物联网行业五大关键技术
- 格式:pdf
- 大小:165.86 KB
- 文档页数:4
物联网的关键技术
物联网解决方案关键要素包括5P,即可以连入网络的智能设备(Pods)、无处不在的有线和无线的宽带网络(Pipes)、数据管理设备(Plexes)、数字化管理设备(Panels)及应用支撑和运营(Platforms)。
可以连入网络的智能设备包括嵌入了传感器、生物测定、RFID、OS、嵌入式射频等技术的实物设备;无处不在的有线和无线宽带网络包括支持
WRAN、WWAN、WLAN、WPAN、BlueTooth、ZigBee、UWB等协议的从传感网到广域网的综合网络;数据管理设施包括提供数据服务的数字化内容和中间
件等;数字化管理设备包括支持门户、网件等用户界面等设备;应用支撑和运营包括提供注册、展示、设备管理、服务编排、认证和SaaS的服务提供平台。
物联网的关键技术有物体标识、体系架构、通信和网络、安全和隐私、
服务发现和搜索、软硬件、能量获取和存储、设备微型小型化以及相应的标准。
物联网有四个关键性的应用技术—RFID,感知器,智能技术以及纳米技术。
感知器是物联网的传感核心,凡是处于网络前端节点,以提取一定的信
息或数据的技术、装置或产品等,都可以视为物联网感知器的一种。
它是物联
网存在的数据源和基础。
基于物联网的安防系统所使用的感知器包括四类。
1、使用各种专用传感器采集物理数据,如温湿度、PH值、压力、震动。
2、使用普通传感器完成短距离的信息读取和传递(如WiFi、RFID等)。
RFID技术实现了随时的读取,可以视为典型传感器技术应用。
3、音视频的采集,安防系统中最为常见的摄像头从根本上来说也是属于信息的采集,其采集到的是一种视频信息,同样是代表了一些描述监控目标的。
物联网智慧农业架构及关键技术第一节物联网智慧农业的架构根据信息生成、传输、处理、应用的原则,可以把物联网智慧农业分成感知层、传输层、处理层和应用层,如下图。
物联网智慧农业架构示意图1.感知层这是让物品对话的先决条件,即以传感器、RFID(射频识别)、GPS(全球定位系统)、RS(遥感)、条码技术,采集物理世界中发生的物理事件和数据,包括各类物理量身份标识、情境信息、音频、视频等数据,实现“物”的识别。
2.传输层具有完成大范围的信息传输与广泛的互联功能,即借助于现有的广域网技术(如SMDS网络、3G/4G、LTE移动通信网、Internet等)与感知层的传感网技术相融合,把感知到的农业生产信息无障碍、快速、高安全、高可靠地传送到所需的各个地方,使物品在全球范围内实现远距离、大范围的通信。
3.处理层通过云计算、数据挖掘、知识本体、模式识别、预测,预警、决策等智能信息处理平台,最终实现信息技术与行业的深度融合,完成物品信息的汇总、协同、共享、互通、分析、预测、决策等功能。
4.应用层应用层是农业物联网体系结构的最高层,是面向终端用户的,可以根据用户需求搭建不同的操作平台。
农业物联网的应用主要实现大田种植、设施园艺、畜禽养殖、水产养殖以及农产品流通过程等环节信息的实时获取和数据共享,从而保证产前正确规划以提高资源利用效率,产中精细管理以提高生产效率,产后高效流通实现安全溯源等多个方面,促进农业的高产、优质、高效、生态、安全。
第二节物联网智慧农业的关键技术一、农业信息感知技术农业信息感知技术是指利用农业传感器、RF1D、条码、GPS等在任何时间与任何地点对农业领域物体进行信息采集和获取。
1.农业传感器技术农业传感器技术是农业物联网的核心,农业传感器主要用于采集各个农业要素信息,包括种植业中的光、温、水、肥、气等参数;畜禽养殖业中的二氧化碳、氨气、二氧化硫等有害气体含量,空气中尘埃、飞沫及温、湿度等环境指标或参数;水产养殖业中的溶解氧、酸碱度、氨氮、电导率、浊度等参数,如左图。
物联网的关键技术及物联网的应用在当今科技飞速发展的时代,物联网(Internet of Things,简称IoT)已经成为了引领变革的重要力量。
物联网将各种设备、物体与互联网连接起来,实现了智能化的感知、控制和管理,为我们的生活和工作带来了极大的便利和创新。
接下来,让我们深入探讨一下物联网的关键技术以及其广泛的应用领域。
一、物联网的关键技术1、传感器技术传感器是物联网获取信息的关键设备,它能够感知物理世界中的各种参数,如温度、湿度、压力、光照等,并将这些信息转换为电信号。
