2020年4月8日四川省成都市2017级高中毕业班第二次诊断性检测理科数学试题成都二诊参考答案
- 格式:pdf
- 大小:232.20 KB
- 文档页数:5
成都市2017级高中毕业班第二次诊断性检测数学(理科)本试卷分选择题和非选择题两部分,第1卷(选择题)1至2页,第Ⅱ卷(非选择题)3至4页,共4页,满分150分,考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,只将答题卡交回。
第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z 满足2)1(=+i z (i 为虚数单位),则z 的虚部为( ) A.i B.-i C.-1 D.12.设全集R U =,集合{}1<=x x M ,{}2>=x x N ,则N M C U )(=( ) A.{}2>x x B.{}1≥x x C.{}21<<x x D.{}2≥x x 3.某中学有高中生1500人,初中生1000人,为了解该校学生自主锻炼的时间,采用分层抽样的方法从高中生和初中生中抽取一个容量为n 的样本。
若样本中高中生恰有30人,则n 的值为( )A.20B.50C.40D.60 4.曲线x x y −=3在点)0,1(处的切线方程为( )A.02=−y xB.022=−+y xC.022=++y xD.022=−−y x 5.已知锐角β满足αα2cos 12sin 2−=,则αtan =( ) A.21B.1C.2D.4 6.函数)1ln(cos )(2x x x x f −+⋅=在]1,1[−的图象大致为( )A B C D7.执行如图所示的程序框图,则输出S 的值为( )A.16B.48C.96D.1288.已知函数0)4(),0)(2sin()(=<<+=ππωπωf x x f ,则函数)(x f 的图象的对称轴方程为( ) A.Z k k x ∈−=,4ππ B.Z k k x ∈+=,4ππC.Z k k x ∈=,21π D.Z k k x ∈+=,421ππ 9.如图,双曲线C )0,0(12222>>=−b a by a x :的左,右交点分别是)0,(1c F −,)0,(2c F ,直线a bc y 2=与双曲线C 的两条渐近线分别相交于B A ,两点.若321π=∠F BF ,则双曲线C 的离心率为( ) A.2 B.324 C.2 D.33210.在正方体1111D C B A ABCD −中,点Q P ,分别为AD AB ,的中点,过点D 作平面α使αα平面∥,平面∥Q A P B 11,若直线M D B =α平面 11,则11MB MD 的值为( ) A.41 B.31 C.21 D.32 11.已知EF 为圆1)1()1(22=++−y x 的一条直径,点),(y x M 的坐标满足不等式组⎪⎩⎪⎨⎧≤≥++≤+−103201y y x y x ,则MF ME ⋅的取值范围为( ) A.]13,29[ B.]13,4[ C.]12,4[ D.]12,27[ 12.已知函数x xe x g xxx f −==)(,ln )(,若存在R x x ∈+∞∈21),,0(,使得)0()()(21<==k k x g x f 成立,则ke x x 212)(的最大值为( ) A.2e B.e C.24e D.21e第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上. 13.()41x +的展开式中x 2的系数为 。
2017年四川省成都市高考数学二诊试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.复数z满足1+i=(其中i为虚数单位),则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.设集合A={x∈R|x﹣1>0},B={x∈R|x<0},C={x∈R|x(x﹣2)>0},则“x ∈A∪B“是“x∈C“的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.在等比数列{a n}中,首项a1=1,若数列{a n}的前n项之积为T n,且T5=1024,则该数列的公比的值为()A.2 B.﹣2 C.±2 D.±34.函数f(x)=sin(ωx+)(ω>0)的图象与x轴的交点横坐标构成一个公差为的等差数列,要得到g(x)=cos(ωx+)的图象,可将f(x)的图象()A.向右平移个单位B.向左平移个单位C.向左平移个单位D.向右平移个单位5.