空间向量法解决立体几何证明
- 格式:ppt
- 大小:1.07 MB
- 文档页数:33
用空间向量法求解立体几何问题典例及解析以多面体为载体,以空间向量为工具,来论证和求解空间角、距离、线线关系以及线面关系相关问题,是近年来高考数学的重点和热点,用空间向量解立体几何问题,极大地降低了求解立几的难度,很大程度上呈现出程序化思想。
更易于学生们所接受,故而执教者应高度重视空间向量的工具性。
首先,梳理一下利用空间向量解决立体几何的知识和基本求解方法 一:利用空间向量求空间角 (1)两条异面直线所成的夹角范围:两条异面直线所成的夹角的取值范围是 。
向量求法:设直线,a b 的方向向量为a,b ,其夹角为θ,则有cos ___________.θ= (2)直线与平面所成的角定义:直线与平面所成的角是指直线与它在这个平面内的射影所成的角。
范围:直线和平面所夹角的取值范围是 。
向量求法:设直线l 的方向向量为a ,平面的法向量为n ,直线与法向量所成角的余弦值为|cos |___________.θ=直线与平面所成的角为ϕ,则有sin ___________.ϕ=或在平面内任取一个向量m ,则|cos |___________.θ=.(3)二面角二面角的取值范围是 . 二面角的向量求法:方法一:在两个半平面内任取两个与棱垂直的向量,则这两个向量所成的 即为所求的二面角的大小;方法二:设1n ,2n 分别是两个面的 ,则向量1n 与2n 的夹角(或其补角)即为所求二面角的平面角的大小。
二:利用空间向量求空间距离 (1)点面距离的向量公式平面α的法向量为n ,点P 是平面α外一点,点M 为平面α内任意一点,则点P 到平面α的距离d 就是 ,即d =||||MP ⋅n n . (2)线面、面面距离的向量公式平面α∥直线l ,平面α的法向量为n ,点M ∈α、P ∈l ,平面α与直线l 间的距离d 就是MP 在向量n 方向射影的绝对值,即d = .平面α∥β,平面α的法向量为n ,点M ∈α、P ∈β,平面α与平面β的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n . (3)异面直线的距离的向量公式设向量n 与两异面直线a 、b 都垂直,M ∈a 、P ∈b ,则两异面直线a 、b 间的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n .三:利用空间向量解证平行、垂直关系1:①所谓直线的方向向量,就是指 的向量,一条直线的方向向量有 个。
空间向量在立体几何中的应用ʏ贵州省仁怀市周林高中 尹伟云空间向量是高中数学的一个重要组成部分,在高考中具有较高的地位,是立体几何中的一个主要命题方向,往往以 证算并重 的方式进行考查㊂常以多面体为载体,考查用向量法确定空间点㊁线㊁面的位置关系,求解空间角㊁空间距离㊁立体几何中的动点探究性问题等㊂需要同学们借助向量的工具性作用,将空间几何量之间的位置关系转化为数量关系来求解㊂下面分类分析空间向量在立体几何中的应用㊂1.证明共线与共面问题图1例1 如图1,在长方体A B C D -A 1B 1C 1D 1中,点E ,F 分别在棱D D 1,B B 1上,且|E D 1|=2|D E |,|B F |=2|F B 1|,线段E F 的中点为M ㊂求证:(1)点M 在长方体的对角线A C 1上;(2)点C 1在平面A E F 内㊂解析:证法1(利用向量的坐标运算)图2(1)以点C 1为坐标原点,分别以向量C 1D 1ң,C 1B 1ң,C 1C ң的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系C 1-x yz ,如图2所示㊂设|C 1D 1|=a ,|C 1B 1|=b ,|C 1C |=c ,则C 1(0,0,0),A (a ,b ,c ),E a ,0,2c 3,F 0,b ,c 3,Ma 2,b 2,c 2㊂从而C 1M ң=a 2,b 2,c 2,C 1A ң=(a ,b ,c ),故C 1M ң=12C 1A ң㊂又C 1Mң与C 1A ң有公共点C 1,所以点M 在长方体对角线A C 1上㊂(2)由(1)知,E A ң=0,b ,c 3=C 1F ң,所以A E ʊC 1F ,从而A ,E ,F ,C 1四点共面,故点C 1在平面A E F 内㊂证法2(利用向量的几何运算)(1)由向量的平行四边形法则及三角形法则,得C 1M ң=12(C 1E ң+C 1F ң)=12(C 1D 1ң+D 1E ң+C 1B 1ң+B 1F ң)=12(C 1A 1ң+B 1F ң+F B ң)=12(C 1A 1ң+A 1A ң)=12C 1A ң,即C 1M ң=12C 1A ң㊂所以点M 在长方体对角线A C 1上㊂(2)依题意,得C 1E ң+C 1F ң=C 1D 1ң+D 1E ң+C 1B 1ң+B 1F ң=C 1D 1ң+F B ң+C 1F ң=C 1D 1ң+C 1B ң=C 1A ң,即C 1A ң=C 1E ң+C 1F ң㊂由向量共面的充要条件知,点C 1在平面A E F 内㊂评注:空间向量兼具代数与几何的双重特征,证明多点共线或多线共面问题也是从这两个方面入手,关键是掌握空间向量的线性运算法则和共线㊁共面的充要条件㊂具体方法是:要证明三点共线,可以证明任意两点构成的一组向量共线且共点;要证明四点共面,可以利用向量共面的充要条件,即以其中一点A 为起点,分别以另三点B ,C ,D 为终点得到向量A B ң,A C ң,A D ң,证明存在唯一的实数对(λ,μ),使A B ң=λA C ң+μA D ң成立即可;要证明两条直线共面,可以证明两条直线平行或相交,从而转化为两条直线的方向向量共不共线的问题,即若存在实数λ,使两条直线的方向向量a ,b 满足b =λa ,则两条直线平行,若不存在实数λ满足b =λa ,则两条直线相交㊂2.证明线㊁面的平行与垂直关系例2 如图3所示,在直二面角D -A B -E 中,四边形A B C D 是边长为2的正方形,|A E |=|E B |,F 为C E 上的点,且B F ʅ平面A C E ,G 为C E 的中点㊂解题篇 经典题突破方法 高二数学 2023年5月图3求证:(1)A E ʊ平面B D G ;(2)A E ʅ平面BC E ;(3)平面BD F ʅ平面A B C D ㊂解析:因为A B C D 为正方形,所以B C ʅA B ㊂因为二面角D -A B -E 为直二面角,平面D A B ɘ平面A B E =A B ,所以B C ʅ平面A E B ㊂设线段A B 的中点为O ,连接O E ㊂因为|A E |=|E B |,所以A B ʅO E ㊂图4故以O 为坐标原点,分别以向量O E ң,O B ң,A D ң的方向为x 轴,y 轴,z 轴正方向,建立空间直角坐标系O -x yz ,如图4所示㊂则A (0,-1,0),B (0,1,0),C (0,1,2),D (0,-1,2)㊂设E (x 0,0,0)(x 0>0),则E C ң=(-x 0,1,2)㊂因为F 为C E 上的点,所以设E F ң=λE C=(-λx 0,λ,2λ),0ɤλɤ1,得F ((1-λ)x 0,λ,2λ),则B F ң=((1-λ)x 0,λ-1,2λ)㊂又A C ң=(0,2,2),A E ң=(x 0,1,0),B F ʅ平面A C E ,所以B F ң㊃A C ң=2(λ-1)+4λ=0,且B F ң㊃A E ң=(1-λ)x 20+λ-1=0,解得x 0=1,λ=13㊂所以E (1,0,0),F23,13,23,G 12,12,1㊂(1)方法1:设A C 与B D 相交于H ,则H (0,0,1),所以H G ң=12,12,0㊂可得A E ң=(1,1,0)=2H G ң㊂又A E ⊄平面B D G ,H G ⊂平面B D G ,所以A E ʊ平面B D G ㊂方法2:易知B D ң=(0,-2,2),B G ң=12,-12,1㊂设平面B D G 的一个法向量为k =(a ,b ,c ),则k ㊃B D ң=0,k ㊃B G ң=0,所以-2b +2c =0,12a -12b +c =0㊂取c =1,得k =(-1,1,1)㊂因此,k ㊃A E ң=(-1,1,1)㊃(1,1,0)=0㊂又A E ⊄平面B D G ,故A E ʊ平面B D G ㊂(2)方法1:因为A E ң=(1,1,0),B E ң=(1,-1,0),B C ң=(0,0,2),所以A E ң㊃B E ң=0,A E ң㊃B C ң=0,则A E ʅB E ,A E ʅB C ㊂又B E ɘB C =B ,所以A E ʅ平面B C E ㊂方法2:易知B E ң=(1,-1,0),B C ң=(0,0,2)㊂设平面B C E 的一个法向量为n =(x 1,y 1,z 1),由n ㊃B E ң=0,n ㊃B C ң=0,得x 1-y 1=0,2z 1=0㊂取y 