随着技术的不断进步,传感器的精度、灵敏度和可靠性不断提高,同时体积越来越小、成本越来越低,为物联网的广泛应用奠定了基础。
2、射频识别技术(RFID)RFID 技术通过无线电信号识别特定目标并读写相关数据,无需接触即可完成信息的采集和传输。
它在物流、仓储、零售等领域有着广泛的应用,能够实现快速、准确的物品识别和跟踪。
3、无线通信技术物联网中的设备需要通过无线通信技术与网络进行连接和数据传输。
常见的无线通信技术包括蓝牙、WiFi、Zigbee、NBIoT 等。
这些技术各有特点,适用于不同的场景和应用需求。
例如,蓝牙适用于短距离、低功耗的设备连接,而 NBIoT 则适用于大规模的物联网设备接入,具有覆盖广、功耗低等优点。
4、云计算和大数据技术物联网产生的海量数据需要强大的计算和存储能力进行处理和分析。
云计算提供了弹性的计算资源和存储空间,能够满足物联网数据处理的需求。
大数据技术则能够从海量的数据中挖掘出有价值的信息,为决策提供支持。
5、人工智能技术人工智能在物联网中发挥着重要作用,如通过机器学习算法对传感器数据进行预测和分析,实现智能控制和优化。
同时,图像识别、语音识别等人工智能技术也为物联网的人机交互提供了更加自然和便捷的方式。
6、网络安全技术随着物联网设备的增多和应用场景的扩展,网络安全问题日益突出。
保障物联网设备和数据的安全成为了至关重要的任务。
物联网需要突破的关键技术文章分析了传统传感器与射频识别器的区别,传感网与传感器网两个概念的区别,结合实际对物联网需要突破的射频识别、传感器设计制造、传感网应用支撑、无线传感器组网和物联网络应用层这5项关键技术进行了探讨。
标签:物联网;关键技术;传感物联网是通过射频识别、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任意物品与互联网连接起来,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。
随着信息技术的不断发展,物联网在各个领域得到了广泛的应用。
从长远看,物联网的发展要按照“应用引领、统筹集成、创新发展、确保安全”的思路,着重突破射频识别、传感器设计制造、传感网应用支撑、无线传感器组网和物联网络应用层这5项关键技术。
1 射频识别技术射频识别是一种非接触式的自动识别技术,它通过射频信号自动识别目标对象并获取相关数据,识别工作无需人工干预,可工作于各种恶劣环境。
射频识别技术具有操作快捷方便、可识别高速运动物体并能同时识别多个标签的特点。
按应用频率的不同,射频识别技术包括低频、高频、超高频和微波。
该技术是沟通自然物与人类社会的关键技术,能使自然物具有“语言”和“感官”,因此是物联网运转的依托。
2 传感器设计制造技术传统的传感器指现场感知设备,我们通常讲的传感器或传感器网络,都是指现场感知设备,不包括遥感设备。
但许多国家将探测雷达、侦察卫星等遥测遥感设备也称为传感器。
实际上,后者已经不是一般意义上的元器件,而是一个庞大的系统,是远距离感知,其工作原理要比传统的传感器复杂得多。
根据物联网的定义,射频识别器、红外感应器、激光扫描器等均列为感知设备。
它们与传统的传感器一样,具有近距离感知功能,均采用无线传输方式,是连接物理世界与数字世界的桥梁。
但是,与射频识别器相比,传统的传感器有三点根本性差异。
一是不确定性感知。
传感器对被感知对象的属性特征、出现的时间地点没有任何先验知识,所以存在漏判、误判的可能性,尤其是当传感器休眠时。
物联网关键技术第一篇:物联网关键技术介绍随着物联网时代的到来,物联网作为新时代的重要基础设施,正在逐渐受到人们的重视和关注。
物联网是指以互联网为基础的物体之间互相连接的网络,其最终目的是让万物互联,实现物理世界与数字世界的深度融合。
而要实现这样的目标,就需要依赖于许多物联网关键技术的支撑。
下面将重点介绍物联网中的关键技术。
1.感知网络技术感知网络技术是物联网中最基础、最关键的技术之一,是实现物联网的前提。
感知网络技术主要包括传感器技术、自动识别技术、软件定义网络技术和人工智能技术等。
传感器技术是物联网中最核心的技术之一,可以实现对环境、物品、人体等进行实时感知、监测和控制。
例如,测量环境温度、湿度、空气质量等参数可以帮助我们更好地了解环境状况,调整室内温湿度等可以提高人们的生活质量。
