当前位置:文档之家› 焦炭光学组织在煤质评价中的研究

焦炭光学组织在煤质评价中的研究

焦炭光学组织在煤质评价中的研究
焦炭光学组织在煤质评价中的研究

生物医学光学探析

生物医学光学探析 1会议概况 工业激光和生物医学光学国际学术会议于1999年10月25~27日在华中科技大学学术交流中心举行。教授和干福熹院士担任大会主席,来自14个国家和地区的221位代表(境外代表46人)出席了会议。会议得到美国SPIE的支持,正式出版了会议论文集SPIE(工业激光论文集卜3862和SPIE(生物医学光学论文集关3863.前者共收录论文121篇,其中,国外作者论文13篇;后者共收录论文95篇,其中国外作者论文31篇。大会特邀了世界激光和生物医学光学领域的着名学者作主题报告,全体大会4个特邀报告,工业激光分会8个邀请报告,生物医学光学分会4个邀请报告,这些特邀报告和邀请报告学术水平高,均反映了当前国内外研究的前沿课题。 2工业激光研究的最新热点 在工业激光器领域,由于半导体激光器迅速发展,准连续器件已达到 4kw.因此,在许多应用领域均有采用半导体激光器代替传统的气体激光器及固体激光器的发展趋势。但是,由于半导体激光器目前光束质量较差,作为过渡的发展阶段是大量采用半导体激光器泵浦的固体激光器,其激光输出功率也已达到4kw 级,光束质量获得明显改善。因此,在世界市场上,1998年固体激光器的销售金额,首次超过了CO:激光器。据估计,近期激光技术的应用在高功率激光器方面仍然会以COZ激光器和固体激光器为主。在激光应用领域,除了高功率激光应用以外,国外已经在激光精密加工领域开展了深入的研究工作,如法国利用准分子激光超精密打孔、划线,精度非常高,孔径圆整、光滑,在陶瓷如S13N;,A12O3等方面的精密处理方面已有深人的研究。本次会议涉及到准分子激光应用的文章有15篇,涉及领域有激光淀积超导薄膜,金刚石薄膜、非晶金刚石薄膜等,激光制备光栅,激光制备纳米颗粒。我国大陆学者主要把准分子激光用于制备薄膜,台湾大学是用准分子激光制备光栅,法国学者用激光制备纳米颗粒。可见国外用准分子激光加工开展面比我国广泛。从本次会议看,国外今后重点发展研究领域和前沿课题包括:高功率半导体激光器,近五年内千瓦级器件将会实现实用化;半导体激光泵浦固体激光器,特别是盘片固体激光器近五年内也将会突破千瓦级;半导体激光泵浦全固体化紫外激光器已突破3W,如果能提高一个量级,将会逐步取代紫外气体激光器;利用准分子激光对电子元器件处理作了很深入的研究,在这些方面已成为激光超精密加工应用的重要发展方向。国内外在激光制备薄膜方面的研究始

中国煤炭分类煤质指标的分级

煤质指标的分级

(2008-06-19 10:04:30) 中国煤炭分类 中国煤炭分类: 首先按煤的挥发分,将所有煤分为褐煤、烟煤和无烟煤;对于褐煤和无烟煤,再分别按其煤化程度和工业利用的特点分为2个和3个小类; 烟煤部分按挥发分>10%~20%、>20%~28%、28%~37和>37%的四个阶段分为低、中、中高及高挥发分烟煤。 关于烟煤粘结性,则按粘结指数G区分:0~5为不粘结和微粘结煤;>5~20为弱粘结煤;>20~50为中等偏弱粘结煤;>50~65为中等偏强粘结煤;>65则为强粘结煤。对于强粘结煤,又把其中胶质层最大厚度Y>25mm或奥亚膨胀度b>150%(对于Vdaf>28%的烟煤,b>220%)的煤分为特强粘结煤。 在煤类的命名上,考虑到新旧分类的延续性,仍保留气煤、肥煤、焦煤、瘦煤、贫煤、弱粘煤、不粘煤和长焰煤8个煤类。 在烟煤类中,对G>85的煤需再测定胶质层最大厚度Y值或奥亚膨胀度B值来区分肥煤、气肥煤与其它烟煤类的界限。当Y值大于25mm时,如Vdaf>37%,则划分为气肥煤。如Vdaf<37%,则划分为肥煤。如Y值<25mm,则按其Vdaf值的大小而划分为相应的其它煤类。如Vdaf>37%,则应划分为气煤类,如Vdaf>28%-37%,则应划分为1/3焦煤,如Vdaf在于28%以下,则应划分为焦煤类。 这里需要指出的是,对G值大于100的煤来说,尤其是矿井或煤层若干样品的平均G值在100以上时,则一般可不测Y值而确定为肥煤或气肥煤类。 在我国的煤类分类国标中还规定,对G值大于85的烟煤,如果不测Y值,也可用奥亚膨胀度B值(%)来确定肥煤、气煤与其它煤类的界限,即对Vdaf<28%的煤,暂定b值>150%的为肥煤;对Vdaf>28%的煤,暂定b值>220%的为肥煤(当Vdaf值<37%时)或气肥煤(当Vdaf值>37%时)。当按b值划分的煤类与按Y值划分的煤类有矛盾时,则以Y值确定的煤类为准。因而在确定新分类的强粘结性煤的牌号时,可只测Y值而暂不测b值。 (中国煤煤分类国家标准表)