下列选项中,说法正确的是()A.命题“∃x0∈R,x02﹣x0≤0”的否定为“∃x∈R,x2﹣x>0”B.命题“在△ABC中,A>30°,则sinA>”的逆否命题为真命题C.设{a n}是公比为q的等比数列,则“q>1”是“{a n}为递增数列”的充分必要条件D.若非零向量、满足|,则与共线6.执行如图所示的程序框图,若输出的结果是6,则判断框内m的取值范围是()A.(30,42]B.(20,30)C.(20,30]D.(20,42)7.某几何体的三视图如图所示,则该几何体的体积是()A.6 B.7 C.8 D.98.已知实数x,y满足,则的取值范围是()A.[2,] B.[,]C.(0,]D.[,]9.设函数f(x)=8lnx+15x﹣x2,数列{a n}满足a n=f(n),n∈N+,数列{a n}的前n项和S n最大时,n=()A.15 B.16 C.17 D.1810.三国魏人刘徽,自撰《海岛算经》,专论测高望远.其中有一题:今有望海岛,立两表齐,高三丈,前後相去千步,令後表与前表相直.从前表却行一百二十三步,人目著地取望岛峰,与表末参合.从後表却行百二十七步,人目著地取望岛峰,亦与表末参合.问岛高几何?译文如下:要测量海岛上一座山峰A的高度AH,立两根高三丈的标杆BC和DE,前后两杆相距BD=1000步,使后标杆杆脚D与前标杆杆脚B与山峰脚H在同一直线上,从前标杆杆脚B退行123步到F,人眼著地观测到岛峰,A、C、F三点共线,从后标杆杆脚D退行127步到G,人眼著地观测到岛峰,A、E、G三点也共线,则山峰的高度AH=()步(古制:1步=6尺,1里=180丈=1800尺=300步)A.1250 B.1255 C.1230 D.120011.设M、N是直线x+y﹣2=0上的两动点,且|MN|=,则•的最小值为()A.1 B.2 C.D.12.设函数f(x)=,若方程f(f(x))=a(a>0)恰有两个不相等的实根x1,x2,则e•e的最大值为()A.B.2(ln2﹣1) C.D.ln2﹣1二、填空题(本大题共4小题,每小题5分,共20分)13.在二项式(ax2+)5的展开式中,若常数项为﹣10,则a=.14.在一个容量为5的样本中,数据均为整数,已测出其平均数为10,但墨水污损了两个数据,其中一个数据的十位数字1未污损,即9,10,11,,那么这组数据的方差s2可能的最大值是.15.如图,抛物线y2=4x的一条弦AB经过焦点F,取线段OB的中点D,延长OA 至点C,使|OA|=|AC|,过点C,D作y轴的垂线,垂足分别为E,G,则|EG|的最小值为.16.在数列{a n}中,a1=1,a n=a n(n≥2,n∈N*),则数列{}的前n﹣1项和T n=.三、解答题(本大题共5小题,共70分)17.(12分)如图,在平面四边形ABCD中,已知∠A=,∠B=,AB=6,在AB边上取点E,使得BE=1,连接EC,ED.若∠CED=,EC=.(Ⅰ)求sin∠BCE的值;(Ⅱ)求CD的长.18.(12分)某项科研活动共进行了5次试验,其数据如表所示:特征量第1次第2次第3次第4次第5次x555559 551563552y601605 597 599 598 (Ⅰ)从5次特征量y的试验数据中随机地抽取两个数据,求至少有一个大于600的概率;(Ⅱ)求特征量y关于x的线性回归方程=x+;并预测当特征量x为570时特征量y的值.(附:回归直线的斜率和截距的最小二乘法估计公式分别为=,=﹣)19.(12分)如图,已知梯形CDEF与△ADE所在平面垂直,AD⊥DE,CD⊥DE,AB∥CD∥EF,AE=2DE=8,AB=3,EF=9.CD=12,连接BC,BF.(Ⅰ)若G为AD边上一点,DG=DA,求证:EG∥平面BCF;(Ⅱ)求二面角E﹣BF﹣C的余弦值.20.(12分)在平面直角坐标系xOy中,已知椭圆E: +=1(a>b>0),圆O:x2+y2=r2(0<r<b),若圆O的一条切线l:y=kx+m与椭圆E相交于A,B 两点.(Ⅰ)当k=﹣,r=1时,若点A,B都在坐标轴的正半轴上,求椭圆E的方程;(Ⅱ)若以AB为直径的圆经过坐标原点O,探究a,b,r之间的等量关系,并说明理由.21.(12分)已知函数f(x)=alnx﹣x+,其中a>0(Ⅰ)若f(x)在(2,+∞)上存在极值点,求a的取值范围;(Ⅱ)设x1∈(0,1),x2∈(1,+∞),若f(x2)﹣f(x1)存在最大值,记为M(a).则a≤e+时,M(a)是否存在最大值?若存在,求出最大值;若不存在,请说明理由.