扩频通信技术特点及应用
- 格式:docx
- 大小:46.45 KB
- 文档页数:10
扩频通信技术在实际中的应用摘要:通过介绍扩频通信技术的概念及原理来研究它是如何在实际中应用的。
关键词: 扩频分类应用正文:一、扩频技术是近年发展非常迅速的一种技术,它不仅在军事通信中发挥出了不可取代的优势,而且广泛地渗透到了通信的各个方面,如卫星通信、移动通信、微波通信、无线定位系统、无线局域网、全球个人通信等。
扩展频谱通信(Spread Spectrum Communication)川简称“扩频通信”。
是将发送的信息展宽到一个很宽的频带上,这一频带比要发送的信息带宽宽的多,在接收端通过相关接收,从而将信号恢复到信息带宽。
扩频通信按其工作方式的不同,可分为直接序列扩频(DS),跳频(FH),跳时(TH),以及它们的组合方式,如:FH/DS,TH/DS,FH/TH等。
不同的扩频技术,其抗干扰机理和对不同扰的抵抗能力是不同的。
直接序列扩频技术通过相关处理,降低进入解调器的信号功率来达到抗干扰目的;跳频系统依靠载频的随机跳变,以躲避方式对抗通信中的干扰。
直接序列扩频技术是目前应用较为广泛。
三、低轨卫星通信信道模型低轨口星通信信道是一种无线衰落时变信道。
其中,径衰落、阴影衰落及多普勒频移是影响低轨卫星信道的主要因素。
将低轨卫星通信的传播环境分为城市环境、开阔地带环境、农村及郊区环境三种,分别用瑞利信道、莱斯信道和C.I舶信道模璎来近似n-lo]。
2.1城市环境在此情况下,视线分冒可以认为是完全被建筑物阻挡吸收,直射分量:(f)为零,接收的信号为各条路径的散射分量之和,此时只存在多径衰落。
各途径传播的散射信号相互独立,而且散射信号的振幅之和是恒定的,合成信号的包络服从瑞利(Rayleigh)分布,其概率密度函数为,式中,r为接收信号的包络,,为平均多径功率,合成信号的相位服从[0,27r)的均匀分布,此时的信道属于瑞利信道。
当采用SystemVue软件建立其仿真模型时,可由JK信道子系统构成,设其多径数目为5,最大多普勒频移为20kHz。
扩频技术原理扩频技术是一种在无线通信中广泛应用的调制技术,其原理是利用扩频序列将信号进行扩展,从而提高系统的抗干扰能力和安全性。
本文将从扩频技术的基本原理、应用领域和优势等方面进行阐述。
一、基本原理扩频技术的基本原理是利用宽带扩频信号来传输窄带信息信号。
在传输过程中,通过将窄带信号与扩频序列进行数学运算,使得信号的频谱得到扩展。
这样,原本窄带的信号就变得宽带化,从而提高了信号的抗干扰能力和安全性。
扩频序列是扩频技术的核心之一,它是一种特殊的数字序列,可以看作是一串由0和1组成的比特流。
扩频序列与原始信号进行逐比特运算,将原始信号扩展到更宽的频带上。
常见的扩频序列有伪随机码(PN码)和正交码等。
二、应用领域扩频技术广泛应用于无线通信领域,包括无线局域网(WLAN)、蓝牙、卫星通信、移动通信等。
在这些应用中,扩频技术能够有效提高通信系统的抗干扰能力,提高通信质量和可靠性。
在无线局域网中,扩频技术可以增加多用户同时接入网络的能力,提高网络的吞吐量和稳定性。
蓝牙技术中的扩频技术能够减小信号的功率,降低通信设备的功耗,延长电池寿命。
在卫星通信中,扩频技术可以提高信号的传输距离,扩大通信覆盖范围。
三、优势扩频技术相比于传统的窄带通信技术具有以下优势:1. 抗干扰能力强:扩频技术通过将信号扩展到更宽的频带上,使得信号在传输过程中更加稳定,能够有效抵抗多径干扰、频率选择性衰落等干扰现象。