煤种分类及煤质特征

煤种分类及煤质特征 分为十四大类,24小类,大类为: 1)无烟煤:煤化程度最高,含碳量高达90%—98%,含氢量较少,一般小于4%。外观呈黑至钢灰色,因其光泽强,又称白煤。硬度高,不易磨碎。纯煤的真密度为1.4—1.9g/cm3,燃点高,火焰短,化学反应弱.主要生产氮肥和民用,少数电厂也用。. 2)贫煤:是煤化程度最高的烟煤,受热时几乎不产生胶质体,所以叫贫煤。含碳量高达90%—92%,燃点高,火焰短,发热量高持续时间长,主要用于动力和民用。 3)瘦煤:是煤化程度最高的炼焦用煤。特性和贫煤一样,区别是加热时产生少量的胶质体,能单独结焦。因胶质体少,所以称瘦煤。灰融性差,多用于炼焦。 4)1/3焦煤:介于焦煤、肥煤与气煤之间的含中等或较高挥发分的强粘结性煤。单独炼焦时,能生成强度较高的焦炭。

5)气肥煤:挥发分高、粘结性强的烟煤。单独炼焦时,能产生大量的煤气和胶质体,但不能生成强度高的焦炭。 6)1/2中粘煤:粘结性介于气煤和弱粘煤之间的、挥发分范围较宽的烟煤。 7)贫瘦煤:变质程度高,粘结性较差、挥发分低的烟煤。结焦性低于瘦煤。 8)焦煤:是结焦性最好的炼焦煤,也称主焦煤。中等挥发分,一般大于18%—30%,大多能单独炼焦。Y 值一般大于12%—25%,主要是炼焦用。 9)气煤:是煤化程度最底的炼焦煤,干燥无灰基挥发分均大于30%,胶质层最大厚度大于5—25mm,隔绝空气加热能产生大量煤气和焦油。主供炼焦,也作为动力煤和气化用煤。煤质低灰低硫,可选性好,是我国炼焦煤中储量最多的一种。 10)肥煤:中等煤化程度的烟煤,高于气煤。挥发分一般为24%—40%,胶质层最大厚度大于25mm,软化温度低,有很强的粘结能力,是配煤炼焦的重要成分。主要用于炼焦,也作动力用煤。

焦炭参考试验方法

焦炭参考试验方法 显微强度测定 焦炭显微强度在自制显微强度测定仪上测定,取2g粒度为0.6~1.25mm的焦样,装入内装12个Φ8mm钢球的长305mm内径Φ25.4mm的钢管中,以25±0.5r/min的转速转800r。焦炭经转鼓后,用0.6~0.2mm的圆孔筛,振筛五分钟,称出>0.6mm,0.2~0.6mm焦粒的质量,并分别计算其百分含量,分别以R1,R2表示,并以R1+R2作为显微强度指标(MSI)。 结构强度的测定 焦炭结构强度在自制结构强度测定仪上测定,用量筒量取50ml粒度为3~6mm的焦样并称重,装入内装5个Φ15mm钢球的长305mm内径Φ25.4mm的钢管中,以25±0.5r/min的转速转800r。焦炭经转鼓后,用1mm的圆孔筛振筛五分钟,称出>1mm焦粒的百分含量,以>1mm焦粒的百分含量表示结构强度指标(SSI)。 粒焦反应性测定 焦炭反应性在粒焦反应性(PRI)装置上测定,取20g粒度为3~6mm干燥后的焦样,以20~25℃/min速度升温至400℃,通入氮气保护,继续升温至1100℃,切换成二氧化碳气体,流量为0.5L/min,反应时间为120 min。然后通氮气保护冷却至室温,以反应前后焦样损失质量百分率作为粒焦反应性指标(PRI)。 焦炭反应性CRI和反应后强度测定 按照GB1997-1989进行取样,按照GB/T4000-1996进行测定。焦炭反应性在块焦反应性(CRI)装置上测定,取200 g粒度为21~25 mm干燥后的焦样,以20~25 ℃/min速度升温至400 ℃,通入氮气保护,继续升温至1100 ℃,切换成二氧化碳气体,流量为0.5 L/min,反应时间为120 min。然后通氮气保护冷却至室温,以反应前后焦样损失质量百分率作为粒焦反应性指标(CRI),反应后的焦炭在直径130mm,长700mm的I型转鼓中以20r/min速度转动600转,然后用10mm筛子筛分,测量筛上物占装入转鼓的反应后焦炭量的百分比作为反应后强度指标(CSR)。 焦炭光学组织测定 按照GB1997-89进行焦炭试样的制备;按照MT116.1-86,MT116.2-86 煤砖光片及块煤光片的制备方法;按照GB8899-88 进行煤的显微组分和矿物的测定,具体如下: ①仪器:日本NIKON-Ⅱ偏反光光学显微镜。 ②制作及测定:将焦样粉碎至粒度小于1.25mm,然后筛除在显微镜下不易辨别出光学组织的细粒级(<0.071mm),取0.071~1.25mm 级作为制备粉焦光片用试样。将干燥后的粉焦样与粘结剂制成型块(直径D≥20mm),经粗磨、细磨和抛光后于偏反光显微镜油侵物镜下观测,放大显微镜倍数为500倍,采用数点法,规定行间距为1mm,点间距为0.3mm,统计的总点数至少在400点以上,由各组织所占点数与总点数之比求得各光学组织的百分含量。用焦炭光学组织指数(OTI)来表征焦炭光学组织各向异性程度。焦炭的OTI 值计算式为: OTI = Σfi(OTI)i 式中: fi 为焦炭各光学组织结构的百分含量;(OTI)i为焦炭各光学组织相对应的赋值。