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为(α为参数),直线l的参数方程为(t为参数),在以坐标原点O为极点,x轴为正半轴为极轴的极坐标系中,过极点O的射线与曲线C相交于不同于极点的点A,且点A的极坐标为(2,θ),其中θ∈(,π)(Ⅰ)求θ的值;(Ⅱ)若射线OA与直线l相交于点B,求|AB|的值.[选修4-5:不等式选讲]23.已知函数f(x)=4﹣|x|﹣|x﹣3|(Ⅰ)求不等式f(x+)≥0的解集;(Ⅱ)若p,q,r为正实数,且++=4,求3p+2q+r的最小值.2017年四川省成都市高考数学二诊试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.复数z满足1+i=(其中i为虚数单位),则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数代数形式的乘除运算.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出z的坐标得答案.【解答】解:由1+i=,得=,∴z在复平面内对应的点的坐标为(,﹣1),位于第三象限角.故选:C.【点评】本题考查复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.2.设集合A={x∈R|x﹣1>0},B={x∈R|x<0},C={x∈R|x(x﹣2)>0},则“x ∈A∪B“是“x∈C“的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】利用不等式的解法化简集合A,B,C,再利用集合的运算性质、简易逻辑的判定方法即可得出.【解答】解:集合A={x∈R|x﹣1>0}={x|x>1},B={x∈R|x<0},C={x∈R|x(x﹣2)>0}={x|x>2或x<0},A∪B={x|x<0,或x>1},则“x∈A∪B“是“x∈C“的必要不充分条件.故选:B.【点评】本题考查了不等式的解法、集合的运算性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.3.在等比数列{a n}中,首项a1=1,若数列{a n}的前n项之积为T n,且T5=1024,则该数列的公比的值为()A.2 B.﹣2 C.±2 D.±3【考点】等比数列的前n项和.【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵首项a1=1,T5=1024,∴15×q1+2+3+4=1024,即q10=210,解得q=±2.故选:C.【点评】本题考查了等比数列的通项公式,考查了推理能力与计算能力,属于中档题.4.函数f(x)=sin(ωx+)(ω>0)的图象与x轴的交点横坐标构成一个公差为的等差数列,要得到g(x)=cos(ωx+)的图象,可将f(x)的图象()A.向右平移个单位B.向左平移个单位C.向左平移个单位D.向右平移个单位【考点】函数y=Asin(ωx+φ)的图象变换.【分析】由题意可得可得函数的周期为π,即=π,求得ω=2,可得f(x)=sin (2x+).再根据函数y=Asin(ωx+φ)的图象变换规律得出结论.【解答】解:根据函数f(x)=sin(ωx+)(ω>0)的图象与x轴的交点的横坐标构成一个公差为的等差数列,可得函数的周期为π,即:=π,可得:ω=2,可得:f(x)=sin(2x+).再由函数g(x)=cos(2x+)=sin[﹣(2x+)]=sin[2(x+)+],故把f(x)=sin(2x+)的图象向左平移个单位,可得函数g(x)=cos(2x+)的图象,故选:B.【点评】本题主要考查等差数列的定义和性质,函数y=Asin(ωx+φ)的图象变换规律,考查了转化思想,属于基础题.5.下列选项中,说法正确的是()A.命题“∃x0∈R,x02﹣x0≤0”的否定为“∃x∈R,x2﹣x>0”B.命题“在△ABC中,A>30°,则sinA>”的逆否命题为真命题C.设{a n}是公比为q的等比数列,则“q>1”是“{a n}为递增数列”的充分必要条件D.若非零向量、满足|,则与共线【考点】命题的真假判断与应用.【分析】由特称命题的否定为全称命题,即可判断A;由A=150°,可得sinA=,再结合原命题与逆否命题等价,即可判断B;由a1<0,0<q<1,即可判断C;再由向量共线的条件,即可判断D.【解答】解:对于A,由特称命题的否定为全称命题,可得命题“∃x0∈R,x02﹣x0≤0”的否定为“∀x∈R,x2﹣x>0”,故A错;对于B,命题“在△ABC中,A>30°,则sinA>”为假命题,比如A=150°,则sinA=.