1=1,得n =(1,1,0)㊂又A E ң=(1,1,0)=n ,故A E ңʊn ,A E ʅ平面B C E ㊂(3)由题意知,O E ң=(1,0,0)为平面A B -C D 的一个法向量,设平面B D F 的一个法向量为m =(x 2,y 2,z 2)㊂由(1)知,B F ң=23,-23,23,B D ң=(0,-2,2),所以m ㊃B F ң=23x 2-23y 2+23z 2=0,且m ㊃B D ң=-2y 2+2z 2=0㊂取z 2=1,则y 2=1,x 2=0,所以m =(0,1,1)㊂因m ㊃O E ң=0,故m ʅO E ң㊂因此,平面B D F ʅ平面A B C D ㊂评注:利用向量法证线面平行,一般有三个思路:一是用向量共面的充要条件,证明直线的方向向量能用平面内两条相交直线的方向向量表示出来,即这三个向量共面,根据共面向量概念和直线在平面外,得线面平行;二是先求出平面的法向量,再证明法向量与直线的方向向量垂直;三是证明已知直线与平面内的一条直线平行,也就是将其转化为证明线线平行的问题,再根据线面平行的判断定理得证㊂证面面平行,一般有两个思路:一是利用向量证明一个平面内两条相交直线平行于另一个平面,根据面面平行的判定定理得证;二是求出两个平面的法向量,证明这两个法向量平行,则这两个平面平行㊂证线线垂直,可转化为两条直线的方向向量垂直,即证明两条直线方向向量的数量积为0㊂证线面垂直有两个思路:一是证平面的法向量与直线的方向向量平行;二是证直线与平面内两条相交直线垂直,再用线面垂直判定定理证明㊂证面面垂直,先求出两个平面的法向量,通过证明这两个平面的法向量垂直即可㊂解题篇 经典题突破方法高二数学 2023年5月以上思路大多要用到平面的法向量,当题中出现线面垂直时,则该直线的方向向量就是该平面的一个法向量,为减少计算量,无需另求法向量㊂3.解决平行或垂直的探索性问题图5例3 如图5所示,在四棱柱A B C D -A 1B 1C 1D 1中,A 1D ʅ平面A B C D ,底面A B C D 是边长为1的正方形,侧棱|A 1A |=2㊂(1)在棱A 1B 上是否存在一点M ,使得A 1D ʊ平面A C M(2)在棱A 1A 上是否存在一点P ,使得平面A B 1C 1ʅ平面P B 1C 1图6解析:如图6,分别以D A ,D C ,D A 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系㊂则由题中数据,得D (0,0,0),A (1,0,0),C (0,1,0),A 1(0,0,3),B (1,1,0),B 1(0,1,3),C 1(-1,1,3)㊂从而D A 1ң=(0,0,3),B A 1ң=(-1,-1,3),A C 1ң=(-2,1,3),C 1B 1ң=(1,0,0),A A 1ң=(-1,0,3)㊂(1)假设线段A 1B 上存在一点M (a 1,b 1,c 1),使得A 1D ʊ平面A C M ㊂设B M ң=λB A 1ң(0<λ<1),即(a 1-1,b 1-1,c 1)=λ(-1,-1,3)㊂则a 1-1=-λ,b 1-1=-λ,c 1=3λ㊂解得M (1-λ,1-λ,3λ)㊂从而A M ң=(-λ,1-λ,3λ),C M ң=(1-λ,-λ,3λ)㊂设平面A C M 的一个法向量为m =(a 2,b 2,c 2),则m ㊃A M ң=0,m ㊃C M ң=0,即-λa 2+(1-λ)b 2+3λc 2=0,(1-λ)a 2-λb 2+3λc 2=0㊂两式相减,得a 2-b 2=0㊂令a 2=1,得m =1,1,2λ-13λ㊂由D A 1ң㊃m =0,得3㊃(2λ-1)3λ=0,解得λ=12,此时M 12,12,32,M 为线段A 1B 的中点㊂所以线段A 1B 上存在一点M ,使得A 1D ʊ平面A C M ㊂(2)假设棱A 1A 上存在一点P ,使得平面A B 1C 1ʅ平面P B 1C 1㊂设A P ң=μA A 1ң,0<μɤ1,则P (1-μ,0,3μ),从而B 1P ң=(1-μ,-1,3(μ-1))㊂设平面A B 1C 1的一个法向量为n 1=(x 1,y 1,z 1),由n 1㊃C 1B 1ң=0,n 1㊃A C 1ң=0, 得x 1=0,-2x 1+y 1+3z 1=0㊂ 令z 1=3,则n 1=(0,-3,3)㊂设平面P B 1C 1的一个法向量为n 2=(x 2,y 2,z 2),由n 2㊃C 1B 1ң=0,n 2㊃B 1P ң=0,得x 2=0,(1-μ)x 2-y 2+3(μ-1)z 2=0㊂令z 2=3,得n 2=(0,3(μ-1),3)㊂由n 1㊃n 2=0,得-3ˑ3(μ-1)+3ˑ3=0,解得μ=43>1,不合题意,所以这样的点P 不存在㊂评注:涉及线段上的动点问题,先设出动点分线段的某个比值λ,根据两个向量共线的充要条件得数乘关系,从而用λ表示动点的坐标,再进行相关计算,这样可以减少未知量,简化过程㊂值得注意的是,应给出λ的取值范围㊂另外,建系时最好用右手直角坐标系且使几何元素尽量分布在坐标轴的正方向上㊂4.求解点面距离或几何体的体积例4 如图7,在三棱柱A B C -A 1B 1C 1中,棱A A 1ʅ侧面A B C ,A B ʅB C ,D 为A C 的中点,|A A 1|=|A B |=2,|B C |=3,求三 解题篇 经典题突破方法 高二数学 2023年5月图7棱锥A 1-B C 1D 的体积㊂解析:由题意知,B 1C 1,B 1B ,B 1A 1三条直线两两垂直,故以B 1为坐标原点,建立空间直角坐标系B 1-x yz ,如图8所示㊂图8则由题中数据,得B 1(0,0,0),B (0,2,0),C (3,2,0),C 1(3,0,0),A (0,2,2),A 1(0,0,2),D32,2,1,则C 1A 1ң=(-3,0,2),C 1B ң=(-3,2,0),B D ң=32,0,1㊂所以|C 1A 1ң|=(-3)2+02+22=13,|C 1B ң|=(-3)2+22+02=13,c o s øA 1C 1B =C 1A 1ң㊃C 1B ң|C 1A 1ң||C 1B ң|=-3ˑ(-3)13ˑ13=913㊂从而s i nøA 1C 1B =1-c o s 2øA 1C 1B=22213,所以S әA 1C 1B =12|C 1A 1ң|㊃|C 1B ң|s i n øA 1C 1B =12ˑ13ˑ13ˑ22213=22㊂设平面A 1C 1B 的一个法向量为n =(x ,y ,z ),则n ㊃C 1A 1ң=0,n ㊃C 1B ң=0,即-3x +2z =0,-3x +2y =0㊂令z =3,得x =2,y =3,即n =(2,3,3)㊂所以D 到平面A 1C 1B 的距离d =|n ㊃B D ң||n |=622,故V A 1-B C 1D =13S әA 1C 1B ㊃d =13ˑ22ˑ622=2㊂评注:求锥体或柱体的体积,关键是求底面积和高,对于底面积,如әA B C 的面积可由S =12|A B ң||A C ң|s i n A =12|A B ң||A C ң㊃1-c o s 2A =12(|A B ң||A C ң|)2-(A B ң㊃A C ң)2求解㊂高可以转化为空间两点间距离,又可看作是向量长度,即已知空间两点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2),则d =|P 1P 2ң|=(x 2-x 1)2+(y 2-y 1)2+(z 2-z 1)2,有时要用到|a |=a 2求解㊂高也可以看作是点到平面的距离,其数值等于斜线段对应的向量在平面法向量方向上的投影向量的模㊂如求点A 到平面α的距离,可在α内任取一点B ,则A 到平面α的距离d =||A B ң|c o s α|=|A B ң㊃n ||n |㊂另外,点面距离还可以转化为线面距离㊁两平行平面间的距离等㊂5.