煤种分类及煤质特征

煤种分类及煤质特征公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

煤种分类及煤质特征 分为十四大类,24小类,大类为: 1)无烟煤:煤化程度最高,含碳量高达90%—98%,含氢量较少,一般小于4%。外观呈黑至钢灰色,因其光泽强,又称白煤。硬度高,不易磨碎。纯煤的真密度为—1.9g/cm3,燃点高,火焰短,化学反应弱.主要生产氮肥和民用,少数电厂也用。. 2)贫煤:是煤化程度最高的烟煤,受热时几乎不产生胶质体,所以叫贫煤。含碳量高达90%—92%,燃点高,火焰短,发热量高持续时间长,主要用于动力和民用。 3)瘦煤:是煤化程度最高的炼焦用煤。特性和贫煤一样,区别是加热时产生少量的胶质体,能单独结焦。因胶质体少,所以称瘦煤。灰融性差,多用于炼焦。 4)1/3焦煤:介于焦煤、肥煤与气煤之间的含中等或较高挥发分的强粘结性煤。单独炼焦时,能生成强度较高的焦炭。 5)气肥煤:挥发分高、粘结性强的烟煤。单独炼焦时,能产生大量的煤气和胶质体,但不能生成强度高的焦炭。 6)1/2中粘煤:粘结性介于气煤和弱粘煤之间的、挥发分范围较宽的烟煤。 7)贫瘦煤:变质程度高,粘结性较差、挥发分低的烟煤。结焦性低于瘦煤。

8)焦煤:是结焦性最好的炼焦煤,也称主焦煤。中等挥发分,一般大于18%—30%,大多能单独炼焦。Y值一般大于12%—25%,主要是炼焦用。 9)气煤:是煤化程度最底的炼焦煤,干燥无灰基挥发分均大于30%,胶质层最大厚度大于5—25mm,隔绝空气加热能产生大量煤气和焦油。主供炼焦,也作为动力煤和气化用煤。煤质低灰低硫,可选性好,是我国炼焦煤中储量最多的一种。 10)肥煤:中等煤化程度的烟煤,高于气煤。挥发分一般为24%—40%,胶质层最大厚度大于25mm,软化温度低,有很强的粘结能力,是配煤炼焦的重要成分。主要用于炼焦,也作动力用煤。 11)弱粘煤:粘结性较弱,煤化程度较低的煤,介于炼焦煤和非炼焦煤之间,结焦性较好,低灰低硫高热量,可选性较好。部分炼焦,多部分作动力煤和民用。 12)不粘煤:挥发分相当于肥煤和肥气煤,但几乎没有粘结性,水分高,发热量低,主要作动力煤。 13)长焰煤:煤化程度仅高于褐煤的最年轻烟煤,挥发分高,水分高,不粘,主要是发电和其他动力用煤。 14)褐煤:是煤化程度最低的煤,外观呈褐色或黑色,与烟煤最主要的区别是褐煤含有数量不等的原生腐植酸,而烟煤不含。高水分高挥发分,低发热量低灰熔点,热稳定性差,主要是发电和动力用煤。

第三章中间相理论

第三章中间相理论 中间相理论是在煤岩学及现代物理检测分析的基础上发展起来的,对于粘结机理、碳素材料的制备起了巨大推动作用。 第一节中间相的形成 5.1 中间相发展 人们从本世纪20年代开始用光学显微镜研究焦炭,并发现焦炭中存在着大小不一的光学各向异性组织,但不能解释其成因。61年Taylor在澳大利亚煤中发现了中间相小球体(这种小球体在我国山西热变质煤中也有发现),并观察到它的长大,融并和最后生成镶嵌型光学组织的过程后,对各种含碳有机化合物在热解过程中所形成的中间相及其发展过程进行了广泛的研究。逐步形成了中间相理论成焦机理。 5.2 中间相基本概念 (1)液晶 液晶是指介于固相与液相之间的一种特殊相。液晶既保留了晶体中分子排列整齐,呈各向异性的特点,又具有流动性,即为液态晶体。它是某些有机化合物的一种特殊存在形式,它既不同于晶体,也不同于液体。 晶体:是原子或原子团有规律排列的物体,具有各向异性特征,称为远程有序。 液体:原子或原子团在小范围内有规律的排列,具有各向同性特征。称为近程有序、远程无序。 晶体混浊的流体透明液体 (各向异性)(各向异性)(各向同性) 某些有机化合物在晶体融化过程中所形成的浑浊流体既为液晶。 液晶同液体的区别:能流动但显示各向异性。 液晶同晶体的区别:显示各向异性但能流动。 液晶的种类很多,基本上可以分为二大类: a、热变型液晶 在一定温度范围内在纯物质或混合物中出现。 b、溶变性液晶 在一定浓度和温度范围内通过极性金属和特定溶剂互相作用而产生,故在纯物质中不存在。 液晶的分子都有特殊的取向。如向列型晶体的分子是头碰头的排列着。层间分子排列大致平行。 (2)中间相 某些煤、沥青及其它含炭有机物在加热到350—500℃时,能够在熔融状态液相中形成由聚合液晶构成的各向异性的流动物质,称为中间相。