2. 安全性高:扩频技术利用特殊的扩频序列对信号进行加密,使得信号在传输过程中难以被窃听和破解,提高了通信的安全性。
3. 多用户接入能力强:扩频技术能够在相同的频谱资源下支持多用户接入,提高了系统的容量和资源利用率。
4. 抗多径效应好:扩频技术通过信号的频带扩展,使得信号在多径传播环境中更加稳定,减小了多径效应对信号的影响。
四、发展趋势随着无线通信技术的不断发展,扩频技术也在不断演进和创新。
目前,扩频技术已经被广泛应用于5G通信、物联网、车联网等领域。
扩频的基本原理及应用1. 扩频技术概述•扩频技术是一种利用较宽带传送较窄带信号的技术。
•扩频技术在通信领域有广泛的应用,包括无线局域网、蓝牙、GPS等。
•扩频技术能够提高通信系统的抗干扰性能和安全性。
2. 扩频的基本原理•扩频技术通过在传输过程中对原始数据进行一系列处理,使数据覆盖更宽的频带。
•扩频的基本原理包括扩频码序列的生成和信号的调制解调过程。
•扩频码是一种特殊的序列,通过将原始数据与扩频码进行异或运算,实现信号的扩频。
3. 扩频码序列的生成•扩频码序列是扩频技术的核心部分,用于将原始信号进行扩频。
•常见的扩频码序列有伪随机码、高斯码、码片序列等。
•扩频码序列的生成方法包括线性反馈移位寄存器、迭代求解法等。
4. 扩频信号的调制解调过程•扩频信号的调制过程将原始信号与扩频码进行乘积运算,实现信号的扩频。
•扩频信号的解调过程通过将接收到的信号与扩频码进行相关运算,恢复原始信号。
•扩频信号的调制解调过程中需要注意信号与噪声的抵消和相位同步等问题。
5. 扩频技术的应用•扩频技术在无线局域网中可以提高网络的传输速率和安全性。
•扩频技术在蓝牙通信中有广泛的应用,可以实现低功耗、短距离的无线通信。
•扩频技术在GPS定位系统中可以提高定位的准确性和抗干扰能力。
6. 扩频技术的优缺点•扩频技术的优点包括抗干扰能力强、安全性高、带宽利用率高等。
•扩频技术的缺点包括对系统要求高、复杂度较高、功耗较大等。
7. 扩频技术的发展趋势•随着无线通信技术的发展,扩频技术将进一步应用于更多的领域。
•扩频技术在物联网、5G等领域具有广阔的应用前景。
•扩频技术的发展将推动通信系统的进一步发展和创新。
以上是对扩频的基本原理及应用的介绍,扩频技术作为一种重要的通信技术,在现代通信系统中发挥着重要的作用。
希望通过本文的介绍,读者能够更好地了解扩频技术的基本原理和应用场景。
第1篇一、实验目的1. 理解移动通信扩频技术的原理和基本概念。
2. 掌握扩频通信系统的组成和信号处理过程。
3. 通过实验验证扩频通信的抗干扰性能和频谱利用率。
4. 分析扩频通信在移动通信中的应用优势。
二、实验原理扩频通信是一种通过将信号扩展到较宽的频带上的通信技术,其基本原理是将信息数据通过一个与数据无关的扩频码进行调制,使得原始信号在频谱上扩展,从而提高信号的隐蔽性和抗干扰能力。
扩频通信的主要特点如下:1. 扩频:通过扩频码将信号扩展到较宽的频带上,提高信号的隐蔽性。
2. 抗干扰:由于信号频谱较宽,抗干扰能力强,可抵抗多径干扰、噪声等影响。
3. 频谱利用率:扩频通信采用码分复用(CDMA)技术,可充分利用频谱资源。
4. 分集:通过扩频码的不同,可实现信号的分集接收,提高通信质量。
三、实验设备1. 移动通信实验平台2. 信号发生器3. 信号分析仪4. 通信控制器5. 通信终端四、实验内容1. 扩频信号的产生(1)设置信号发生器,产生原始信号。