再由原命题与其逆否命题等价,则其逆否命题为假命题,故B错;对于C,设{a n}是公比为q的等比数列,则“q>1”推不出“{a n}为递增数列”,比如a1<0,不为增函数;反之,可得0<q<1.故不为充分必要条件,故C错;对于D,若非零向量、满足|+|=||+||,则,同向,则与共线,故D正确.故选:D.【点评】本题考查命题的真假判断,主要是命题的否定、四种命题的真假、充分必要条件的判断和向量共线的条件,考查判断和推理能力,属于基础题.6.执行如图所示的程序框图,若输出的结果是6,则判断框内m的取值范围是()A.(30,42]B.(20,30)C.(20,30]D.(20,42)【考点】程序框图.【分析】由程序框图依次求得程序运行的结果,再根据输出的k值判断运行的次数,从而求出输出的S值.【解答】解:由程序框图知第一次运行第一次运行S=0+2,k=2;第二次运行S=0+2+4,k=3;第三次运行S=0+2+4+6,k=4;第四次运行S=0+2+4+6+8,k=5;第五次运行S=0+2+4+6+8+10,k=6∵输出k=6,∴程序运行了5次,此时S=0+2+4+6+8+10=30,∴m的取值范围为20<m≤30.故选:C.【点评】本题考查了循环结构的程序框图,根据程序运行的结果判断程序运行的次数是关键.7.某几何体的三视图如图所示,则该几何体的体积是()A.6 B.7 C.8 D.9【考点】棱柱、棱锥、棱台的体积.【分析】根据三视图得出空间几何体是以俯视图为底面的四棱锥,代入锥体体积公式,可得答案.【解答】解:根据三视图得出空间几何体是以俯视图为底面的四棱锥,其底面面积S=×(2+4)×2=6,高h=3,故体积V==6,故选:A【点评】本题考查的知识点是棱锥的体积与表面积,简单几何体的三视图,难度中档.8.已知实数x,y满足,则的取值范围是()A.[2,] B.[,]C.(0,]D.[,]【考点】简单线性规划.【分析】画出约束条件的可行域,求出的范围,化简目标函数,转化为函数的值域,求解即可.【解答】解:实数x,y满足的可行域如图:由图形可知:的最小值:K OB,最大值是K OA,由解得A(2,3),由可得B(3,),K OB=,K OA=,则=,令t=,t∈,g(t)=+t≥2,等号成立的条件是t=1,1∈[,],当t=时,g()=,当t=时,g()=,可得=∈[,].故选:D.【点评】本题考查线性规划的简单应用,考查数形结合以及转化思想的应用,考查计算能力.9.设函数f(x)=8lnx+15x﹣x2,数列{a n}满足a n=f(n),n∈N+,数列{a n}的前n项和S n最大时,n=()A.15 B.16 C.17 D.18【考点】数列的求和.【分析】求出f(x)的导数,由导数大于0,可得增区间;导数小于0,可得减区间,再计算f(1),f(8),f(16),f(17)的符号,即可得到所求数列{a n}的前n项和S n最大时,n的值.【解答】解:函数f(x)=8lnx+15x﹣x2,x>0导数为f′(x)=+15﹣2x==,当x>8时,f′(x)<0,f(x)递减;当0<x<8时,f′(x)>0,f(x)递增,可得x=8处f(x)取得极大值,且为最大值,f(8)=8ln8+120﹣64>0,由a n=f(n),n∈N+,可得f(1)=15﹣1=14>0,f(16)=8ln16+15×16﹣162=8ln16﹣16>0,f(17)=8ln17+15×17﹣172=8ln17﹣34<0,由单调性可得a1,a2,…,a16都大于0,a17<0,则数列{a n}的前n项和S n最大时,n=16.故选:B.【点评】本题考查数列前n项和的最值,注意运用导数判断单调性,考查运算能力,属于中档题.10.三国魏人刘徽,自撰《海岛算经》,专论测高望远.其中有一题:今有望海岛,立两表齐,高三丈,前後相去千步,令後表与前表相直.从前表却行一百二十三步,人目著地取望岛峰,与表末参合.从後表却行百二十七步,人目著地取望岛峰,亦与表末参合.问岛高几何?译文如下:要测量海岛上一座山峰A的高度AH,立两根高三丈的标杆BC和DE,前后两杆相距BD=1000步,使后标杆杆脚D与前标杆杆脚B与山峰脚H在同一直线上,从前标杆杆脚B退行123步到F,人眼著地观测到岛峰,A、C、F三点共线,从后标杆杆脚D退行127步到G,人眼著地观测到岛峰,A、E、G三点也共线,则山峰的高度AH=()步(古制:1步=6尺,1里=180丈=1800尺=300步)A.1250 B.1255 C.1230 D.1200【考点】解三角形的实际应用.【分析】根据“平行线法”证得△BCF∽△HAF、△DEG∽△HAG,然后由相似三角形的对应边成比例即可求解线段AH的长度.