煤种分类及煤质特征精编WORD版

煤种分类及煤质特征精 编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

煤种分类及煤质特征 分为十四大类,24小类,大类为: 1)无烟煤:煤化程度最高,含碳量高达90%—98%,含氢量较少,一般小于4%。外观呈黑至钢灰色,因其光泽强,又称白煤。硬度高,不易磨碎。纯煤的真密度为1.4— 1.9g/cm3,燃点高,火焰短,化学反应弱.主要生产氮肥和民用,少数电厂也用。. 2)贫煤:是煤化程度最高的烟煤,受热时几乎不产生胶质体,所以叫贫煤。含碳量高达90%—92%,燃点高,火焰短,发热量高持续时间长,主要用于动力和民用。 3)瘦煤:是煤化程度最高的炼焦用煤。特性和贫煤一样,区别是加热时产生少量的胶质体,能单独结焦。因胶质体少,所以称瘦煤。灰融性差,多用于炼焦。 4)1/3焦煤:介于焦煤、肥煤与气煤之间的含中等或较高挥发分的强粘结性煤。单独炼焦时,能生成强度较高的焦炭。 5)气肥煤:挥发分高、粘结性强的烟煤。单独炼焦时,能产生大量的煤气和胶质体,但不能生成强度高的焦炭。 6)1/2中粘煤:粘结性介于气煤和弱粘煤之间的、挥发分范围较宽的烟煤。 7)贫瘦煤:变质程度高,粘结性较差、挥发分低的烟煤。结焦性低于瘦煤。 8)焦煤:是结焦性最好的炼焦煤,也称主焦煤。中等挥发分,一般大于18%—30%,大多能单独炼焦。Y值一般大于12%—25%,主要是炼焦用。 9)气煤:是煤化程度最底的炼焦煤,干燥无灰基挥发分均大于30%,胶质层最大厚度大于5—25mm,隔绝空气加热能产生大量煤气和焦油。主供炼焦,也作为动力煤和气化用煤。煤质低灰低硫,可选性好,是我国炼焦煤中储量最多的一种。 10)肥煤:中等煤化程度的烟煤,高于气煤。挥发分一般为24%—40%,胶质层最大厚度大于25mm,软化温度低,有很强的粘结能力,是配煤炼焦的重要成分。主要用于炼焦,也作动力用煤。

§9.4 光学传递函数评价成像质量

§9.4 光学传递函数评价成像质量 上面介绍的几种光学系统成像质量的评价方法,都是基于把物体看作是发光点的集合,并以一点成像时的能量集中程度来表征光学系统的成像质量的。利用光学传递函数来评价光学系统的成像质量,是基于把物体看作是由各种频率的谱组成的,也就是把物体的光场分布函数展开成傅里叶级数(物函数为周期函数)或傅里叶积分(物函数为非周期函数)的形式。若把光学系统看成是线性不变的系统,那么物体经光学系统成像,可视为不降,相位要发生推移,并在某一频率处截止,即对比度为零。这种对比度的降低和相位推移是随频率不同而不同的,其函数关系我们称之为光学传递函数。由于光学传递函数既与光学系统的像差有关,又与光学系统的衍射效果有关,故用它来评价光学系统的成像质量,具有客观和可靠的优点,并能同时运用于小像差光学系统和大像差光学系统。 光学传递函数是反映物体不同频率成分的传递能力的。一般来说,高频部分是反映物体的细节传递情况,中频部分是反映物体的层次传递情况,而低频部分则是反映物体的轮廓传递情况。而表明各种频率传递情况的则是调制传递函数(MTF),因此下面来简要介绍二统传递后,其传递效果是频率不变,但其对比度下种利用调制传递函数来评价光学系统成像质量的方法。 一、利用MTF曲线来评价成像质量 所谓MTF是表示各种不同频率的正弦强度分布函数径光学系统成像后,其对比度(即振幅)的衰减程度。当某一频率的对比度下降到零时,说明该频率的光强分布已无亮度变化,即该频率被截止。这是利用光学传递函数来评价光学系统成像质量的主要方法。 设有二个光学系统(Ⅰ和Ⅱ)的设计结果,它们的MTF曲线如图9-3所示,图中的调制传递函数MTF曲线为频率n的函数。曲线Ⅰ的截止频率较曲线Ⅱ小,但曲线Ⅰ在低频部分的值较曲线Ⅱ大得多。对这二种光学系统的设计结果,我们不能轻易说哪种设计结果较好,这要根据光学系统的实际使用要求来判断。若把光学系统作为目视系统来应用,由于人眼的对比度阀值大约为0.03左右,因此MTF曲线下降到0.03时, 曲线Ⅱ的MTF值大于曲线Ⅰ, 如图9-3中的虚线所示,说明光学系统Ⅱ用作目视系统较光学系统Ⅰ有较高的分辨率。若把光学系统作为摄影系统来使用,其MTF值要大于0.1,从图9-3中可看出,曲线Ⅰ的MTF 值要大于曲线Ⅱ,即光学系统Ⅰ较光学系统Ⅱ有较高的分辨率。且光学系统Ⅰ在低频部分有较高的对比度,用光学系统Ⅰ作摄影使用时,能拍摄出层次丰富,真实感强的对比图像。所以在实际评价成像质量时,不同的使用目的,其MTF的要求是不一样的。 二、利用MTF曲线的积分值来评价成像质量 上述方法虽然能评价光学系统的成像质量,但只能反映MTF曲线上的少数几个点处的情况,而没有反映MTF曲线的整体性质。从理论上可以证明,像点的中心点亮度值等于MTF曲线所围的面积,MTF所围的面积越大,表明光学系统所传递的信息量越多,光学系统的成像质量越好,图像越清晰。因此在光学系统的接收器截止频率范围内,利用MTF 曲线所围面积的大小来评价光学系统的成像质量是非常有效的。 在一定的截止频率范围内,只有获得较大的MTF值,光学系统才能传递较多的信息。