(2)选择合适的扩频码,进行扩频调制。
(3)观察扩频后的信号频谱,验证扩频效果。
2. 扩频信号的接收(1)设置通信控制器,模拟移动通信环境。
(2)将扩频信号发送到接收端。
(3)接收端对接收到的信号进行解扩频,恢复原始信号。
(4)观察解扩频后的信号,验证解扩频效果。
3. 抗干扰性能测试(1)在接收端加入噪声,观察信号变化。
(2)调整噪声强度,测试扩频信号的抗干扰性能。
4. 频谱利用率测试(1)设置多个扩频信号,进行码分复用。
(2)观察频谱,验证频谱利用率。
五、实验结果与分析1. 扩频信号的产生实验结果表明,通过扩频码调制,原始信号在频谱上得到了有效扩展,验证了扩频通信的基本原理。
2. 扩频信号的接收实验结果表明,接收端能够成功解扩频,恢复原始信号,验证了扩频通信的解扩频效果。
3. 抗干扰性能测试实验结果表明,扩频信号在加入噪声后,信号质量仍然较好,证明了扩频通信的抗干扰性能。
扩频通讯特色及应用一、扩频通讯的工作原理在发端输人的信息先调制形成数字信号,而后由扩频码发生器产生的扩频码序列去调制数字信号以展宽信号的频谱,展宽后的信号再调制到射频发送出去。
在接收端收到的宽带射频信号,变频至中频,而后由当地产生的与发端同样的扩频码序列去有关解扩,再经信息解调,恢复成原始信息输出。
可见,一般的扩频通讯系统都要进行3次调制和相对应的解调。
一次调制为信息调制,二次调制为扩频调制,三次调制为射频调制,以及相对应的信息解调、解扩和射频解调。
与一般通讯系统比较,多了扩频调制和解扩部分。
扩频通讯应具备以下特色:(1)数字传输方式;传输信号的带宽远大于被传信息带宽;(3)带宽的展宽,是利用与被传信息没关的函数(扩频函数)对被传信息的信元从头进行调制实现的;(4)接收端用同样的扩频函数进行有关解调(解扩),求解出被传信息的数据。
用扩频函数(也称伪随机码)调制和对信号有关办理是扩频通讯有别于其余通讯的两大特色。
二、扩频通讯技术的特色扩频信号是不行展望的、伪随机的宽带信号,其带宽远大于要传输的数据(信息)带宽,同时接收机中一定有与宽带载波同步的副本。
扩频系统拥有以下特色。
.抗扰乱性强扩频信号的不行展望性,使扩频系统拥有很强的抗扰乱能力。
扰乱者很难经过察看进行扰乱,扰乱起不了太大作用。
扩频通讯系统在传输过程中扩展了信号带宽,所以即便信噪比很低,甚至在实用信号功率低于扰乱信号功率的状况下,还能不受扰乱、高质量地进行通讯,扩展的频谱越宽,其抗扰乱性越强。
低截获性扩频信号的功率平均散布在很宽的频带上,传输信号的功率密度很低,侦探接收机很难监测到,所以扩频通讯系统截获概率很低。
抗多路径扰乱性能好多路径扰乱是电波流传过程中因碰到各样非希望反射体(如电离层、高峰、建筑物等)惹起的反射或散射,在接收端的这些反射或散射信号与直抵路径信号相互干预而造成的扰乱。
多路径扰乱会严重影响通讯。
扩频通讯系统中增添了扩频调制和解扩过程,利用扩频码序列间的有关特征,在接收端解扩时,从多径信号中分别出最强的实用信号,或将多径信号中的同样码序列信号叠加,这样便可有效除去无线通讯中因多径扰乱造成的信号衰败现象,使扩频通讯系统拥有优秀的抗多径衰败特征。
扩频通信技术特点及应用摘要扩频通信技术(简称扩频通信)是一种新兴的高科技通信技术,具有大容量、抗干扰、低截获功率等特点以及可实现码分多址(CDMA)等优点,在军事和民用通信系统中都得到了广泛的应用,并成为下一代移动通信的技术基础。