【解答】解:∵AH∥BC,∴△BCF∽△HAF,∴,又∵DE∥AH,∴△DEG∽△HAG,∴,又∵BC=DE,∴,即,∴BH=30750(步)=102.5里,又∵,∴AH==1255(步).故选:B.【点评】本题考查利用数学知识解决实际问题,能够熟练运用三角形的相似解决是关键.11.设M、N是直线x+y﹣2=0上的两动点,且|MN|=,则•的最小值为()A.1 B.2 C.D.【考点】平面向量数量积的运算.【分析】设M(m,2﹣m),N(n,2﹣n),且m>n,运用两点的距离公式可得m﹣n=1,再由向量的数量积的坐标表示,转化为n的二次函数,配方即可得到所求最小值.【解答】解:设M(m,2﹣m),N(n,2﹣n),且m>n,由|MN|=,可得=,可得m﹣n=1,即m=1+n,则•=mn+(2﹣m)(2﹣n)=2mn+4﹣2(m+n)=2n(1+n)+4﹣2(1+2n)=2(n2﹣n+1)=2[(n﹣)2+]≥,当n=,m=时,可得•的最小值为,故选:D.【点评】本题考查向量数量积的坐标表示,注意运用转化思想,运用二次函数的最值求法,考查化简整理的运算能力,属于中档题.12.设函数f(x)=,若方程f(f(x))=a(a>0)恰有两个不相等的实根x1,x2,则e•e的最大值为()A.B.2(ln2﹣1) C.D.ln2﹣1【考点】根的存在性及根的个数判断.【分析】求出f(f(x))的解析式,根据f(f(x))的函数图象判断x1,x2的范围和两根的关系,构造函数h(x1)=e•e,求出h(x1)的最大值即可.【解答】解:令g(x)=f(f(x))=,∵y=f(x)在(﹣∞,0)上单调递减,在[0,+∞)上单调递增,∴g(x)=f(f(x))在(﹣∞,0)上单调递减,在[0,+∞)上单调递增.做出g(x)=f(f(x))的函数图象如图所示:∵方程f(f(x))=a(a>0)恰有两个不相等的实根x1,x2,不妨设x1<x2,则x1≤﹣1,x2≥0,且f(x1)=f(x2),即x12=e.∴e•e=e•x12,令h(x1)=e•x12,则h′(x1)=e(x12+2x1)=e•x1•(x1+2),∴当x1<﹣2时,h′(x1)>0,当﹣2<x1<﹣1时,h′(x1)<0,∴h(x1)在(﹣∞,﹣2)上单调递增,在(﹣2,﹣1)上单调递减,∴当x1=﹣2时,h(x1)取得最大值h(﹣2)=.故选C.【点评】本题考查了根的个数与函数图象的关系,函数单调性判断与函数最值的计算,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分)13.在二项式(ax2+)5的展开式中,若常数项为﹣10,则a=﹣2.【考点】二项式系数的性质.【分析】利用通项公式即可得出.=【解答】解:二项式(ax2+)5的展开式中,通项公式T r+1=a5﹣r,令10﹣=0,解得r=4.∴常数项=a=﹣10,∴a=﹣2.故答案为:﹣2.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.14.在一个容量为5的样本中,数据均为整数,已测出其平均数为10,但墨水污损了两个数据,其中一个数据的十位数字1未污损,即9,10,11,,那么这组数据的方差s2可能的最大值是36.【考点】极差、方差与标准差.【分析】设这组数据的最后2个分别是:10+x,y,得到x+y=10,表示出S2,根据x的取值求出S2的最大值即可.【解答】解:设这组数据的最后2个分别是:10+x,y,则9+10+11+(10+x)+y=50,得:x+y=10,故y=10﹣x,故S2= [1+0+1+x2+(﹣x)2]= +x2,显然x最大取9时,S2最大是36,故答案为:36.【点评】本题考查了求数据的平均数和方差问题,是一道基础题.15.如图,抛物线y2=4x的一条弦AB经过焦点F,取线段OB的中点D,延长OA 至点C,使|OA|=|AC|,过点C,D作y轴的垂线,垂足分别为E,G,则|EG|的最小值为4.【考点】抛物线的简单性质.【分析】设直线AB的方程为x=my+1,代入抛物线y2=4x,可得y2﹣4my﹣4=0,|EG|=y2﹣2y1=y2+,利用基本不等式即可得出结论.【解答】解:设直线AB的方程为x=my+1,代入抛物线y2=4x,可得y2﹣4my﹣4=0,设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=﹣4,∴|EG|=y2﹣2y1=y2+≥4,当且仅当y2=4时,取等号,即|EG|的最小值为4,故答案为4.