求空间角图9例5 如图9,在四棱锥P -A B C D 中,底面A B C D为矩形,P D ʅ底面A BC D ,|A B ||A D |=2,直线P A 与底面A B C D 成60ʎ角,点N 是P B的中点㊂(1)求异面直线D N 与B C 所成角的余弦值;(2)求直线P A 与平面P B C 所成角的正弦值;(3)求二面角P -N C -D 的余弦值㊂图10解析:依题意,以D 为原点,分别以向量D A ң,D C ң,D P ң的方向为x 轴,y轴,z 轴的正方向,建立空间直角坐标系,如图10所示㊂设|A D |=1,则|A B |=2㊂因为P D ʅ底面A B -C D ,所以øP A D 是直线P A 与平面A B C D所成的角,得øP A D =60ʎ,则|P D |=3㊂易得D (0,0,0),A (1,0,0),B (1,2,0),C (0,2,0),P (0,0,3),N 12,1,32㊂(1)易知D N ң=12,1,32,B C ң=(-1,0,0),所以异面直线D N 与B C 所成角θ1的余弦值为c o s θ1=|c o s <D N ң,B C ң>|=|D N ң㊃B C ң||D N ң||B C ң|=24㊂(2)易知P A ң=(1,0,-3),P B ң=(1,2,-3)㊂设平面P B C 的法向量为m =(x 1,y 1,z 1),直线P A 与平面P B C 所成的角为解题篇 经典题突破方法 高二数学 2023年5月θ2,则m ㊃P B ң=x 1+2y 1-3z 1=0,且m ㊃B C ң=-x 1=0㊂令z 1=2,则x 1=0,y 1=3㊂所以m =(0,3,2),则s i n θ2=|c o s <m ,P A ң>|=|m ㊃P A ң||m ||P A ң|=217㊂(3)由(2)知,m =(0,3,2)是平面P B C的一个法向量㊂设平面C D N 的法向量为n=(x 2,y 2,z 2),因为D N ң=12,1,32,D C ң=(0,2,0),所以n ㊃D N ң=12x 2+y 2+32z 2=0,且n ㊃D C ң=2y 2=0㊂令z 2=1,则x 2=-3,y 2=0,n =(-3,0,1)㊂所以c o s <m ,n >=m ㊃n |m ||n |=77㊂在二面角P -N C -D 内部取一点H (0,0,1),则C H ң=(0,-2,1)㊂因为m ㊃C H ң=-23+2<0,n ㊃C H ң=1>0,所以二面角P -N C -D 的大小等于<m ,n >,其余弦值为77㊂评注:解异面直线夹角问题,先求出两条异面直线的方向向量m ,n ,再求出m ,n 的夹角,设两异面直线的夹角θ,利用c o s θ=|c o s <m ,n >|=|m ㊃n ||m ||n |求出异面直线的夹角㊂注意异面直线夹角与向量夹角不完全相同,当两个方向向量的夹角是钝角时,应取其补角作为两异面直线所成的角,两条异面直线夹角θ的取值范围是0,π2㊂解线面角问题,设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为φ,则直线的方向向量a 在平面法向量n 方向上的投影向量的长度|a ㊃n ||n |与直线方向向量a 的模|a |之比|a ㊃n ||a ||n |就是线面角的正弦值,即有s i n θ=|c o s φ|=|a ㊃n ||a ||n |㊂当φ为锐角时,s i n θ=s i n (90ʎ-φ)=c o s φ=a ㊃n|a ||n |;当φ为钝角时,s i n θ=s i n (φ-90ʎ)=-c o s φ=-a ㊃n|a ||n |㊂解二面角问题,是依据二面角两个半平面的法向量夹角与二面角相等或互补来处理㊂大多数情况下是根据图形判断该角是锐角还是钝角,有时也可以根据两个半平面的法向量的指向来判断㊂6.结构不良型问题图11例6 (2022年北京高考卷)如图11,在三棱柱A B C -A 1B 1C 1中,侧面B C C 1B 1为正方形,平面B C C 1B 1ʅ平面A B B 1A 1,|A B |=|B C |=2,M ,N 分别为A 1B 1,A C 的中点㊂(1)求证:MN ʊ平面B C C 1B 1㊂(2)再从条件①㊁条件②中选择一个作为已知条件,求直线A B 与平面B MN 所成角的正弦值㊂条件①:A B ʅMN ;条件②:|B M |=|MN |㊂注:如果选择条件①和条件②分别解答,那么按第一个解答计分㊂解析:(1)因为侧面C B B 1C 1为正方形,所以C B ʅB B 1㊂又平面C B B 1C 1ʅ平面A B B 1A 1,平面C B B 1C 1ɘ平面A B B 1A 1=B B 1,C B ⊂平面C B B 1C 1,所以C B ʅ平面A B B 1A 1㊂因为A B ⊂平面A B B 1A 1,所以B C ʅA B ㊂因为M ,N 分别为A 1B 1,A C 的中点,所以MNң=B N ң-B M ң=12B A ң+12B C ң-B B 1ң-12B 1A 1ң=12B C ң-B B 1ң,故MN ң,B C ң,B B 1ң三向量共面㊂又MN ⊄平面B C C 1B 1,B C ⊂平面B C C 1B 1,B B 1⊂平面B C C 1B 1,所以MN ʊ平面B C C 1B 1㊂(2)若选①,A B ʅMN ,则A B ң㊃MN ң=0㊂由(1)知,MN ң=12B C ң-B B 1ң,所以A B ң㊃MN ң=A B ң㊃12B C ң-B B 1ң=0㊂解题篇 经典题突破方法 高二数学 2023年5月由B C ңʅA B ң,得B C ң㊃A B ң=0,所以A B ң㊃B B 1ң=0,即B A ʅB B 1㊂图12故B C ,B A ,B B 1三条直线两两垂直,以B 为坐标原点,分别以B C ң,B A ң,B B 1ң的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系B -x yz ,如图12所示㊂则由题中数据,得B (0,0,0),A (0,2,0),M (0,1,2),N (1,1,0),故B A ң=(0,2,0),B M ң=(0,1,2),B N ң=(1,1,0)㊂设平面B MN 的一个法向量为n =(x ,y ,z ),则n ʅB N ң,n ʅB M ң, 所以n ㊃B N ң=0,n ㊃B M ң=0,即x +y =0,y +2z =0㊂令z =1,得n =(2,-2,1)㊂因此,直线A B 与平面B MN 所成角θ的正弦值为s i n θ=|c o s <n ,B A ң>|=|n ㊃B A ң||n ||B A ң|=|-2ˑ2|22+(-2)2+12ˑ2=23㊂若选②:|M B |=|MN |,则|B M ң|2=|MN ң|2㊂由(1)知,MN ң=12B C ң-B B 1ң,所以B B 1ң+12BA ң2=12B C ң-B B 1ң2,化为|B B 1ң|2+14|B A ң|2+B B 1ң㊃B A ң=14|B C ң|2+|B B 1ң|2-B C ң㊃B B 1ң,即B B 1ң㊃B A ң+B C ң㊃B B 1ң=0㊂因为B C ʅB B 1,所以B C ң㊃B B 1ң=0,B B 1ң㊃B A ң=0,即B B 1ʅB A ,故BC ,B A ,B B 1三条直线两两垂直㊂以下步骤与选①相同,过程略㊂评注:本题运用空间向量的三角形法则㊁平行四边形法则㊁数量积及模的运算,得到共面和垂直关系,避开了复杂的推理过程,无需添加辅助线,降低了思维难度,让人感到耳目一新㊂对于选择性条件的结构不良试题,应该选择一个易于入手的条件进行求解㊂7.最值问题例7 (2022年全国乙卷理数)如图图1313,在四面体A -B C D 中,A D ʅC D ,|A D |=|C D |,øA D B =øB D C ,E 为A C 的中点㊂(1)证明:平面B E D ʅ平面A C D ;(2)设|A B |=|B D |=2,øA C B =60ʎ,点F 在棱B D 上,当әA F C 的面积最小时,求C F 与平面A B D所成角的正弦值㊂解析:(1)因为|A D |=|C D |,E 为A C 的中点,所以A C ʅD E ㊂又øA D B =øC D B ,|D B |=|D B |,所以әA B D ɸәC B D ,|A B |=|C B |㊂连接B E ,又因为E 为A C 的中点,所以A C ʅB E ㊂因为D E ɘB E =E ,所以A C ʅ平面B E D ㊂因为A C ⊂平面A C D ,所以平面B E D ʅ平面A C D ㊂(2)因为әA B D ɸәC B D ,所以|C B |=|A B |=|B D |=2㊂又因为øA C B =60ʎ,所以әA B C 是等边三角形,|A E |=|E C |=1,|B E |=3㊂因为A D ʅC D ,所以|D E |=12|A C |=1㊂图14在әD E B 中,|D E |2+|B E |2=|B D |2,所以B E ʅD E ㊂以E 为坐标原点建立如图14所示的空间直角坐标系E -x yz ㊂则A (1,0,0),B (0,3,0),C (-1,0,0),D (0,0,1),所以A D ң=(-1,0,1),A B ң=(-1,3,0),D B ң=(0,3,-1)㊂连接E F ,由(1)知,A C ʅ平面B E D ㊂因为E F ⊂平面B E D ,所以AC ʅE F ,S әA F C =12|A C |㊃|E F |㊂因为|A C |=2,所以当|E F |取最小值时,әA F C 的面积最小㊂设此时F (a ,b ,c ),D F ң=λD B ң(0ɤλɤ1),即(a ,b ,c -1)=λ(0,3,-1),得F (0,3λ,1-λ)㊂解题篇 经典题突破方法高二数学 2023年5月则|EF ң|=02+(3λ)2+(1-λ)2=4λ-142+34㊂当λ=14时,|E F |取最小值,此时F 0,34,34,从而C F ң=1,34,34㊂设平面A B D 的一个法向量为n =(x ,y ,z ),则n ㊃A D ң=-x +z =0,n ㊃A B ң=-x +3y =0㊂取y =3,则n =(3,3,3)㊂所以C F 与平面A B D 所成角θ的正弦值为s i n θ=|c o s <n ,C F ң>|=|n ㊃C F ң||n ||C F ң|=621ˑ74=437㊂评注:对于面积㊁点面距离或体积的最值,一般有两个思考方向:一是从图中直接观察,先分清哪些量是定值,哪些量是变量,通过点或线的变化情况寻找最值,如本题中,E 为定点,F 为动点,可以看出当E F ʅB D 时,|E F |取最小值,易得|D F |=12,故D F ң=14D B ң,即可得点F 的坐标,或者由EF ң=(0,3λ,1-λ)与D B ң=(0,3,-1)垂直,得E F ң㊃D B ң=0,进而得λ;二是直接根据目标函数的关系,转化为函数的最值或值域问题来处理,如果是求空间角的三角函数的最值,可直接利用数量积及模的计算公式写出三角函数的表达式,再转化为二次函数来处理㊂8.