对扩频通信技术的抗干扰性能、抗多径干扰、多址能力等特点作了说明,并对扩频CDMA数字蜂窝系统的关键技术和容量优势做了阐述。
关键词扩频通信,CDMA,多径干扰,多址,容量一、序论人类社会进入到了信息社会,通信现代化是人类社会进入信息时代的重要标志。
怎样在恶劣的环境条件下保证通信有效地、准确地、迅速地进行,是当今通信工作者所面临的一大课题。
扩展频谱通信是现代通信系统中的一种新兴的通信方式,其较强的抗干扰、抗衰落和抗多径性能以及频谱利用率高、多址通信等诸多优点越来越多的为人们所认识,并被广泛的应用于军事通信和民用通信的各个领域,从而推动了通信事业的迅速发展。
扩频通信,即(Spread Spectrum Communication)扩展频谱通信,它与光纤通信、卫星通信,一同被誉为进入信息时代的三大高技术通信传输方式。
扩频通信是将待传送的信息数据被伪随机编码(扩频序列:Spread Sequence)调制,实现频谱扩展后再传输;接收端则采用相同的编码进行解调及相关处理,恢复原始信息数据。
这种通信方式与常规的窄道通信方式是有区别的:首先,信息在频谱扩展后形成宽带传输;其次,相关处理后恢复成窄带信息数据。
在扩展频谱系统中,伪随机序列起着很重要的作用。
在直扩系统中,用伪随机序列将传输信息扩展,在接收时又用它将信号压缩,并使干扰信号功率扩散,提高了系统的抗干扰能力;伪随机序列性能的好坏直接关系到整个系统性能的好坏,是一个至关重要的问题。
扩频信号的接收一般分为两步进行,即解扩与解调,这是关系到系统性能优劣的关键。
解扩是在伪随机码同步的情况下,通过对接收信号的相关处理从而获得处理增益,提高解跳器输入端的信噪比,使系统的误码性能得以改善。
解扩与解调的顺序一般是不能颠倒的,通常是先进行解扩后再进行解调,这是因为在未解扩之前的信噪比是很低的,一般的解调方法很难实现。
正是由于这些技术的应用,使扩频通信有如下的优点:①具有较强的抗干扰能力。
这种能力的大小与处理增益成正比。
②具有很强的隐蔽性和抗窃听的能力。
扩频信号的谱密度很低,可使信号淹没在噪声之中。
③具有选址能力,可实现码分多址。
扩频系统本来就是一种码分多址通信系统。
④抗衰落,特别是抗频率选择性好。
直序信号的频谱很宽,一小部分衰落对整个信号的影响不大。
⑤抗多径干扰。
利用伪随机码的相关特性,只要多径时延超过伪随机码的一个切谱,通过相关处理后可消除这种干扰影响。
⑥高精度测量等。
利用直扩系统伪随机码的相关特性,可完成精度很高的测距和定位。
正是由于扩频通信技术具有上述优点,自50年代中期美国军方便开始研究,一直为军事通信所独占,广泛应用于军事通信、电子对抗以及导航、测量等各个领域。
直到80年代初才被应用于民用通信领域。
为了满足日益增长的民用通信容量的需求和有效地利用频谱资源,各国都纷纷提出在数字峰窝移动通信、卫星移动通信和未来的个人通信中采用扩频技术,扩频技术于蜂窝电话、无绳电话、微波通信、无线数据通信、遥测、监控、报警等系统中。
二、扩频通信系统(一)扩展频谱通信的定义所谓扩展频谱通信,可简单表述如下:“扩频通信技术是一种信息传输方式,其信号所占有的频带宽度远大于所传信息必需的最小带宽;频带的扩展是通过一个独立的码序列来完成,用编码及调制的方法来实现的,与所传信息数据无关;在接收端则用同样的码进行相关同步接收、解扩及恢复所传信息数据”。
这一定义包含了以下三方面的意思:⑴信号的频谱被展宽了。