光学系统与像差全套答案

c 2?解:由 n -得: v I =30 °有几何关系可得该店反射和折射的光线间的夹角为 6、若水面下 200mm 处有一发光点,我们在水面上能看到被该发光点照亮的范围 (圆直 径) 有多大? 解:已知水的折射率为 1.333,。由全反射的知识知光从水中到空气中传播时临界角为: 1 Sin l m 半= =0.75,可得I m =48.59 ; tanl m =1.13389,由几何关系可得被该发光点照 n 1.333 光在水中的传播速度:V 水 3 1Q8(m/S) 2.25(m/s) 1.333 光在玻璃中的传播速度:v 玻璃 C 3 1 沁 1.818(m/s) 1.65 n 玻璃 5米的路灯(设为点光源)1.5米处,求其影子长度。 1 7 x 解:根据光的直线传播。设其影子长度为 X ,则有 可得x =0.773米 5 1.5 x 4.一针孔照相机对一物体于屏上形成一 60毫米高的像。若将屏拉远 70毫米。试求针孔到屏间的原始距离。 3?—高度为1.7米的人立于离高度为 50毫米,则像的高度为 解:根据光的直线传播,设针孔到屏间的原始距离为 X ,则有 卫_ 50 x 60 可得x =300 (毫米) x 5.有一光线以60 的入射角入射于■:'的磨光玻璃球的任一点上, 到球表面的另一点上,试求在该点反射和折射的光线间的夹角。 其折射光线继续传播 解:根据光的反射定律得反射角 I =60 °而有折射定律 n sin I nsin I 可得到折射角 90 °

亮的范围(圆直径)是2*200*1.13389=453.6(mm) 7、入射到折射率为;- ..「1二的等直角棱镜的一束会聚光束(见图1-3),若要求在斜面上发生全反射,试求光束的最大孔径角--' 解:当会聚光入射到直角棱镜上时,对孔径角有一定的限制,超过这个限制,就不会发生全反射了。 1 由sinl m —,得临界角I m 41.26 n 得从直角边出射时,入射角i 180 l m 90 45 3.74 由折射定律■S匹丄,得U 5.68即2U 11.36 sinU n

生物组织光学性质的测量原理与技术

第16卷第4期 1997年12月 中 国 生 物 医 学 工 程 学 报 CH I N ESE JOU RNAL O F B I OM ED I CAL EN G I N EER I N G V o l.16N o.4 D ecem ber1997 生物组织光学性质的测量原理与技术3 谢树森 李 晖 (福建师范大学物理学系,福州350007) Ch ia T eck Chee (Schoo l of Science,N anyang T echno logical U niversity,Singapo re1025)本文讨论了组织光学性质参数的测量原理和技术,提出了一种新的测量和计算方法,采用联合测定组织体表面漫反射率和体内光能流率分布,并利用漫射理论和M onte Carlo模型的部分结论,可求出组织的光穿透深度,吸收系数和有效散射系数,以4种猪组织为例,研究了哺乳动物组织的光学性质,这一原理和技术可适用于人体组织光学性质的测量。 关键词: 组织光学;吸收;散射;漫射;M onte Carlo;漫反射率;光能流率 分类号: R197.39;R318.6 0 前 言 激光医学的进展,尤其是光动力学疗法(PD T)在临床上的深入应用,需要精确了解在一定光照条件下人体组织内的光能分布,以便安排最佳的光治疗方案。其中最关键的问题可归结为如何确定组织体的光学性质基本参数,即吸收系数Λa,散射系数Λs和散射位相函数S(Η)或平均散射余弦g。一旦已知这些光与组织的相互作用参数,在给定的光照方式和边界条件下,光能流率5(r)或其它参量如全反射率R,全透过率T等分布可由有关的数学模型唯一地确定[1,2]。 本文所提出的新方法系采用联合测定组织体表面漫反射率和组织体内部的光能流率分布,并利用漫射理论和M on te Carlo模型的部分结论,可求出组织的光学性质基本参数。 1 组织光学性质参数测量的理论基础 作为电磁波的光在组织中传播行为属于光与组织相互作用问题,在不考虑吸收的情况下,理论上由麦克斯韦方程组及组织体的电磁性质Ε,Λ或折射率,加上边界条件唯一地确定:即在所给定的条件下求解麦克斯韦方程,以得到电矢量在空间中和时间上的分布。其中必然出现一般光学中所有的各种现象,诸如干涉、衍射、反射和偏振等纯粹的物理光学问题。当组织存在光吸收时,应当考虑组织中原子分子的能级结构性质。换言之,此时应采用半经典理论,最严格的处理应使用全量子理论,不难想到,仅由于生物组织折射率的不均匀性,我们就无望获得麦氏方程的数值解,更不用说解析解了。 其实,可以把光在组织体中的传播进而有光能分布的物理实在,用一种粒子的传输过程来 国家自然科学基金和国家教委回国留学人员资助项目 1995年11月27日收稿,1996年4月29日修回