2.通信技术为实现物联网中海量设备之间的数据传输和互联互通,使用适当的通信技术成为必须。
目前,通常采用的是基于互联网的无线通信技术,如LoRa、Sigfox、NB-IoT和5G等。
这些技术都是为了实现不同重量级的数据传输和不同范围的通信需求,可以为物联网应用提供高效、安全、稳定的数据通信。
3.数据处理技术物联网中的数据处理技术主要包括数据采集、数据存储、数据分析和数据挖掘等。
在物联网环境中,海量的数据交织在一起,从而提出了许多挑战,例如如何获取有效的数据、如何快速地存储和检索数据。
同时,还需要利用自动化技术来解决数据清洗、去重和标注等问题。
4.安全技术物联网中的安全技术主要是为了保护物联网中的数据、设备和用户免受黑客和病毒等安全威胁。
这包括身份认证、加密和数据完整性等技术。
物联网安全是保护整个物联网生态环境的关键因素,因此需要高效的病毒和恶意软件检测技术,强大的数据加密技术和数据隐私保护措施。
5.应用与服务技术物联网中的应用与服务技术包括应用编程接口(API)、开发平台、云计算服务和服务管理等技术。
这些技术能够帮助开发人员快速构建应用程序和服务,实现物联网应用的互连和互操作。
OFweek 物联网
物联网的关键技术有哪些
1、传感器技术,这也是计算机应用中的关键技术。
大家都知道,到目前为止绝大部分计算机处理的都是数字信号。
自从有计算机以来就需要传感器把模拟信号转换成数字信号计算机才能处理。
2、RFID标签也是一种传感器技术,RFID技术是融合了无线射频技术和嵌入式技术为一体的综合技术,RFID在自动识别、物品物流管理有着广阔的应用前景。
3、政府应该加大对产业的投入,这个投入可以不是资金,而是给企业更多的政策,特别是在操作系统、开发工具、IC设计等产业链中高端领域上从政策到资金都要加大投入。
在管理上引入重大资金投向问责制,对长期投入资金不能市场化、产业化的项目,定期论证评估,不能达标的关停并转甚至要追究责任。
4、减少盲目引进项目,在嵌入式与物联网的发展中,核心技术坚持鼓励国产化,从资金上、税收上加大力度向自主研发产品倾斜。
杜绝盲目引进产业链的中高端技术,特别是不能出现像其他行业一样,重复引进同一个外国品牌多条生产线的状况。
物联网关键技术介绍在当今科技飞速发展的时代,物联网(Internet of Things,IoT)正逐渐成为我们生活和工作中不可或缺的一部分。
从智能家居到工业自动化,从智能交通到医疗保健,物联网的应用无处不在。
而实现这些应用的背后,是一系列关键技术的支撑。
接下来,让我们一起深入了解一下物联网的关键技术。
一、传感器技术传感器是物联网的“触角”,负责感知和采集物理世界中的各种信息。
无论是温度、湿度、压力、光照等环境参数,还是物体的位置、速度、加速度等运动状态,都可以通过传感器转化为电信号,进而被物联网系统所获取和处理。
例如,在智能家居中,温度传感器可以实时监测室内温度,并将数据传输给智能空调系统,实现自动调节温度;在智能交通领域,车辆上的加速度传感器和陀螺仪可以监测车辆的行驶状态,为自动驾驶提供重要的数据支持。
随着技术的不断进步,传感器的种类越来越丰富,精度和可靠性也不断提高。
同时,传感器的微型化、低功耗化和智能化发展趋势,也使得它们能够更加方便地集成到各种设备中,为物联网的广泛应用奠定了基础。
二、无线通信技术要将传感器采集到的数据传输到云端或其他终端设备,就需要可靠的无线通信技术。
目前,在物联网中应用较为广泛的无线通信技术包括蓝牙、WiFi、Zigbee、LoRa、NBIoT 等。
蓝牙和WiFi 适用于短距离、高速率的数据传输,常用于智能家居、智能穿戴设备等场景。
Zigbee 则具有低功耗、自组网等特点,适用于大规模的传感器网络。
LoRa 和 NBIoT 是专为物联网设计的低功耗广域网(LPWAN)技术,能够实现远距离、低功耗的数据传输,适用于智能城市、农业物联网等领域。
不同的无线通信技术各有优缺点,在实际应用中需要根据具体的需求和场景进行选择。
例如,对于需要实时传输大量数据的场景,可以选择 WiFi 或蓝牙;对于分布范围广、数据量较小的传感器网络,LoRa 或 NBIoT 可能是更好的选择。
三、云计算与大数据技术物联网产生的数据量极其庞大,如果将这些数据全部存储在本地设备中进行处理,显然是不现实的。