【点评】本题考查|EG|的最小值的求法,具体涉及到抛物线的简单性质,直线与抛物线的位置关系,解题时要认真审题,仔细解答,注意合理地进行等价转化.16.在数列{a n}中,a1=1,a n=a n(n≥2,n∈N*),则数列{}的前n﹣1项和T n=.【考点】数列的求和.【分析】由条件可得=•,令b n=,可得b n=•b n﹣1,由b n=b1••…•,求得b n,进而得到a n,可得==2(﹣),再由数列的求和方法:裂项相消求和,即可得到所求和.【解答】解:在数列{a n}中,a1=1,a n=a n﹣1(n≥2,n∈N*),可得=•,令b n=,可得b n=•b n﹣1,由b n=b1••…•=1••…•=,可得a n=,即有==2(﹣),则前n项和T n=2(1﹣+﹣+…+﹣)=2(1﹣)=.故答案为:.【点评】本题考查数列的求和,注意运用构造数列法,结合数列恒等式,考查裂项相消求和,考查化简整理的运算能力,属于难题.三、解答题(本大题共5小题,共70分)17.(12分)(2017•成都模拟)如图,在平面四边形ABCD中,已知∠A=,∠B=,AB=6,在AB边上取点E,使得BE=1,连接EC,ED.若∠CED=,EC=.(Ⅰ)求sin∠BCE的值;(Ⅱ)求CD的长.【考点】三角形中的几何计算.【分析】(Ⅰ)在△CBE中,正弦定理求出sin∠BCE;(Ⅱ)在△CBE中,由余弦定理得CE2=BE2+CB2﹣2BE•CBcos120°,得CB.由余弦定理得CB2=BE2+CE2﹣2BE•CEcos∠BEC⇒cos∠BEC⇒sin∠BEC、cos∠AED在直角△ADE中,求得DE=2,在△CED中,由余弦定理得CD2=CE2+DE2﹣2CE•DEcos120°即可【解答】解:(Ⅰ)在△CBE中,由正弦定理得,sin∠BCE=,(Ⅱ)在△CBE中,由余弦定理得CE2=BE2+CB2﹣2BE•CBcos120°,即7=1+CB2+CB,解得CB=2.由余弦定理得CB2=BE2+CE2﹣2BE•CEcos∠BEC⇒cos∠BEC=.⇒sin∠BEC=,sin∠AED=sin(1200+∠BEC)=,⇒cos∠AED=,在直角△ADE中,AE=5,═cos∠AED=,⇒DE=2,在△CED中,由余弦定理得CD2=CE2+DE2﹣2CE•DEcos120°=49∴CD=7.【点评】本题考查了正余弦定理在解三角形中的应用,是中档题18.(12分)(2017•成都模拟)某项科研活动共进行了5次试验,其数据如表所示:特征量第1次第2次第3次第4次第5次x555559 551563552y601605 597 599 598 (Ⅰ)从5次特征量y的试验数据中随机地抽取两个数据,求至少有一个大于600的概率;(Ⅱ)求特征量y关于x的线性回归方程=x+;并预测当特征量x为570时特征量y的值.(附:回归直线的斜率和截距的最小二乘法估计公式分别为=,=﹣)【考点】线性回归方程.【分析】(Ⅰ)利用对立事件的概率公式,可得结论;(Ⅱ)求出回归系数,即可求特征量y关于x的线性回归方程=x+;并预测当特征量x为570时特征量y的值.【解答】解:(Ⅰ)从5次特征量y的试验数据中随机地抽取两个数据,共有=10种方法,都小于600,有=3种方法,∴至少有一个大于600的概率==0.7;(Ⅱ)=554,=600,===0.25,=﹣=461.5,∴=0.25x+461.5,x=570,=604,即当特征量x为570时特征量y的值为604.【点评】本题考查概率的计算,考查独立性检验知识的运用,正确计算是关键.19.(12分)(2017•成都模拟)如图,已知梯形CDEF与△ADE所在平面垂直,AD⊥DE,CD⊥DE,AB∥CD∥EF,AE=2DE=8,AB=3,EF=9.CD=12,连接BC,BF.(Ⅰ)若G为AD边上一点,DG=DA,求证:EG∥平面BCF;(Ⅱ)求二面角E﹣BF﹣C的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(Ⅰ)以D为原点,DC为x轴,DE为y轴,DA为z轴,建立空间直角坐标系,利用向量法能证明EG∥平面BCF.(Ⅱ)求出平面BEF的法向量和平面BFC的法向量,利用向量法能求出二面角E ﹣BF﹣C的余弦值.【解答】证明:(Ⅰ)∵梯形CDEF与△ADE所在平面垂直,AD⊥DE,CD⊥DE,AB∥CD∥EF,∴以D为原点,DC为x轴,DE为y轴,DA为z轴,建立空间直角坐标系,∵AE=2DE=8,AB=3,EF=9.CD=12,连接BC,BF.G为AD边上一点,DG=DA,∴E(0,4,0),G(0,0,),B(3,0,4),C(12,0,0),F(9,4,0),=(9,0,﹣4),=(6,4,﹣4),=(0,﹣4,),设平面BCF的法向量=(x,y,z),则,取z=3,得=(4,3,3),∵=﹣12+12=0,EG⊄平面BCF,∴EG∥平面BCF.