3.1图形的平移
- 格式:pptx
- 大小:2.22 MB
- 文档页数:25
北师大版数学八年级下册3.1《图形的平移》教学设计1一. 教材分析《图形的平移》是北师大版数学八年级下册第3.1节的内容,本节课的主要内容是让学生理解平移的性质,学会用平移的方法来作图,体会平移在实际生活中的应用。
本节课的内容与学生的生活实际紧密相连,有利于激发学生的学习兴趣,培养学生的空间想象能力。
二. 学情分析学生在学习本节课之前,已经学习了图形的旋转,对图形的变换有一定的了解。
但平移与旋转在性质上有所不同,平移不会改变图形的大小和形状,而旋转会改变图形的位置和方向。
因此,在教学过程中,教师需要引导学生区分平移和旋转,并理解平移的性质。
三. 教学目标1.知识与技能目标:学生能够理解平移的性质,学会用平移的方法来作图。
2.过程与方法目标:学生通过观察、操作、交流,培养空间想象能力和动手操作能力。
3.情感态度与价值观目标:学生体会数学与生活的联系,增强学习数学的兴趣。
四. 教学重难点1.教学重点:学生能够理解平移的性质,学会用平移的方法来作图。
2.教学难点:学生能够区分平移和旋转,并理解平移的性质。
五. 教学方法1.情境教学法:通过生活实例,引导学生感受平移的存在,激发学生的学习兴趣。
2.动手操作法:让学生通过实际操作,体验平移的过程,理解平移的性质。
3.交流讨论法:学生在小组内交流自己的学习心得,互相启发,共同进步。
六. 教学准备1.教学用具:多媒体课件、几何画板、实物模型等。
2.教学素材:生活中平移的实例图片、几何图形等。
七. 教学过程1.导入(5分钟)教师通过展示生活中平移的实例图片,如滑滑梯、升国旗等,引导学生感受平移的存在。
同时,提问学生:“你们认为平移是什么?”从而激发学生的学习兴趣。
2.呈现(10分钟)教师利用多媒体课件,呈现平移的定义和性质。
引导学生观察、思考,并总结平移的特点。
同时,通过几何画板演示平移的过程,让学生更直观地理解平移。
3.操练(10分钟)教师分组让学生进行实际操作,用平移的方法来作图。
3.1《图形的平移》知识点1、平移的定义:把一个图形沿着一定的方向平行移动而达到另一个位置,这种图形的平行移动,简称平移。
平移式图形变换的一种形式。
2、平移的两个要素:(1)平移方向;(2)平移距离。
3、对应点、对应线段、对应角一个图形经过平移后得到一个新的图形,这个新图形与原图形是能够互相重合的全等形,我们把互相重合的点称为对应点,互相重合的线段称为对应线段,互相重合的角称为对应角。
4、平移方向和距离的确定(1)要对一个图形进行平移,在平移前必须弄清它的平移方向和平移距离,否则将无法实现平移,那么怎样确定这两点呢?A. .若给出带箭头的线段:从箭尾到箭头的方向表示平移方向,而带箭头的线段的长度,表示平移距离,也有时另给平移距离的长度。
B. 若给出由小正方形组成的方格纸:在方格中的平移,从方向上看往往是要求用横纵两次平移来完成(有特殊要求例外),而移动距离是由最终要达到的位置确定的。
C. 具体给出从某点P到另一点P\\\\\'的方向为平移方向,线段PP\\\\\'的长度为平移距离。
D. 给出具体方位(如向东或者西北等)和移动长度(如10CM)。
(2)图形平移后,平移方向与平移距离的确定。
图形平移后,原图形与新图形中的任意一对前后对应点的射线方向就是原平移方向,这对对应点间的线段长度就是原平移距离。
5、平移性质图形平移的实质是图形上的每一点都沿着同一个方向移动了相同的距离。
平移后的图形与原图形:(1)对应线段平行(或在同条一直线上)且相等;(2)对应点连线平行(或在同一条直线上)且相等;(3)图形的形状与大小都不变(全等);(4)图形的顶点字母的排列顺序的方向不变。
6、如果两个图形的位置给定,怎样判别其中一个图形能否经另一个图形平移得到呢?除根据定义判别外,还可以根据平移特征,从中去掉那些能互相替代和包含的内容,只要具备以下三条:(1)这两个图形必须是全等形;(2)这两个全等形的对应线段必须互相平行(或者在同一条直线上);(3)这两个全等形的对应点连线必须互相平行(或在同一条直线上)。
北师大版数学八年级下册3.1《图形的平移》说课稿一. 教材分析《图形的平移》是北师大版数学八年级下册第3.1节的内容。
本节课主要让学生了解平移的定义,理解平移在实际生活中的应用,并学会用平移的方法来简化复杂图形。
通过学习,学生能够掌握图形的平移规律,提高空间想象能力。
二. 学情分析学生在七年级时已经学习了图形的旋转,对图形的变换有了一定的认识。
但平移与旋转存在很大的区别,平移不改变图形的方向,而旋转则会改变图形的方向。
因此,在教学过程中,需要引导学生区分这两种变换,并理解平移的性质。
三. 说教学目标1.知识与技能:理解平移的定义,掌握平移的性质,能运用平移的方法解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,提高空间想象能力。
3.情感、态度与价值观:培养学生的观察能力,激发学生对数学的兴趣。
四. 说教学重难点1.重点:平移的定义及其在实际中的应用。
2.难点:平移规律的探究,以及如何运用平移解决复杂图形的问题。