逆向探索性问题图15例8 已知四边形A B C D 是梯形,S 为A D 的中点,B C ʊA D ,øBCD =90ʎ,|A D |=2|B C |=4㊂现将әA B S 沿B S 向上翻折,使A 到A ',且二面角A '-B S -C 为直二面角,E ,F 分别是A 'S ,A 'B 的中点,如图15所示㊂在线段B C 上是否存在一点M ,使得点D 到平面E F M 的距离为25若存在,求出|B M ||M C |的值;若不存在,请说明理由㊂图16解析:由题意知,四边形B C D S 是边长为2的正方形,B S ʅS D ,B S ʅS A ',S A 'ʅS D ,以S 为坐标原点,分别以向量S D ң,S B ң,S A 'ң的方向为x 轴,y轴,z 轴的正方向,建立空间直角坐标系S -x yz ,如图16所示㊂则点S (0,0,0),A '(0,0,2),C (2,2,0),D (2,0,0),E (0,0,1),F (0,1,1),则E F ң=(0,1,0),D E ң=(-2,0,1)㊂假设在线段B C 上存在一点M (x 0,2,0)满足题意,则E M ң=(x 0,2,-1)㊂设平面E F M 的法向量为n =(x ,y ,z ),则有n ㊃E F ң=0,n ㊃E M ң=0㊂故(x ,y ,z )㊃(0,1,0)=0,(x ,y ,z )㊃(x 0,2,-1)=0,所以y =0,z =x 0x ㊂令x =1,得n =(1,0,x 0)㊂则D E ң在平面E F M 的法向量方向上的投影向量的长为|D E ң㊃n ||n |=25,得|-2+x 0|1+x 20=25,两边同时平方,得21x 20-100x 0+96=0,即(3x 0-4)㊃(7x 0-24)=0㊂因0<x 0<2,解得x 0=43,所以M43,2,0㊂从而M C ң=23,0,0,|M C |=23,|B M |=2-23=43,即在线段B C 上存在一点M 满足题意,且|B M ||M C |=2㊂评注:对于距离㊁体积或空间角的逆向存在性问题,其求解思路是先假设条件存在,把假设当作新的已知条件进行推理,通过构造方程求解㊂若得到合理的数据,则假设成立;若出现矛盾,则假设不成立㊂对于翻折问题,关键是抓住翻折前后几何量的变与不变进行相关计算㊂(责任编辑 徐利杰)解题篇 经典题突破方法 高二数学 2023年5月。
立体几何之空间向量法【知识要点】1. 利用空间向量证明平行问题的方法(1)线线平行:直线与直线平行,只需证明它们的方向向量平行.(2)线面平行:利用线面平行的判定定理,证明直线的方向向量与平面内一条直线的方向向量平行;利用共面向量定理,证明平面外直线的方向向量与平面内两条相交直线的方向向量共面;证明直线的方向向量与平面的法向量垂直.(3)面面平行:平面与平面的平行,除了利用面面平行的判定定理转化为线面平行外,只要证明两个平面的法向量平行即可.下面用符号语言表述为:设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2),平面α,β的法向量分别为u =(a 3,b 3,c 3),v =(a 4,b 4,c 4).(1)线线平行:l ∥m ⇔a ∥b ⇔a =k b ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2.(2)线面平行:l ∥α⇔a ⊥u ⇔a ·u =0⇔a 1a 3+b 1b 3+c 1c 3=0.(3)面面平行:α∥β⇔u ∥v ⇔u =k v ⇔a 3=ka 4,b 3=kb 4,c 3=kc 4.2. 利用空间向量证明垂直问题的方法(1)线线垂直:直线与直线的垂直,只要证明两条直线的方向向量垂直.(2)线面垂直:利用线面垂直的定义,证明直线的方向向量与平面内的任意一条直线的方向向量垂直;利用线面垂直的判定定理,证明直线的方向向量与平面内的两条相交直线的方向向量垂直;证明直线的方向向量与平面的法向量平行.(3)面面垂直:平面与平面的垂直,除了用面面垂直的判定定理转化为线面垂直外,只要证明两个平面的法向量垂直即可.下面用符号语言表述为:设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).平面α,β的法向量分别为u =(a 3,b 3,c 3),v =(a 4,b 4,c 4).(1)线线垂直:l ⊥m ⇔a ⊥b ⇔a ·b =0⇔a 1a 2+b 1b 2+c 1c 2=0.(2)线面垂直:l ⊥α⇔a ∥u ⇔a =k u ⇔a 1=ka 3,b 1=kb 3,c 1=kc 3.(3)面面垂直:α⊥β⇔u ⊥v ⇔u ·v =0⇔a 3a 4+b 3b 4+c 3c 4=0.3. (1)夹角计算公式①两条异面直线的夹角若两条异面直线a 和b 的方向向量分别为n 1,n 2,两条异面直线a 和b 所成的角为θ,则cos θ=|cos 〈n 1,n 2〉|=⎪⎪⎪⎪n 1·n 2|n 1||n 2|.②直线与平面所成的角若直线a 的方向向量为a ,平面α的法向量为n ,直线a 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=⎪⎪⎪⎪a ·n |a ||n |.③二面角设n 1,n 2分别为二面角的两个半平面的法向量,其二面角为θ,则θ=〈n 1,n 2〉或θ=π-〈n 1,n 2〉,其中cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|. (2)距离公式①点点距离:点与点的距离,是以这两点为起点和终点的向量的模;②点线距离:点M 到直线a 的距离,设直线的方向向量为a ,直线上任一点为N ,则点M到直线a 的距离d =|MN |sin 〈MN ,a 〉; ③线线距离:两条平行线间的距离,转化为点线距离;两条异面直线间的距离,转化为点面距离或者直接求公垂线段的长度;④点面距离:点M 到平面α的距离,如平面α的法向量为n ,平面α内任一点为N ,则点M 到平面α的距离d =|MN ||cos 〈MN ,n 〉|=||||MN n n ; ⑤线面距离:直线和与它平行的平面间的距离,转化为点面距离;⑥面面距离:两平行平面间的距离,转化为点面距离.4. (1)用空间向量解决立体几何问题的步骤及注意事项①建立空间直角坐标系,要写理由,坐标轴两两垂直要证明;②准确求出相关点的坐标(特别是底面各点的坐标,若底面不够规则,则应将底面单独抽出来分析),坐标求错将前功尽弃;③求平面法向量或直线的方向向量;④根据向量运算法则,求出问题的结果.(2)利用空间向量巧解探索性问题空间向量最适合于解决这类立体几何中的探索性问题,它无需进行繁杂的作图、论证、推理,只需通过坐标运算进行判断.在解题过程中,往往把“是否存在”问题,转化为“点的坐标是否有解,是否有规定范围的解”等,所以使问题的解决更简单、有效,应善于运用这一方法解题.一、真题试做1.如图,在空间直角坐标系中有直三棱柱ABCA 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( ).A .55B .53C .255D .352.如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱CD ,CC 1的中点,则异面直线A 1M 与DN 所成的角的大小是__________.3.在如图所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB =60°,FC ⊥平面ABCD ,AE ⊥BD ,CB =CD =CF .(1)求证:BD ⊥平面AED ;(2)求二面角F -BD -C 的余弦值.4.