列举物联网的关键技术
1.物联网标识技术:使用线路、无线以及其他特殊的技术,为任何物体编号和标识,以便在物联网环境中互相识别和通信;
2.物联网感知技术:通过传感器、摄像头和其他实时侦测设备,捕获环境中的物理信号;
3.物联网网络技术:通过有线和无线网络,根据特定应用实时传输、接收、交换数据;
4.物联网计算技术:使用分布式存储和计算技术,处理物联网传感器网络中的庞大数据量;
5.物联网安全技术:使用加密技术和身份认证等技术,对物联网环境中的数据进行安全控制,保护信息安全;
6.物联网交互技术:通过用户界面和应用程序技术,为物联网应用实现实时信息交互,实现物体之间的即时交流。
物联网的关键技术第一点:物联网的定义与特点物联网,即Internet of Things(IoT),是指通过互联网、传统通信网络等信息载体,实现物与物相连的网络。
物联网把各种信息传感设备与网络结合起来,实现人、机、物的互联互通,从而实现智能化管理和控制。
物联网的主要特点有:1.智能互联:物联网不仅仅是物的简单连接,更重要的是通过智能处理,实现对物的实时监控和管理。
2.高度自动化:通过物联网,很多传统的需要人工操作的流程可以自动化完成,大大提高效率。
3.数据量大:物联网涉及到的设备数量极为庞大,因此产生的数据量也非常巨大。
4.低功耗:物联网设备大多是小型的,嵌入式的,因此低功耗是其重要的特点。
5.安全性:由于物联网涉及到的设备众多,且与个人、企业的敏感信息密切相关,因此安全性是物联网必须考虑的问题。
第二点:物联网的核心技术物联网的核心技术可以分为以下几个方面:1.传感器技术:传感器是物联网的感知层的关键组成部分,它可以将各种物理信号转化为可传输的电信号,是物联网获取信息的重要手段。
2.通信技术:物联网的设备需要通过各种通信技术连接到网络,目前主要的技术有Wi-Fi、蓝牙、ZigBee、LoRa等。
3.大数据技术:由于物联网的数据量大,因此需要使用大数据技术进行数据的存储、处理和分析。
4.云计算技术:云计算为物联网提供了强大的计算能力,使得物联网的智能处理成为可能。
5.安全技术:物联网的安全问题包括设备的安全、数据的安全、网络的安全等,需要使用各种安全技术进行保护。
6.人工智能技术:物联网的智能处理需要依赖人工智能技术,如机器学习、深度学习等。
以上就是物联网的关键技术,希望对大家有所帮助。
第三点:物联网的应用领域物联网的应用领域非常广泛,几乎涵盖了所有的行业。
以下是一些主要的应用领域:1.智能家居:通过物联网技术,家庭中的各种设备如灯光、空调、电视、安全系统等可以连接到一起,实现远程控制和自动化管理。
物联网的关键技术摘要物联网是一个基于互联网、传统电信网等信息承载体,让所有能够被独立寻址的普通物理对象实现互联互通的网络,是新一代信息技术的重要组成部分,近年来发展迅速,具有广阔的应用前景[1]。
作为动态的全球网络基础设施,它的根本是物与物、人与物之间的信息传递与控制。
物联网技术是一项综合性的技术,涵盖了从信息获取、传输、存储、处理直至应用的全过程,其关键在于传感器和传感网络技术的发展和提升,根据侧重点不同物联网技术的划分标准也不同,国际电信联盟的报告分为四大关键性技术:标签物品的RFID、感知事物的传感网络技术、思考事物的智能技术、微缩事物的纳米技术[2]。
本文首先介绍这些技术的基本原理和发展,并就其中的几个核心技术进行详细的认识和探究,同时分析技术应用背后面临的问题和挑战,为物联网的发展提出更具前瞻性的建议。
关键词:物联网关键技术 RFIDAbstractThe Internet of things is a based on the information such as the Internet, the traditional telecommunication network bearer, so that all can be independently addressable ordinary physical objects to achieve interoperability of networks is an important part of the new generation of information technology, the rapid development