焦炭光学组织的测定与分析

焦炭光学组织的测定与分析 马学刚 (济南钢铁集团总公司技术中心,山东济南 250101) 摘要:在分析了煤变质程度、煤岩相组成等对焦炭光学组织的影响,以及焦炭光学组织与焦炭性质之间的关系的基础上,指出以粒状镶嵌组织为主的焦炭更符合高炉的要求。 关键词:焦炭;光学组织;测定方法;各向异性 中图分类号:TF526+.1 文献标识码:B 文章编号:1004-4620(2003)02-0037-03 Measurement and Analysis of Coke Optical Texture MA Xue-gang (The Technical Center of Jinan Iron and Steel Group,Jinan 250101,China) Abstract:On the basis of analyzing the influences of coal degenerative degree and the coal petrographic constituents on coke optical texture and the relation between the coke optical texture and its quality,points out that the coke with grain enchasing texture is according with the needs of blast furnace. Key words:coke;optical texture;measurement method;anisotropy 1前言 焦炭的光学组织决定了焦炭的冶金性能。目前,对焦炭冶金性能指标的测定,仅限于宏观性能,如M40、M10等。因此,对焦化生产中出现的异常现象只能从宏观上去寻找原因,忽视了微观组织对性能的影响。试图通过对焦炭光学组织的测定与分析探讨焦炭光学组织对性能的影响。 2焦炭的光学组织及其测定方法

在体生物光学成像技术的研究进展

第34卷第12期自动化学报Vol.34,No.12 2008年12月ACTA AUTOMATICA SINICA December,2008 在体生物光学成像技术的研究进展 李慧1,2戴汝为2 摘要在体生物发光成像和在体荧光成像是近年来新兴的在体生物光学成像技术,能够无损实时动态监测被标记细胞在活体小动物体内的活动及反应,在肿瘤检测、基因表达、蛋白质分子检测、药物受体定位、药物筛选和药物疗效评价等方面具有很大的应用潜力.本文详细介绍了在体生物发光成像和在体荧光成像的特点、系统及应用,比较了它们的异同,综述了在体生物光学成像技术的基本原理和应用领域,讨论了将其应用于临床的进一步发展方向. 关键词在体生物光学成像,生物发光成像,荧光成像 中图分类号R319 Development of In Vivo Optical Imaging LI Hui1,2DAI Ru-Wei2 Abstract With the emergence of in vivo optical imaging,bioluminescence imaging and?uorescence imaging can be used to non-invasively monitor the activities and responses of cells marked with optical signals in real time,which are considered to be promising tools for tumor detection,gene expression pro?ling,protein molecular detection,drug receptor localization,drug screening,and therapeutic evaluation.In this paper,the features,imaging systems,and applications of in vivo bioluminescence imaging and in vivo?uorescence imaging have been introduced and compared in detail.The basic theories,application?elds,and development of in vivo optical imaging in future are reviewed. Key words In vivo optical imaging,bioluminescence imaging(BLI),?uorescence imaging(FI) 随着荧光标记技术和光学成像技术的发展,在体生物光学成像(In vivo optical imaging)已经发展为一项崭新的分子、基因表达的分析检测技术,在生命科学、医学研究及药物研发等领域得到广泛应用,主要分为在体生物发光成像(Biolumi-nescence imaging,BLI)和在体荧光成像(Fluores-cence imaging)两种成像方式[1?2].在体生物发光成像采用荧光素酶(Luciferase)基因标记细胞或DNA,在体荧光成像则采用荧光报告基团,如绿色荧光蛋白(Green?uorescent protein,GFP)、红色荧光蛋白(Red?uorescent protein,RFP)等进行标记[3].利用灵敏的光学检测仪器,如电荷耦合摄像机(Charge coupled device camera,CCD camera),观测活体动物体内疾病的发生发展、肿瘤的生长及 收稿日期2007-08-08收修改稿日期2007-11-19 Received August8,2007;in revised form November19,2007国家自然科学基金(30500131),北京市优秀人才资助项目(20061D0501600216),中国博士后科学基金(20070410146)和中国科学院王宽诚博士后工作奖励基金资助 Supported by National Natural Science Foundation of China (30500131),Research Fund for Beijing Distinguished Specialists (20061D0501600216),Chinese Postdoctoral Science Foundation (20070410146),and Chinese Academy of Sciences K.C.Wong Postdoctoral Fellowships 1.首都师范大学教育技术系北京100048 2.中国科学院自动化研究所复杂系统与智能科学重点实验室北京100190 1.Department of Education Technology,Capital Normal Uni-versity,Beijing100048 2.Key Laboratory of Complex Sys-tems and Intelligence Science,Institute of Automation,Chinese Academy of Sciences,Beijing100190 DOI:10.3724/SP.J.1004.2008.01449转移、基因的表达及反应等生物学过程,从而监测活体生物体内的细胞活动和基因行为[4?8]. 相对于其他成像技术,如核磁共振成像(Mag-netic resonance imaging,MRI)、计算机层析成像(Computed tomography,CT)、超声成像(Ultra-sonic imaging)、正电子发射断层成像(Positron emission tomography,PET)、单光子发射断层成像(Single photon emission computed tomography, SPECT)等,在体生物光学成像具有巨大的优越性,堪称是分子基因检测领域的革命性技术.它具有如下优点:较高的时间/空间分辨率;在肿瘤和良性/正常疾患之间有高的软组织对比度;成像对比度直接与生物分子相关,适于重要疾病的基因表达、生理过程的在体成像;获得信息丰富、适于多参数复合测量;价格适中等.尽管其测量范围与测量深度有限,但适用于小动物的整体在体成像和在体基因表达成像.表1和表2(见下页)分别给出了几种主要成像技术的应用场合及参数比较[5,9],可以看出,基于分子光学标记的在体生物光学成像技术已经在活体动物体内基因表达规律方面展示了较大优势.近年来,随着生物光学成像设备的研制以及转基因动物的研究,国外发达国家已经将在体生物光学成像技术广泛应用于肿瘤免疫及治疗、基因治疗、药物研发等领域并取得了许多成果[4?8]. 本文分别介绍了在体生物发光成像和在体荧光成像的特点、系统及主要应用,比较二者在分子探