如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由;(3)若二面角A-B1E-A1的大小为30°,求AB的长.5.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.(1)证明PC⊥AD;(2)求二面角A-PC-D的正弦值;(3)设E为棱P A上的点,满足异面直线BE与CD所成的角为30°,求AE的长.二、热点例析热点一利用空间向量证明平行问题【例1】如图所示,在平行六面体ABCD-A1B1C1D1中,O是B1D1的中点.求证:B1C∥平面ODC1.变式训练1如图,已知直三棱柱ABC-A1B1C1中,△ABC为等腰直角三角形,∠BAC ,D,E,F分别为B1A,C1C,BC的中点.求证:=90°,且AB=AA(1)DE∥平面ABC;(2)B1F⊥平面AEF.热点二利用空间向量证明垂直问题【例2】如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F,求证:(1)PA∥平面EDB;(2)PB⊥平面EFD.变式训练2如图,在四棱锥P-ABCD中,P A⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(1)求证:BD⊥平面PAC;(2)若P A=AB,求PB与AC所成角的余弦值;(3)当平面PBC与平面PDC垂直时,求P A的长.热点三利用空间向量求角和距离【例3】如图所示,在三棱柱ABC-A1B1C1中,H是正方形AA1B1B的中心,AA1=22,C1H⊥平面AA1B1B,且C1H= 5.B1所成角的余弦值;(1)求异面直线AC与A(2)求二面角A-A1C1-B1的正弦值;(3)设N为棱B1C1的中点,点M在平面AA1B1B内,且MN⊥平面A1B1C1,求线段BM的长.变式训练3 已知ABCD -A 1B 1C 1D 1是底面边长为1的正四棱柱,O 1为A 1C 1与B 1D 1的交点.(1)设AB 1与底面A 1B 1C 1D 1所成角的大小为α,二面角A -B 1D 1-A 1的大小为β.求证:tan β=2tan α;(2)若点C 到平面AB 1D 1的距离为43,求正四棱柱ABCD -A 1B 1C 1D 1的 高.热点四 用向量法解决探索性问题【例4】如图,四棱锥S -ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,求二面角P -AC -D 的大小;(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面PAC ?若存在,求SE ∶EC 的值;若不存在,请说明理由.变式训练4 如图,平面PAD ⊥平面ABCD ,ABCD 为正方形,∠PAD =90°,且PA =AD=2;E ,F ,G 分别是线段PA ,PD ,CD 的中点.(1)求证:PB ∥平面EFG ;(2)求异面直线EG 与BD 所成的角的余弦值; (3)在线段CD 上是否存在一点Q ,使得A 到平面EFQ 的距离为45若存在,求出CQ 的值;若不存在,请说明理由.三、思想渗透转化与化归思想——利用向量解决空间位置关系及求角问题主要问题类型:(1)空间线面关系的证明;(2)空间角的求法;(3)存在性问题的处理方法.求解时应注意的问题:(1)利用空间向量求异面直线所成的角时,应注意角的取值范围;(2)利用空间向量求二面角的平面角时,应注意观察二面角是钝角还是锐角.【典型例题】如图1,在Rt △ABC 中,∠C =90°,BC =3,AC =6.D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图2.图1 图2(1)求证:A 1C ⊥平面BCDE ;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由.四、练习巩固 1.已知AB =(1,5,-2),BC =(3,1,z ),若,AB BC BP =(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 的值分别为( ).A .337,-157,4B .407,-157,4C .4072,4D .4,407,-15 2.已知平面α内有一个点M (1,-1,2),平面α的一个法向量是n =(6,-3,6),则下列点P 在平面α内的是( ).A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.已知E ,F 分别是正方体ABCD -A 1B 1C 1D 1棱BB 1,AD 的中点,则直线EF 和平面BDD 1B 1所成的角的正弦值是( ).A .26B .36C .13D .664.在四面体PABC 中,P A ,PB ,PC 两两垂直,设P A =PB =PC =a ,则点P 到平面ABC 的距离为__________.5.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AA 1=2,AC =BC =1,则异面直线A 1B 与AC 所成角的余弦值是__________.7.在正方体ABCD -A 1B 1C 1D 1中,O 是AC 的中点,E 是线段D 1O 上一点,且D 1E =λEO .(1)若λ=1,求异面直线DE 与CD 1所成角的余弦值;(2)若平面CDE ⊥平面CD 1O ,求λ的值.。
立体几何中的向量方法(一)——证明平行与垂直1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2.3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)直线的方向向量是唯一确定的.( )(2)平面的单位法向量是唯一确定的.( )(3)若两平面的法向量平行,则两平面平行.( )(4)若两直线的方向向量不平行,则两直线不平行.( )(5)若a ∥b ,则a 所在直线与b 所在直线平行.( )(6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( )1.下列各组向量中不平行的是( )A .a =(1,2,-2),b =(-2,-4,4)B .c =(1,0,0),d =(-3,0,0)C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,24,40)2.已知平面α有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α的是( )A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为______________.4.若A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α的三点,设平面α的法向量n =(x ,y ,z ),则x ∶y ∶z =________.题型一 证明平行问题例1 (2013·改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2).(1)当λ=1时,证明:直线BC1∥平面EFPQ;(2)是否存在λ,使平面EFPQ与平面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.题型二证明垂直问题例2如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC—A1B1C1的所有棱长都为2,D为CC1的中点.求证:AB1⊥平面A1BD.如图所示,在四棱锥P-ABCD中,PC⊥平面ABCD,PC =2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°角.(1)求证:CM∥平面PAD;(2)求证:平面PAB⊥平面PAD.题型三解决探索性问题例3 如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)求二面角D-A1A-C的余弦值;(3)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置,若不存在,请说明理由.如图所示,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)若SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,试说明理由.利用向量法解决立体几何问题典例:如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.A 组 专项基础训练1.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( )A .l ∥αB .l ⊥αC .l ⊂αD .l 与α相交2.