五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生主动探究、合作交流。
2.利用多媒体课件、实物模型等教学手段,直观展示平移的过程,增强学生的空间想象力。
六. 说教学过程1.导入:通过展示生活中的平移现象,如电梯、滑滑梯等,引导学生思考平移的特点。
2.新课导入:介绍平移的定义,引导学生理解平移不改变图形的方向。
3.实例分析:分析具体图形进行平移前后的变化,让学生体会平移的性质。
4.小组讨论:让学生分组讨论平移在实际中的应用,如地图上的路线规划等。
5.总结规律:引导学生总结平移的规律,并能应用于解决实际问题。
6.练习巩固:布置一些有关平移的练习题,让学生独立完成,检验学习效果。
7.课堂小结:对本节课的内容进行总结,强调平移的性质及应用。
七. 说板书设计1.平移的定义2.平移的性质3.平移在实际中的应用八. 说教学评价1.学生能准确理解平移的定义和性质。
2.学生能运用平移的方法解决实际问题。
北师大版数学八年级下册《3.1 图形的平移(第1课时)》教学设计天上飞着的飞机提出问题:仔细观察图片中的运动主体,你能找到它们的共同特征吗?学生讨论归纳.平移前后两个物体的形状和大小没有改变,位置发生了改变。
(引出本课课题)二、合作学习,自主探究(一)探求平移的定义根据上述分析,你能说明什么样的图形运动称为平移?教师引导学生从语句的主谓分析来看待以上几个句子,让学生自己总结平移的概念:(主语――状语――谓语)“一个物体沿着某个方向移动一定的距离”在学生发现和归纳的基础上板书:平移定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
平移不改变图形的形状和大小。
注意:平移三要素:几何图形——运动方向——运动距离(二)探究平移的性质用多媒体演示图形的平移过程,让学生通过对图形平移现象的观察,探索其中的性质.同学们通过刚才的观察,总结出一个结论,即:“图形的位置改变了,但形状和大小没有改变”.现在我们一起来探索:平移前后对应点、对应线段以及对应角之间在做怎样的变化1、找一找如图△ABC 经过平移得到△DEF,点A,B,C分别平移到了点D,E,F.点A与点D是一组对应点,线段AB与线段DE是一组对应线段,∠BAC与∠EDF是一组对应角.对应点:点B与点___对应;点C与点___对应.对应线段:线段AC与线段___对应;线段BC与线段____对应.对应角:∠ACB与∠____对应;∠ABC与∠____对应.学生自主完成任务.2、做一做将图3-2所示的四边形硬纸片按某一方向平移一定距离.图3-3画出了平移前的四边形ABCD和平移后的四边形EFGH.(1)在图中任意选一组对应线段,这两条线段之间有怎样的关系?(2)在图中任意选一组对应角,这两个角之间有怎样的关系?(3)线段AE,BF,CG,DH分别是对应点所连成的线段,它们之间有怎样的关系?学生分组讨论,共同探讨平移的性质.讨论分析:①变换前后对应点的连线平行且相等:平移变换是图形的每一个点的变换,一个图形沿某个方向移动一定距离,那么每一个点也沿着这个放向移动一定距离,所以对应点的连线平行且相等。
3.1 《图形的平移》教学设计一、构建动场1、观察第三章的章前图,图中有我们熟悉的平移与旋转,除此之外,还有你学过的关于图形的什么现象?第三章图形的平移与旋转设计意图:引导学生观察出七年级学过的轴对称现象,为后面类比轴对称的性质探究平移的性质做好铺垫,并引导学生重视教材的每个小细节。
2、生活中物体平移现象随处可见,请你举个例子。
设计意图:通过图片欣赏和学生的举例,直观感受各种平移现象的共性,搭建数学与生活之桥,让学生感受到数学与生活密切相关。
二、自主学习、合作交流活动一:1、按下面哪种口令能准确做出做平移运动?(1)平移两步(2)向左平移(3)向左平移两步(4)某某同学向左平移两步2、通过刚才活动,你感受到物体的平移有几个要素?设计意图:学生在前面的认识和活动基础上能够说出①物体、②方向、③距离这三个要素,为后面图形的平移的概念形成做好铺垫。
3、把“物体”抽象成“图形”,你能试着说说什么叫图形的平移吗?设计意图:慢慢引导学生从熟悉的“物体”抽象出“图形”,然后由刚才的“物体平移”三要素自己尝试说“图形的平移”概念,从三维到二维,培养了学生抽象的数学思维;更重要的是学生试着说完后引导学生看看课本的定义,找出自己说的不准的地方,一般都会漏掉条件“在平面内”,给学生解释这是因为初中阶段我们研究的是平面几何,因此强调“在平面内”,这样做不仅教给孩子学会利用课本,更培养了学生严谨的学习态度。
4、针对“对应点、对应线段、对应角、平移方向、平移距离”进行练习:A:(1)△ABC平移得到△DEF,找出对应角、对应线段;说出平移方向________;平移距离________。
(2)△ABC平移得到△GHP,又如何呢?设计意图:巩固“对应点、对应线段、对应角、平移方向、平移距离”,只有对这些概念熟悉了(特别是平移方向、平移距离),才能为性质的探索奠定基础。
B:课本随堂练习1、知识技能4设计意图:继续巩固相关概念,但是这里的平移方式不唯一,而且借助网格平移距离可以数据化。