⑵采用扩频码序列调制的方式来展宽信号频谱。
⑶在接收端用相关解调来解扩。
(二) 扩频通信的理论基础长期以来,人们总是想法使信号所占领谱尽量的窄,以充分利用十分宝贵的频谱资源。
为什么要用这样宽频带的信号来传送信息呢?简单的回答就是主要为了通信的安全可靠。
扩频通信的基本特点,是传输信号所占用的频带宽度(W)远大于原始信息本身实际所需的最小(有效)带宽(∆F),其比值称为处理增益Gp 。
众所周知,任何信息的有效传输都需要一定的频率宽度,如话音为1.7 —3.1kHz ,电视图像则宽到数兆赫。
为了充分利用有限的频率资源,增加通路数目,人们广泛选择不同调制方式,采用宽频信道(同轴电缆、微波和光纤等),和压缩频带等措施,同时力求使传输的媒介中传输的信号占用尽量窄的带宽。
因现今使用的电话、广播系统中,无论是采用调幅、调频或脉冲编码调制制式,Gp 值一般都在十多倍范围内,统称为“窄带通信”。
而扩频通信的Gp 值,高达数百、上千,称为“宽带通信”。
扩频通信的可行性,是从信息论和抗干扰理论的基本公式中引伸而来的。
信息论中关于信息容量的香农(Shannon)公式为:)/1(2N P WLog C += (1-1) 式中:C --- 信道容量(用传输速率度量)W --- 信号频带宽度P --- 信号功率N --- 白噪声功率式(1-1)说明,在给定的传输速率C 不变的条件下,频带宽度W 和信噪比P /N 是可以互换的。
即可通过增加频带宽度的方法,在较低的信噪比P /N(S /N)情况下,传输信息。
扩展频谱换取信噪比要求的降低,正是扩频通信的重要特点,并由此为扩频通信的应用奠定了基础。
总之,我们用信息带宽的100倍,甚至1000倍以上的宽带信号来传输信息,就是为了提高通信的抗干扰能力,即在强干扰条件下保证可靠安全地通信。
这就是扩展频谱通信的基本思想和理论依据。
(三)扩频通信的主要性能指标处理增益和抗干扰容限是扩频通信系统的两个重要性能指标。
(1)处理增益G 也称扩频增益(Spreading Gain)它定义为频谱扩展前的信息带宽∆F 与频带扩展后的信号带宽W 之比:F WG ∆=/ (1-2)在扩频通信系统中,接收机作扩频解调后,只提取伪随机编码相关处理后的带宽为∆F 的信息,而排除掉宽频带W 中的外部干扰、噪音和其地用户的通信影响。
因此,处理增益G 反映了扩频通信系统信噪比改善的程度。
(2)抗干扰容限是指扩频通信系统能在多大干扰环境下正常工作的能力,定义为:dB L N S G M s o p j ])/[(+-= (1-3) 其中:j M --- 抗干扰容限P G --- 处理增益o N S )/(--- 信息数据被正确解调而要求的最小输出信噪比s L --- 接收系统的工作损耗由此可见,抗干扰容限j M 与扩频处理增益P G 成正比,扩频处理增益提高后,抗干扰容限大大提高,甚至信号在一定的噪声湮没下也能正常通信。
通常的扩频设备总是将用户信息(待传输信息)的带宽扩展到数十倍、上百倍甚至千倍,以尽可能地提高处理增益。
(四)扩频通信的主要特点(1)抗干扰能力强由于扩频通信利用扩展频谱技术,在接收端对干扰信号频谱能量加以扩散,对有用信号频谱能量压缩集中,因此在输出端就得到了信噪比的增益。
扩频通信系统扩展的频谱越宽,处理增益越高,抗干扰性能越强。
例如:处理增益为30dB,除去系统损耗2dB外,接收机还能在干扰信号比有用信号强18dB的条件下,仍有不小于10dB的工作信噪比,即有10dB 的余量用于信号解调,进行正常通信。
