模糊聚类,这种分类方式能够通过划分模糊数据在对其进行分类。
总的来说,这两种的分类方式不一样,但是所能达到的目的是一样的,都能将数据进行划分。
2.3 特征性数据分析法
特征性数据分析方法也是数据挖掘技术的主要方式之一,特征性数据分析方法能够对整体的数据信息,进行特征性的分析,对其进行发掘有利用价值的信息。
由于这种技术的方便快捷性,可以应对大多数的数据资源的分析,所以是相关研究者的主要研究方向。
在应用中,相关的设计者提出了多种的特征数据分析方法,比如可以利用人工神经网络进行收集数据,在数据终端进行建立神经网络,搜集可利用的信息;采用遗传基因算法对数据进行分析,对庞大的数据进行选择、重组;利用可视化技术对数据进行搜集,挖掘,可以有效的提升数据挖掘技术的实用性。
[2]
3 大数据时代中数据挖掘的应用及延展方向
3.1 市场营销领域
根据对大数据时代中数据挖掘技术应用的数据分析,市场营
销领域是应用数据挖掘技术最广的领域。
在市场营销中,可以通过数据挖掘技术对市场数据进行相关的提取和总结,能够在大数据下进行分析用户的信息资源,可以根据大数据反馈回的数据信息,进行改变市场营销模式。
比如,通过数据挖掘技术能够分析用户点击商品的次数,然后在后台系统中,可以继续为用户推送与此商品相关的衍生品,能够让用户有更多的选择性,提高用户的实际使用感。
3.2 制造业领域
随着现代生活水平的不断提高,人们对于生活产品的质量要求也在日益增长着,在制造业领域中应用数据挖掘技术能够更好的提升生活产品的质量。
大数据时代中数据挖掘技术应用在制造业中的应用,可以对生活产品生产时进行跟踪性的监管、及时得到产品问题的数据、了解产品的生产效率等。
可以为以后产品的生产提供相应的数据分析,针对性的解决产品遇到的问题、提升生产效率,进而提升制造业的经济效益。
数据挖掘技术在制造业领域应用,能够促进制造业的发展,是非常有必要的。
[1]3.3 电信业领域
现代是信息化的时代,电信行业在蓬勃的发展中,但是电信用户基数大,所需要处理的问题也是最多的,所以需要更好的服务来解决用户的问题,才能给用户带来更好的体验感。
电信技术的服务是需要非常庞大的数据进行支持才能更好的处理遇到的问题,但是这种技术服务会被数据流冲击,导致服务质量下降。
数据挖掘技术在电信业领域的应用能够有效的改变这种局面,采用数据挖掘技术可以对复杂的电信数据进行分析与研究,能够在其中发现规律,针对用户反馈回的信息,进行改进,提高电信业的服务质量。
3.4 教育领域
数据挖掘技术在教育领域中的应用能够有效的提升教育行业的发展,在实际的应用中,能够对全体学生的心理特点进行分析,然后得出相应的教学方案,让教师能够及时的掌握学生的学习情况,从而更好地进行教学活动。
采用数据挖掘技术可以对全体学生的考试成绩进行分析,及时发现学生学习的薄弱之处,方便教师对其进行加强化教学。
还可以利用数据挖掘技术对教学进行分析,能够更好的利用教学资源,最大化发挥教学资源的作用,从而提升教育领域的教学质量。
4 结束语
综上所述,随着信息化时代的不断发展,我国正在向着大数据时代迈进,要加强大数据时代下数据挖掘技术的应用,才能更好的满足各行业的实际需求。
尤其是在市场营销领域、制造业领域、电信业领域、教育领域等,能够利用数据挖掘技术来进行对众多的数据分析与研究,得出可利用的数据,进而促进该行业的发展。
参考文献
[1] 刘铭,吕丹,安永灿.大数据时代下数据挖掘技术的应用[J].科技导报,2018,36(09):73-83.
大数据时代下数据挖掘技术的应用
梁 瀚
(青岛科技大学 中车青岛四方车辆研究所有限公司,青岛 266000)
摘要:随着现代社会信息化技术的不断发展,我国社会正在向信息化时代迈进。
在信息化时代中,大数据时代是主要的发展环节。
本文主要讲述了大数据时代下数据挖掘技术的应用方式,介绍数据挖掘技术的重要性。
关键词:大数据时代;数据挖掘技术;主要应用及延伸方向doi :10.3969/J.ISSN.1672-7274.2019.01.152中图分类号:TP311.13 文献标示码:A 文章编码:1672-7274(2019)01-0194-01。