解:(Ⅱ)=(3,﹣4,4),=(9,0,0),设平面BEF的法向量=(a,b,c),则,取c=1,=(0,,1),平面BFC的法向量=(4,3,3),设二面角E﹣BF﹣C的平面角为θ,则cosθ===.∴二面角E﹣BF﹣C的余弦值为.【点评】本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.20.(12分)(2017•成都模拟)在平面直角坐标系xOy中,已知椭圆E: +=1(a>b>0),圆O:x2+y2=r2(0<r<b),若圆O的一条切线l:y=kx+m 与椭圆E相交于A,B两点.(Ⅰ)当k=﹣,r=1时,若点A,B都在坐标轴的正半轴上,求椭圆E的方程;(Ⅱ)若以AB为直径的圆经过坐标原点O,探究a,b,r之间的等量关系,并说明理由.【考点】直线与椭圆的位置关系.【分析】(Ⅰ)依题意原点O到切线l:y=﹣x+m的距离为半径1,⇒m=,⇒A(0,),B(,0)代入椭圆方程,求出a、b即可(2)由原点O到切线l:y=kx+m的距离为半径r⇒m2=(1+k2)r2.联立直线方程和与椭圆的方程,利用求解.(Ⅰ)依题意原点O到切线l:y=﹣x+m的距离为半径1,∴,【解答】解:⇒m=,切线l:y=﹣x+,⇒A(0,),B(,0)∴a=,b=,∴椭圆E的方程为:.(Ⅱ)设A(x1,y1),B(x2,y2),联立,得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0...∵以AB为直径的圆经过坐标原点O,∴;⇒(k2+1)x1x2+km(x1+x2)=m2(a2+b2)=(k2+1)a2b2…①又∵圆O的一条切线l:y=kx+m,∴原点O到切线l:y=kx+m的距离为半径r⇒m2=(1+k2)r2…②由①②得r2(a2+b2)=a2b2.∴以AB为直径的圆经过坐标原点O,则a,b,r之间的等量关为:r2(a2+b2)=a2b2.【点评】本题考查曲线方程的求法,考查了直线与圆锥曲线位置关系的应用,训练了平面向量在求解圆锥曲线问题中的应用,是中档题.21.(12分)(2017•成都模拟)已知函数f(x)=alnx﹣x+,其中a>0(Ⅰ)若f(x)在(2,+∞)上存在极值点,求a的取值范围;(Ⅱ)设x1∈(0,1),x2∈(1,+∞),若f(x2)﹣f(x1)存在最大值,记为M(a).则a≤e+时,M(a)是否存在最大值?若存在,求出最大值;若不存在,请说明理由.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的极值.【分析】(Ⅰ)求出函数f(x)的导数,得到a=x+在x∈(2,+∞)上有解,由y=x+在x∈(2,+∞)上递增,得x+∈(,+∞),求出a的范围即可;(Ⅱ)求出函数f(x)的导数,得到[f(x2)﹣f(x1)]max=f(n)﹣f(m),求出M(a)=f(n)﹣f(m)=aln+(m﹣n)+(﹣),根据函数的单调性求出M(a)的最大值即可.【解答】解:(Ⅰ)f′(x)=﹣1﹣=,x∈(0,+∞),由题意得,x2﹣ax+1=0在x∈(2,+∞)上有根(不为重根),即a=x+在x∈(2,+∞)上有解,由y=x+在x∈(2,+∞)上递增,得x+∈(,+∞),检验,a>时,f(x)在x∈(2,+∞)上存在极值点,∴a∈(,+∞);(Ⅱ)若0<a≤2,∵f′(x)=在(0,+∞)上满足f′(x)≤0,∴f(x)在(0,+∞)上递减,∴f(x2)﹣f(x1)<0,∴f(x2)﹣f(x1)不存在最大值,则a>2;∴方程x2﹣ax+1=0有2个不相等的正实数根,令其为m,n,且不妨设0<m<1<n,则,f(x)在(0,m)递减,在(m,n)递增,在(n,+∞)递减,对任意x1∈(0,1),有f(x1)≥f(m),对任意x2∈(1,+∞),有f(x2)≤f(n),∴[f(x2)﹣f(x1)]max=f(n)﹣f(m),∴M(a)=f(n)﹣f(m)=aln+(m﹣n)+(﹣),将a=m+n=+n,m=代入上式,消去a,m得:M(a)=2[(+n)lnn+(﹣n)],∵2<a≤e+,∴ +n≤e+,n>1,由y=x+在x∈(1,+∞)递增,得n∈(1,e],设h(x)=2(+x)lnx+2(﹣x),x∈(1,e],h′(x)=2(1﹣)lnx,x∈(1,e],∴h′(x)>0,即h(x)在(1,e]递增,∴[h(x)]max=h(e)=,∴M(a)存在最大值为.