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( )A .相交B .平行C .在平面D .平行或在平面3.已知A (4,1,3),B (2,-5,1),C (3,7,-5),则平行四边形ABCD 的顶点D 的坐标是( )A .(2,4,-1)B .(2,3,1)C .(-3,1,5)D .(5,13,-3)4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( )A.627B.637C.607D.6575.如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 所成的角为( )A .60°B .45°C .90°D .以上都不正确6.已知平面α的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.7.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________.8.如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是________. 9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .10.如图,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面PAD ⊥平面PDC .B 组 专项能力提升11.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为( )A .(1,1,1)B .(23,23,1)C .(22,22,1) D .(24,24,1) 12.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量,若α⊥β,则t 等于( )A .3B .4C .5D .613.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN →的实数λ有________个.14.如图所示,已知直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .15.在四棱锥P—ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点.(1)求证:EF⊥CD;(2)在平面PAD求一点G,使GF⊥平面PCB,并证明你的结论.。
3.2.2 利用向量解决平行、垂直问题1.用向量方法证明空间中的平行关系(1)证明线线平行设直线l,m的方向向量分别是a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔□01a∥b⇔□02 a=λb⇔□03a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)证明线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔□04a⊥u⇔□05a·u=0⇔□06a1a2+b1b2+c1c2=0.(3)证明面面平行①设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔□07u∥v⇔u=λv⇔□08a1=λa2,b1=λb2,c1=λc2(λ∈R).②由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可.2.用向量方法证明空间中的垂直关系(1)证明线线垂直设直线l1的方向向量u1=(a1,b1,c1),直线l2的方向向量u2=(a2,b2,c2),则l1⊥l2⇔□09u1⊥u2⇔□10u1·u2=0⇔□11a1a2+b1b2+c1c2=0.(2)证明线面垂直设直线l的方向向量是u=(a1,b1,c1),平面α的法向量v=(a2,b2,c2),则l⊥α⇔□12 u∥v⇔□13u=λv(λ∈R)⇔□14a1=λa2,b1=λb2,c1=λc2(λ∈R).(3)证明面面垂直若平面α的法向量u=(a1,b1,c1),平面β的法向量v=(a2,b2,c2),则α⊥β⇔□15u ⊥v⇔□16u·v=0⇔□17a1a2+b1b2+c1c2=0.1.判一判(正确的打“√”,错误的打“×”)(1)若两直线方向向量的数量积为0,则这两条直线一定垂直相交.( )(2)若一直线与平面垂直,则该直线的方向向量与平面内的所有直线的方向向量的数量积为0.( )(3)两个平面垂直,则其中一平面内的直线的方向向量与另一平面内的直线的方向向量垂直.( )答案 (1)× (2)√ (3)×2.做一做(请把正确的答案写在横线上)(1)若直线l 1的方向向量为u 1=(1,3,2),直线l 2上有两点A (1,0,1),B (2,-1,2),则两直线的位置关系是________.(2)若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则直线l 与平面α的位置关系为________.(3)已知两平面α,β的法向量分别为u 1=(1,0,1),u 2=(0,2,0),则平面α,β的位置关系为________.(4)若平面α,β的法向量分别为(-1,2,4),(x ,-1,-2),并且α⊥β,则x 的值为________.答案 (1)垂直 (2)垂直 (3)垂直 (4)-10探究1 利用空间向量解决平行问题例1 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .[证明] (1)如图所示,建立空间直角坐标系Dxyz ,则有D (0,0,0),A (2,0,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2), 所以FC 1→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则n 1⊥DA →,n 1⊥AE →, 即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1,所以n 1=(0,-1,2). 因为FC 1→·n 1=-2+2=0,所以FC 1→⊥n 1.又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE . (2)因为C 1B 1→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥FC 1→,n 2⊥C 1B 1→,得 ⎩⎪⎨⎪⎧n 2·FC 1→=2y 2+z 2=0,n 2·C 1B 1→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2), 因为n 1=n 2,所以平面ADE ∥平面B 1C 1F . 拓展提升利用向量法证明平行问题的两种途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的共线关系; (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行平行关系的证明.【跟踪训练1】 在长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =3,AA 1=2,P ,Q ,R ,S 分别是AA 1,D 1C 1,AB ,CC 1的中点.求证:PQ ∥RS .证明 证法一:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Dxyz .则P (3,0,1),Q (0,2,2),R (3,2,0),S (0,4,1), PQ →=(-3,2,1),RS →=(-3,2,1),∴PQ →=RS →,∴PQ →∥RS →,即PQ ∥RS . 证法二:RS →=RC →+CS →=12DC →-DA →+12DD 1→,PQ →=PA 1→+A 1Q →=12DD 1→+12DC →-DA →,∴RS →=PQ →,∴RS →∥PQ →,即RS ∥PQ . 探究2 利用空间向量解决垂直问题例2 如图,在四棱锥E -ABCD 中,AB ⊥平面BCE ,CD ⊥平面BCE ,AB =BC =CE =2CD =2,∠BCE =120°.求证:平面ADE ⊥平面ABE .[证明] 取BE 的中点O ,连接OC ,则OC ⊥EB , 又AB ⊥平面BCE .∴以O 为原点建立空间直角坐标系Oxyz .如图所示.则由已知条件有C (1,0,0),B (0,3,0),E (0,-3,0),D (1,0,1),A (0,3,2). 