光学传递函数的测量和像质评价

光学传递函数的测量和像质评价 引言 光学传递函数是表征光学系统对不同空间频率的目标函数的传递性能,是评价光学系统的指标之一。它将傅里叶变换这种数学工具引入应用光学领域,从而使像质评价有了数学依据。由此人们可以把物体成像看作光能量在像平面上的再分配,也可以把光学系统看成对空间频率的低通滤波器,并通过频谱分析对光学系统的成像质量进行评价。到现在为止,光学传递函数成为了像质评价的一种主要方法。 一、实验目的 了解光学镜头传递函数的基本测量原理,掌握传递函数测量和成像品质评价的近似方法,学习抽样、平均和统计算法,熟悉光学软件的应用。 二、基本原理 光学系统在一定条件下可以近似看作线性空间中的不变系统,因此我们可以在空间频率域来讨论光学系统的响应特性。其基本的数学原理就是傅里叶变换和逆变换,即: dxdy y x i y x )](2exp[,ηξπψηξψ+-=??) (),( (1) ηξηξπηξψψd d y x i y x )](2exp[),(),(+=?? (2) 式中),(ηξψ是),(y x ψ的傅里叶频谱,是物体所包含的空间频率),(ηξ的成分含量,低频成分表示缓慢变化的背景和大的轮廓,高频成分表示物体细节,积分范围是全空间或者是有光通过空间范围。 当物体经过光学系统后,各个不同频率的正弦信号发生两个变化:首先是调制度(或反差度)下降,其次是相位发生变化,这一综合过程可表为 ),(),(),(ηξηξψηξφH ?= (3) 式中),(ηξφ表示像的傅里叶频谱。),(ηξH 成为光学传递函数,是一个复函数,它的模为调制度传递函数(modulation transfer function, MTF ),相位部分则为相位传递函数(phase transfer function, PTF )。显然,当H =1时,表示象和物完全一致,即成象过程完全保真,象包含了物的全部信息,没有失真,光学系统成完善象。由于光波在光学系统孔径光栏上的衍射以及象差(包括设计中的余留象差及加工、装调中的误差),信息在传递过程中不可避免要出现失真,总的来讲,空间频率越高,传递性能越差。要得到像的复振幅分布,只需要将像的傅里叶频谱作一次逆傅里叶变换即可。 在光学中,调制度定义为 min max min max I I I I m +-= (4) 式中max I 、min I 表示光强的极大值和极小值。光学系统的调制传递函数可表为给定空间频率