此外,对于单频及多频载波信号的干扰、其它伪随机调制信号的干扰,以及脉冲正弦信号的干扰等,扩频系统都有抑制干扰提高信噪比的作用。
特别是对抗敌方人为干扰方面,效果很突出。
简单地说,如果信号频带扩展10倍,干扰方面需要在更宽的频带上去进行干扰,分散了干扰功率。
在总功率不变的条件下,其干扰强度只有原来的1/l0。
而要保持原有的干扰强度,则必需加大10倍的功率,这在实际战场条件下,有时是难以实现的。
另外,由于在接收端采用了扩频码序列进行相关检测,即使采用同类型信号进行干扰,如果不能检测出有用信号的码序列,由于不同码序列之间不同的相关性,干扰也起不了太大作用。
抗干扰性能强是扩频通信最突出的优点。
(2)抗多径干扰多径干扰同上述与发射信号独立的加性噪声和干扰不一样,它是发射信号在传播过程中,遇到各种反射体(如电离层、对流层、高山、高大建筑物或建筑群等)引起反射或折射,形成对直接到达接收机的发射信号的干扰。
这是所有无线通信,如卫星通信、微波通信、移动通信、短波通信等所面临的十分突出的问题。
由于反射或折射是多方向、多途径、与直接到达接收机的发射信号完全相关的,会使接收机的接收信号产生严重的失真、波形展宽、波形重叠和畸变,造成通信系统解调器输出出现大量差错,以至不能正常通信。
因此,长期以来,抗多径干扰问题始终是一个难以解决的问题。
一般的方法是排除干扰或变害为利。
前者是设法把最强的有用信号分离出来,而排除其它路径来的干扰信号,这就是采用分集技术的基本思想。
后者是设法把来自不同路径的不同延迟的信号在接收端从时间上对齐相加,合并成较强的有用信号,这就是采用梳状滤波器的基本思想。
这两种基本方法在扩频通信中都是容易实现的。
我们可以利用扩频码序列之间的相关特性,在接收端用相关技术从多径信号中提取和分离出最强的有用信号,或把来自多个路径的同一码序列的波形相加合成。
可见常规通信技术难以解决的多径干扰问题,采用扩频技术却能得到圆满的解决。
另外,在跳频通信系统中,由于用多个频率的信号传送同一信息,实际上还起到了频率分集的作用。
因此,在目前民用数字蜂窝移动通信及部分军用通信设备中,经常采用简单的跳频技术作为抗多径干扰的一种手段。
(3)可实现码分多址(CDMA)可以进行选址通信是扩频通信能得到迅速发展的另一个主要原因。
扩频通信提高了抗干扰性能,但付出了占用频带宽的代价。
如果让许多用户共用这一频带,则可大大提高频带利用率。
由于在扩频通信中存在扩频码序列的扩频调制,充分利用各种不同码型的扩频码序列之间优良的自相关特性和互相关特性,在接收端利用相关检测技术进行解扩,则在分配给不同用户不同码型的情况下可以区分不同用户的信号,提取出有用信号。
这样,在一宽频带上许多对用户可以同时通话。
它与利用频带分割或时间分割的方法实现多址通信的概念类似,即利用不同的码型进行分割,所以称为扩频CDMA。
这种扩频CDMA方式,虽然要占用较宽的频带,但按平均到每个用户占用的频带来计算,其频带利用率是很高的。
除此之外,采用扩频CDMA,还有利于组网、进行选呼、增加保密性和解决新用户随机入网等问题。
(4)信息保密性好,对各种窄带通信系统的干扰很小扩频通信系统具有低截获概率性。
扩频信号的功率相当均匀地被分布在很宽的频率范围,单位频带内的功率很小,信号湮没在噪声里,一般不容易被发现,而想进一步检测信号的参数(如伪随机编码序列)就更加困难。