设平面ADE 的法向量为n =(a ,b ,c ),则n ·EA →=(a ,b ,c )·(0,23,2)=23b +2c =0,n ·DA →=(a ,b ,c )·(-1,3,1)=-a +3b +c =0.令b =1,则a =0,c =-3, ∴n =(0,1,-3).∵AB ⊥平面BCE ,∴AB ⊥OC ,又OC ⊥EB ,且EB ∩AB =B ,∴OC ⊥平面ABE , ∴平面ABE 的法向量可取为m =(1,0,0). ∵n ·m =(0,1,-3)·(1,0,0)=0, ∴n ⊥m ,∴平面ADE ⊥平面ABE . 拓展提升利用向量法证明几何中的垂直问题的两条途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的垂直关系. (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行证明.证明线面垂直时,只需直线的方向向量与平面的法向量平行或直线的方向向量与平面内两相交的直线的方向向量垂直.在判定两个平面垂直时,只需求出这两个平面的法向量,再看它们的数量积是否为0.【跟踪训练2】 如右图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,D 1B 1的中点.求证:EF ⊥平面B 1AC .证明 证法一:设AB →=a ,AD →=c ,AA 1→=b ,则EF →=EB 1→+B 1F →=12(BB 1→+B 1D 1→)=12(AA 1→+BD →)=12(AA 1→+AD →-AB →)=12(-a +b +c ),∵AB 1→=AB →+AA 1→=a +b .∴EF →·AB 1→=12(-a +b +c )·(a +b )=12(b 2-a 2+c ·a +c ·b ) =12(|b |2-|a |2+0+0)=0. ∴EF →⊥AB 1→,即EF ⊥AB 1,同理,EF ⊥B 1C . 又AB 1∩B 1C =B 1, ∴EF ⊥平面B 1AC .证法二:设正方体的棱长为2,以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的直角坐标系,则A (2,0,0),C (0,2,0),B 1(2,2,2),E (2,2,1),F (1,1,2).∴EF →=(1,1,2)-(2,2,1) =(-1,-1,1).AB 1→=(2,2,2)-(2,0,0)=(0,2,2),AC →=(0,2,0)-(2,0,0)=(-2,2,0),∴EF →·AB 1→=(-1,-1,1)·(0,2,2)=(-1)×0+(-1)×2+1×2=0.EF →·AC →=(-1,-1,1)·(-2,2,0)=2-2+0=0, ∴EF →⊥AB 1→,EF →⊥AC →, ∴EF ⊥AB 1,EF ⊥AC . 又AB 1∩AC =A , ∴EF ⊥平面B 1AC .证法三:同法二得AB 1→=(0,2,2),AC →=(-2,2,0), EF →=(-1,-1,1).设面B 1AC 的法向量n =(x ,y ,z ), 则AB →1·n =0,AC →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,-2x +2y =0,取x =1,则y =1,z =-1,∴n =(1,1,-1),∴EF →=-n ,∴EF →∥n ,∴EF ⊥平面B 1AC . 探究3 与平行、垂直有关的探索性问题例3 如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得平面AMC ⊥平面BMC ?若存在,求出AM 的长;若不存在,请说明理由.[解] (1)证明:如图,以O 为原点,以射线OD 为y 轴的正半轴,射线OP 为z 轴的正半轴,建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4), AP →=(0,3,4),BC →=(-8,0,0),由此可得AP →·BC →=0,所以AP →⊥BC →,即AP ⊥BC .(2)假设存在满足题意的M ,设PM →=λPA →,λ≠1,则PM →=λ(0,-3,-4).BM →=BP →+PM →=BP →+λPA →=(-4,-2,4)+λ(0,-3,-4)=(-4,-2-3λ,4-4λ),AC →=(-4,5,0).设平面BMC 的法向量n 1=(x 1,y 1,z 1), 平面APC 的法向量n 2=(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧BM →·n 1=0,BC →·n 1=0,得⎩⎪⎨⎪⎧-4x 1-(2+3λ)y 1+(4-4λ)z 1=0,-8x 1=0,即⎩⎪⎨⎪⎧x 1=0,z 1=2+3λ4-4λy 1,可取n 1=⎝ ⎛⎭⎪⎫0,1,2+3λ4-4λ.由⎩⎪⎨⎪⎧AP →·n 2=0,AC →·n 2=0,即⎩⎪⎨⎪⎧3y 2+4z 2=0,-4x 2+5y 2=0,得⎩⎪⎨⎪⎧x 2=54y 2,z 2=-34y 2,可取n 2=(5,4,-3),由n 1·n 2=0,得4-3×2+3λ4-4λ=0,解得λ=25,故PM →=⎝ ⎛⎭⎪⎫0,-65,-85,AM →=AP →+PM →=⎝ ⎛⎭⎪⎫0,95,125,所以AM =3.综上所述,存在点M 符合题意,AM =3. 拓展提升利用向量解决探索性问题的方法对于探索性问题,一般先假设存在,利用空间坐标系,结合已知条件,转化为代数方程是否有解的问题,若有解满足题意则存在,若没有满足题意的解则不存在.【跟踪训练3】 如图,直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4.(1)求证:BC 1⊥平面AB 1C ;(2)在AB 上是否存在点D ,使得AC 1∥平面CDB 1.解 (1)证明:由已知AC =3,BC =4,AB =5,因而△ABC 是∠ACB 为直角的直角三角形,由三棱柱是直三棱柱,则CC 1⊥平面ABC ,以CA ,CB ,CC 1分别为x ,y ,z 轴建立空间直角坐标系,从而CA →=(3,0,0),BC 1→=(0,-4,4),则BC 1→·CA →=(0,-4,4)·(3,0,0)=0,则BC 1→⊥AC →,所以BC 1⊥AC .又四边形BCC 1B 1为正方形,因而BC 1⊥B 1C .又∵B 1C ∩AC =C ,∴BC 1⊥平面AB 1C .(2)假设存在点D (x ,y,0),使得AC 1∥平面CDB 1,CD →=(x ,y,0),CB 1→=(0,4,4), 设平面CDB 1的法向量m =(a ,b ,c ),则⎩⎪⎨⎪⎧m ·CD →=0,m ·CB 1→=0,即⎩⎪⎨⎪⎧xa +yb =0,4b +4c =0.令b =-x ,则c =x ,a =y ,所以m =(y ,-x ,x ),而AC 1→=(-3,0,4),则AC 1→·m =0,得-3y +4x =0.① 由D 在AB 上,A (3,0,0),B (0,4,0)得x -3-3=y4,即得4x +3y =12,② 联立①②可得x =32,y =2,∴D ⎝ ⎛⎭⎪⎫32,2,0,即D 为AB 的中点. 综上,在AB 上存在点D ,使得AC 1∥平面CDB 1,点D 为AB 的中点.1.利用向量证明线线平行的两种思路一是建立空间直角坐标系,通过坐标运算,利用向量平行的坐标表示证明;二是用基底思路,通过向量的线性运算,利用共线向量定理证明.2.向量法证明线线垂直的方法用向量法证明空间中两条直线相互垂直,其主要思路是证明两条直线的方向向量相互垂直.具体方法为:(1)坐标法:根据图形的特征,建立适当的空间直角坐标系,准确地写出相关点的坐标,表示出两条直线的方向向量,证明其数量积为0.(2)基向量法:利用向量的加减运算,结合图形,将要证明的两条直线的方向向量用基向量表示出来.利用数量积运算说明两向量的数量积为0.3.向量法证明线面垂直的方法(1)向量基底法,具体步骤如下:①设出基向量,用基向量表示直线的方向向量;②找出平面内两条相交直线的方向向量并分别用基向量表示;③分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.(2)坐标法,具体方法如下:方法一:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③将平面内任意两条相交直线的方向向量用坐标表示;④分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.方法二:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③求平面的法向量;④说明平面的法向量与直线的方向向量平行.4.