农产品生物组织的光学参数测量方法研究_徐志龙

农产品生物组织的光学参数测量方法研究 徐志龙,王忠义,黄 岚,侯瑞锋 (中国农业大学信息与电气工程学院北京100083) 提要:为解决当前近红外光谱分析技术应用于农产品品质分析时所出现的预测模型不稳定、适应性不好、预测精度难于进一步提高等问 题,我们认为,研究组织内部的光学性质及其光传输规律是其关键。为此,我们首先要对农产品生物组织的光学参数进行检测研究。本文通过对生物组织光学参数目前常用的一些测量方法进行了分析研究,其中着重介绍了基于空间分辨技术、时间分辨技术和积分球技术的光学参数测量方法,并对这些方法的优缺点做了比较,为选择一种适用于农产品生物组织光学参数的测量方法提供了依据。 关键词:光学参数;Monte Carl o 仿真;空间分辨技术;时间分辨技术;积分球技术中图分类号:S1 文献标识码:A 文章编号:0253-2743(2005)06-0087-03Investigation of measurement methods for determining the optical properties of agricultural products tissue XU Zhi -long ,WANG Zhong -yi ,HU ANG Lan ,HOU R ui -feng (College of Information and Electrical Engineering ,China Agricult ural U niversit y ,Beij ing ,100083,China ) Abs tract :At present ,near infrared s pectroscopy technology is widel y applied to quantitative analysis of agricultural products ,but a lot of problems are in the way ,for instance ,the calculation model is not stable and suitable enough for predicted samples ,the prediction precisi on is difficult to be improved more .To re -solve these problems ,we have to study the optical properties and light propagation in tis sue ,and the optical properties measurement methods are studied firstly .In this paper ,a few optical properties meas urement met hods us ed today are presented and investigated ;es peciall y ,the measurement methods bas ed on spatiall y -resolved s pectroscopy ,ti me -resolved s pectroscopy ,and integrating -sphere system are descri bed in detail .Acc ordingl y ,the advantages and dis advantages of these meas urement methods are compared t o s elect a s uitable meas urement method to determine the optical properties of agricultural products tissue . K ey words :optical propert y ;Monte Carlo simulation ;s patiall y -res ol ved technology ;time -resolved technology ;integrating -sphere technol ogy 收稿日期:2005-04-05 基金项目:科技部“十五”攻关项目(02EFN216900720)资助;中国农业大学信息与电气工程学院创新基金(KY -06)资助通讯作者:王忠义,工学博士,副教授。作者简介:徐志龙,中国农业大学硕士研究生,研究方向为生物光子学。 1 引言 近红外光谱分析技术在农产品品质分析领域的应用已经十分广泛,考虑到农产品形态的多样性和结构的复杂性给定量分析带来的不便,目前它所采用的分析方法多为系统方法,即通过扫描大量样品光谱来建立样品浓度和吸光度之间的相关模型,进而预测未知样品的浓度信息〔1,2〕。这种分析方法通过对研究对象的封装有效地避开了组织内部原本十分复杂的光传输过程,简化了分析模型:然而,同时也使得光传输过程中吸收和散射变化的细节信息被丢失,结果导致了光和组织的相互作用机理无法解释,光从组织中携带的信息量变化情况不明确,物理意义不清楚等一系列问题,而这些问题恰恰是当前分析模型不稳定、适应性不好、分析精度难于进一步提高等问题的根源所在。为此,我们有必要从组织内部出发,通过对组织光学特性及其光和组织相互作用规律等问题的研究来挖掘原本被丢失的重要信息,从而为进一步提高分析精确性和稳定性寻找出新的有效途径。 当前,对于生物组织内部光传输规律的研究在生物医学光子学领域已经十分普遍,并且在医学光学诊断、光学治疗上有了一些成功的应用〔3-4〕。我们通过借鉴它们的研究方法应用到农产品品质分析领域对进一步提高农产品品质分析水平应该是一个契机。生物医学光子学的研究告诉我们,生物组织光学参数的检测研究对于组织中光传输规律的研究有着重要的基础意义,光在组织内部的光传输、光分布情况归根结底都依赖于组织的光学参数变化。另外,光学参数作为生物组织内部光学特性的反映,与组织内部生理、病理和代谢过程中的物质变化情况都有着密切联系,这也是生物组织光学参数检测研究的意义所在。Cheong 等人〔5〕在1990年总结了一份测量生物组织光学参数的清单,其中列举了大量的生物组织光学参数测量结果及其相应的测量方法,为后续的研究工作提供了丰富的参考;然而,这些研究的对象大多集中在人体组织或者动物组织,对于农产品生物组织来说目前还未见相应的报道。所以,我们对农产品生物组织光学参数的检测研究就显得十分重要。本文的目的就是希望通过对生物组织光学参数目前一些常用的测量方法进行分析研究,从而为选择一种适用于农产品生物组织的光学参数测量方法提供依据。 2 生物组织光学参数及其测量方法 用来描述生物组织光学特性的基本光学参数有三个:吸收 系数μa 、散射系数μs 和各向异性散射因子g 。吸收系数μa 和散射系数μs 描述的是光在单位距离内因为被组织吸收或散射而损失的光能变化,单位都是mm -1。吸收系数μa 反映了生物组织中分子的原子能级信息,散射系数μs 反映了组织结构的显微不均匀性。各向散射异性因子g 是平均散射余弦,无量纲,用来表征组织中光分布的不均匀性和前向散射的大小,g =1表示完全前向散射,g =0表示完全同向散射,g =-1则表示完全后向散 射。除了上述三个基本光学参数以外,为了研究的方便还定义了其他一些光学参数,如反照率α、穿透深度τ、扩散系数D 等,对于这些光学参数来说,一般都可以由上述三个基本光学参数组合得到,在此就不再赘述。 根据生物组织所处的状态,确定其光学参数的方法一般有两类:一类是离体测量,也称为切片测量法,即根据光学参数的定义将组织切片后置于光学系统中进行测量的方法;一类是活体测量,也称为无损测量法,即通过测量组织表面的漫射光分布再根据特定的光传输理论来反演光学参数的方法。对于离体生物组织和活体生物组织来说,因为它们所处的生理状态差异较大,所以它们的光学参数也会有所不同。 若观察组织表面的漫射光分布,可以发现,光进入组织后其组织表面的漫射率是随着观察点与入射光源的距离增加而减小的。根据漫射近似理论,若选择入射光源为连续变化、窄脉冲变化和正弦调制时可以发展出基于空间分辨技术〔6-8〕、时间分辨技术〔9〕和频率分辨技术〔10〕的光学参数测量方法。目前常用的一般是前两种方法,而基于频率分辨技术的光学参数测量方法是通过对入射光进行调制引起光穿过组织后的相位变化、幅度变化来确定光学参数的一种方法。2.1 基于连续光源的空间分辨技术 当连续光源准直入射到半无限介质表面时,可以认为组织体内的光分布是和时间无关的一种稳态分布,组织表面某观察点距入射光源ρ处的漫反射率也是一定的,如图1所示。Farrell 等人〔6〕基于稳态漫射方程的推导,采用外延边界条件和两点正负镜像光源的近似方法,得到了组织表面距离光源ρ处的漫反射率公式: R (ρ)= α′4π〔1μ′t (μeff +1r 1)exp (-μeff r 1)r 21+(1μ′t +4A 3μ′t )(μeff +1r 2)exp (-μeff r 2 r 22 〕图1 组织表面距入射光源ρ处的漫反射率R (ρ) 其中,传输反照率α′=μ′s /(μ′s +μa ),μ′s =μs ( 1-g )是传输散射系数;有效衰减系数μeff =〔3μa (μa +μ′s )〕1/2;总衰减系数μ′t =μa +μ′s ; r 1和r 2是观察点到组织表面附近的正负镜像同性散射点光源之间的几何距离, r 1=〔(1/μ′t )2+ρ2〕1/2,r 2=〔(1/μ′t +4A /3μ′t )2+ρ2〕1/2 ;A 是组织内部反射系数,若组织和周围介质边界匹配则取A =1,典型的,若组织的相对折射率n =1.4,那么根据 Groenhuis 等人〔11〕 的计算取A =3.23。根据上述Farrell 公式,若在适当的组织表面范围内通过光纤或CCD 检测器获取这种漫射光分布的变化情况,那么就可以通过非线性拟合算法推算出组织的光学参数了。 87 《激光杂志》2005年第26卷第6期 LASER J OURNAL (Vol .26.No .6.2005)

相关主题
文本预览
相关文档 最新文档