in recent years, with a broad Prospects. As a dynamic global network infrastructure, it is simply the transmission of information and control things and things, between persons and things. Things technology is an integrated technology, covering the information obtained from the transmission, storage, processing until the whole process of the application, the key lies in the sensor and sensor network technology development and promotion, according to the different focus of networking technology different criteria for the classification, the International Telecommunication Union report is divided into four key technologies: label items RFID, sensor network technology perceive things, think about things smart technology, miniature things nanotechnology. This paper describes the basic principles and development of these technologies and a detailed understanding and exploring on a few of the core technology, and analyzes the problems and challenges facing the technology behind the application, put forward more proactive proposals for the development of things.Key words:Web of Things,key technology,RFID目录第1章引言 (1)第2章物联网关键技术 (2)2.1 感知技术 (2)2.1.1 RFID (2)2.1.2 传感器 (3)2.2 网络通信技术 (3)2.2.1 M2M (3)2.2.2 无线传感网络 (4)2.3 数据融合与智能技术 (4)2.4 纳米技术 (5)第3章物联网现存问题 (5)3.1 技术标准的统一与协调 (5)3.2 地址问题 (5)3.3 多种技术融合问题 (5)3.4 安全问题 (6)第4章结束语 (6)参考文献 (7)第1章引言物联网是将无处不在的末端设备和设施,包括具备“内在智能”的传感器、移动终端、工业系统、数控系统、家庭智能设施、视频监控系统等和“外在使能”的,如贴上RFID的各种资产、携带无线终端的个人与车辆等“智能化物件或动物”或“智能尘埃”,通过各种无线/有线的长距离/短距离通讯网络实现互联互通(M2M)、应用大集成、以及基于云计算的SaaS营运等模式,提供安全可控乃至个性化的实时在线监测、定位追溯、报警联动、调度指挥、预案管理、远程控制、安全防范、远程维保、在线升级、统计报表、决策支持、领导桌面等管理和服务功能,实现对“万物”的“高效、节能、安全、环保”的“管、控、营”一体化。
物联网的关键技术汇总在当今科技飞速发展的时代,物联网已经成为了引领创新和变革的重要力量。
物联网将各种设备、物品和系统通过网络连接起来,实现智能化的感知、控制和管理,为我们的生活和工作带来了极大的便利和效率提升。
而要实现物联网的这些功能,离不开一系列关键技术的支持。
一、传感器技术传感器是物联网的“触角”,负责感知和采集物理世界中的各种信息。
它们能够测量温度、湿度、压力、光照、声音、位置等各种参数,并将这些物理量转换为电信号或数字信号,以供后续的处理和分析。