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道综合题.[选修4-4:坐标系与参数方程]22.(10分)(2017•成都模拟)在直角坐标系xOy中,曲线C的参数方程为(α为参数),直线l的参数方程为(t为参数),在以坐标原点O为极点,x轴为正半轴为极轴的极坐标系中,过极点O的射线与曲线C相交于不同于极点的点A,且点A的极坐标为(2,θ),其中θ∈(,π)(Ⅰ)求θ的值;(Ⅱ)若射线OA与直线l相交于点B,求|AB|的值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(Ⅰ)曲线C的极坐标方程,利用点A的极坐标为(2,θ),θ∈(,π),即可求θ的值;(Ⅱ)若射线OA与直线l相交于点B,求出A,B的坐标,即可求|AB|的值.【解答】解:(Ⅰ)曲线C的参数方程为(α为参数),普通方程为x2+(y﹣2)2=4,极坐标方程为ρ=4sinθ,∵点A的极坐标为(2,θ),θ∈(,π),∴θ=;(Ⅱ)直线l的参数方程为(t为参数),普通方程为x+y﹣4=0,点A的直角坐标为(﹣,3),射线OA的方程为y=﹣x,代入x+y﹣4=0,可得B(﹣2,6),∴|AB|==2.【点评】本题考查三种方程的转化,考查两点间距离公式的运用,属于中档题.[选修4-5:不等式选讲]23.(2017•成都模拟)已知函数f(x)=4﹣|x|﹣|x﹣3|(Ⅰ)求不等式f(x+)≥0的解集;(Ⅱ)若p,q,r为正实数,且++=4,求3p+2q+r的最小值.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(I)由题意,分类讨论,去掉绝对值,解不等式即可;(Ⅱ)运用柯西不等式,可3p+2q+r的最小值.【解答】解:(Ⅰ)f(x+)≥0,即|x+|+|x﹣|≤4,x≤﹣,不等式可化为﹣x﹣﹣x+≤4,∴x≥﹣2,∴﹣2≤x≤﹣;﹣<x<,不等式可化为x+﹣x+≤4恒成立;x≥,不等式可化为x++x﹣≤4,∴x≤2,∴≤x≤2,综上所述,不等式的解集为[﹣2,2];(Ⅱ)∵(++)(3p+2q+r)≥(1+1+1)2=9, ++=4∴3p+2q+r≥,∴3p+2q+r的最小值为.【点评】本题考查不等式的解法,考查运用柯西不等式,考查运算和推理能力,属于中档题.。
2020届成都二诊理科数学试卷(word版含答案)成都市2017级高中毕业班第二次诊断性检测数学(理科)一、选择题:1.复数z满足z(1+i)=2(i为虚数单位),则z的虚部为()A.iB.-iC.-1D.12.设全集U=R,集合M={x|x2},则(C U M)∩N=()3.某中学有高中生1500人,初中生1000人,为了解该校学生自主锻炼的时间,采用分层抽样的方法从高中生和初中生中抽取一个容量为n的样本。
若样本中高中生恰有30人,则n的值为()A.20B.50C.40D.604.曲线y=x-x2在点(1,0)处的切线方程为()A.2x-y=0B.2x+y-2=0C.2x+y+2=0D.2x-y-2=05.已知锐角β满足2sin2α=1-cos2α,则tanα=()A.3B.1C.2D.46.函数f(x)=cosx·ln(x2+1-x)在[-1,1]的图象大致为()ABCD7.执行如图所示的程序框图,则输出S的值为()A.16B.48C.96D.1288.已知函数f(x)=sin(ωx+π)(<ω<π),f(0)=1/4,则函数f(x)的图象的对称轴方程为()A.x=kπ-π/4,k∈ZB.x=kπ+π/4,k∈ZC.x=11π/24+kπ,k∈ZD.x=kπ+3π/4,k∈Z9.如图,双曲线C:(x2/a2)-(y2/b2)=1(a>0,b>0)的左,右交点分别是F1(-c,0),F2(c,0),直线y=kx与双曲线C的两条渐近线分别相交于A,B两点。
若∠BF1F2=π/3,则双曲线C的离心率为()A.2B.2√3C.3D.3√310.在正方体ABCD-A1B1C1D1中,点P,Q分别为AB,AD 的中点,过点D作平面α使B1P∥平面α,A1Q∥平面α,若直线B1D1∩平面α=M,则MD1的值为()A.11B.12C.32D.2311.已知EF为圆(x-1)2+(y+1)2=1的一条直径,点M(x,y)的坐标满足不等式组{x-y+1≤2 {2x+y+3≥0,则ME·MF的取值范围为()9≤XXX<16小幅度改写:1.第一题选择题,给出了复数z满足z(1+i)=2时,z的虚部的四个选项,要求选出正确的答案。