证明面面垂直的两种思路一是证明其中一个平面过另一个平面的垂线,即转化为线面垂直;二是证明两平面的法向量垂直.1.已知线段AB的两端点坐标为A(9,-3,4),B(9,2,1),则线段AB与坐标平面( ) A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案 C解析 因为AB →=(9,2,1)-(9,-3,4)=(0,5,-3),所以AB ∥平面yOz .2.若两个不同平面α,β的法向量分别为u =(1,2,-1),v =(-3,-6,3),则( ) A .α∥β B .α⊥βC .α,β相交但不垂直D .以上均不正确 答案 A解析 ∵v =-3u ,∴α∥β.3.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z 等于( )A .3B .6C .-9D .9 答案 C解析 ∵l ⊥α,v 与平面α平行,∴u ⊥v ,即u ·v =0,∴1×3+3×2+z ×1=0,∴z =-9.4.在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,在如图所示的空间直角坐标系中,下列向量中是平面PAB 的法向量的是( )A.⎝⎛⎭⎪⎫1,1,12 B .(1,2,1) C .(1,1,1) D .(2,-2,1) 答案 A解析 PA →=(1,0,-2),AB →=(-1,1,0),设平面PAB 的一个法向量为n =(x ,y,1),则x -2=0,即x =2;-x +y =0,即y =x =2.所以n =(2,2,1).因为⎝⎛⎭⎪⎫1,1,12=12n ,所以A正确.5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为棱BB 1的中点,在棱DD 1上是否存在点P ,使MD ⊥平面PAC?解 如图,建立空间直角坐标系,则A (1,0,0),C (0,1,0),D (0,0,0),M ⎝⎛⎭⎪⎫1,1,12.假设存在P (0,0,x )满足条件,则PA →=(1,0,-x ),AC →=(-1,1,0).设平面PAC 的法向量为n =(x 1,y 1,z 1),则由⎩⎪⎨⎪⎧ PA →·n =0,AC →·n =0,得⎩⎪⎨⎪⎧ x 1-xz 1=0,-x 1+y 1=0.令x 1=1得y 1=1,z 1=1x ,即n =⎝ ⎛⎭⎪⎫1,1,1x , 由题意MD →∥n ,由MD →=⎝⎛⎭⎪⎫-1,-1,-12,得x =2, ∵正方体棱长为1,且2>1,∴棱DD 1上不存在点P ,使MD ⊥平面PAC .。
立体几何中的向量方法(一)——证明平行与垂直1.直线的方向向量与平面的法向量确实定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数*,y ,使v =*v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2.3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.【思考辨析】判断下面结论是否正确(请在括号中打"√〞或"×〞)(1)直线的方向向量是唯一确定的.()(2)平面的单位法向量是唯一确定的.()(3)假设两平面的法向量平行,则两平面平行.()(4)假设两直线的方向向量不平行,则两直线不平行.()(5)假设a ∥b ,则a 所在直线与b 所在直线平行.()(6)假设空间向量a 平行于平面α,则a 所在直线与平面α平行.()1.以下各组向量中不平行的是()A .a =(1,2,-2),b =(-2,-4,4)B .c =(1,0,0),d =(-3,0,0)C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,24,40)2.平面α有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则以下点P 中,在平面α的是()A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.AB →=(1,5,-2),BC →=(3,1,z ),假设AB →⊥BC →,BP →=(*-1,y ,-3),且BP ⊥平面ABC ,则实数*,y ,z 分别为______________.4.假设A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α的三点,设平面α的法向量n =(*,y ,z ),则*∶y ∶z =________.题型一 证明平行问题例1(2013·改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角?假设存在,求出λ的值;假设不存在,说明理由.题型二 证明垂直问题例2 如下图,正三棱柱(底面为正三角形的直三棱柱)ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .如下图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角.(1)求证:CM ∥平面PAD ;(2)求证:平面PAB ⊥平面PAD .题型三 解决探索性问题例3 如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)求二面角D-A1A-C的余弦值;(3)在直线CC1上是否存在点P,使BP∥平面DA1C1,假设存在,求出点P的位置,假设不存在,请说明理由.如下图,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)假设SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.假设存在,求SE∶EC的值;假设不存在,试说明理由.利用向量法解决立体几何问题典例:如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.A组专项根底训练1.假设直线l的方向向量为a=(1,0,2),平面α的法向量为n=(-2,0,-4),则()A.l∥αB.l⊥αC.l⊂αD.l与α相交2.假设AB→=λCD→+μCE→,则直线AB与平面CDE的位置关系是()A.相交B.平行C.在平面D.平行或在平面3.A(4,1,3),B(2,-5,1),C(3,7,-5),则平行四边形ABCD的顶点D的坐标是() A.(2,4,-1) B.(2,3,1)C.(-3,1,5) D.(5,13,-3)4.a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),假设a,b,c三向量共面,则实数λ等于()A.627B.637C.607D.6575.如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 所成的角为()A .60°B .45°C .90°D .以上都不正确6.平面α的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.7.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________.8.如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是________. 9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB=12PD .证明:平面PQC ⊥平面DCQ . 10.如图,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面PAD ⊥平面PDC .B 组 专项能力提升11.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为()A .(1,1,1)B .(23,23,1) C .(22,22,1) D .(24,24,1)12.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量,假设α⊥β,则t 等于()A .3B .4C .5D .613.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN→的实数λ有________个.14.如下图,直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .15.在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB 、PB 的中点.(1)求证:EF ⊥CD ;(2)在平面PAD 求一点G ,使GF ⊥平面PCB ,并证明你的结论.。