例如,在智能家居中,温度传感器可以感知室内温度,当温度过高或过低时,自动控制空调系统进行调节;在智能交通领域,车辆上的传感器可以实时监测车速、油耗、轮胎压力等信息,为驾驶员提供驾驶辅助和车辆维护建议。
随着技术的不断进步,传感器的性能也在不断提升,体积越来越小、精度越来越高、功耗越来越低,同时成本也在逐渐降低,这使得传感器能够更广泛地应用于物联网的各个领域。
二、射频识别技术(RFID)RFID 技术是一种非接触式的自动识别技术,通过无线电波来识别和读取附着在物体上的标签信息。
RFID 系统由标签、阅读器和天线组成。
标签可以分为有源标签和无源标签。
有源标签自带电源,能够主动发送信号,传输距离较远,但成本较高;无源标签则依靠阅读器发射的电磁场获取能量来工作,传输距离相对较短,但成本较低。
在物流领域,RFID 技术可以实现对货物的快速识别和跟踪,提高物流效率和准确性;在零售行业,商品上的 RFID 标签可以帮助商家实时掌握库存情况,进行智能化的库存管理。
三、无线通信技术物联网中的设备需要通过无线通信技术进行数据的传输和交换。
常见的无线通信技术包括 WiFi、蓝牙、Zigbee、LoRaWAN 等。
WiFi 技术适用于覆盖范围较大、数据传输速率要求较高的场景,如家庭和办公场所的网络连接。
蓝牙技术则主要用于短距离、低功耗的设备之间的通信,如耳机、鼠标、键盘等。
物联网行业五大关键技术
物联网已经成为近几年的热门话题,目前的发展情况也是非常好,特别是在智慧城市、工业、安防、交通等领域,都取得比较不错的成就。
我们在要求物联网实现越来越多功能的同时,其相关技术的难点也越来越高。
要推动物联网产业更好地发展,必须从低功耗、高效率、安全性等方面出发,以下几项关键技术的应用变得更加重要、更加严格。
RFID射频识别技术
它是一种通信技术,可通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或光学接触。
它相当于物联网的“嘴巴”,负责让物体说话。
RFID射频识别技术主要的表现形式就是RFID标签,它具有抗干扰性强(不受恶劣环境的影响)、识别速度快(一般情况下<100ms即可完成识别)、安全性高(所有标签数据都会有密码加密)、数据容量大(可扩充到10K)等优点。
主要工作频率有低频、高频以及超高频。
目前在许多方面都有其应用,例如仓库物资/物流信息的追踪、医疗信息追踪、固定资产追踪。
该技术发展涉及的难点问题是:如何选择最佳工作频率和机密性的保护等,特别是超高频频段的技术应用还不够广泛,技术不够成熟,相关产品价格昂贵,稳定性不高,国际上也没有制定统一的标准。
传感器技术
它能感受规定的被测量,例如温湿度、电压、电流,并按照一定的规律转换成可用输出信号。
它相当于物联网的“耳朵”,负责接收物体“说话”的内容。
例如应用于生活中空调制冷剂液位的精确控制、数字医疗捕捉电压信号等。
其技术难点在于恶劣环境的考验,当受到自然环境中温度等因素的影响,会引起传感器零点漂移和灵敏度的变化。
同时,传感器的安装方法也要注意,考虑如何克服横向力等问题。
无线网络技术
当物体与物体“交流”的时候,就需要高速、可进行大批量数据传输的无线网络,无线网络的速度决定了设备连接的速度和稳定性。
若无线网络的速率太低,就会出现设备反应滞后或者连接失败等问题。
目前,我们使用的大部分网络属于4G,4G给通信市场带来的变革是十分巨大的,但是在我们即将面世的5G面前都不算什么,据悉,5G的峰值理论传输速度可达每秒数10Gb,可以说一部超高清画质电影可在1秒之内下载完成,5G作为第五代移动通信技术,将把移动市场推到一个全新的高度,而物联网的发展也因其得到很大的突破。
我国工信部早在2015年底积极部署并推动5G单点测试技术,力争在2020年实现5G网络的商用。
人工智能技术
它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能虽然也是现在热门研究之一,但是它与物联网密不可分,AI技术它相当于物联网的“大脑”,负责学习与思考,研究领域有智能机器人、虚拟现实技术与应用、工业过程建模与智能控制、机器翻译、知识发现与机器学习等。
物联网和人工智能是密不可分的灵魂伴侣,物联网负责将物体连接起来,而人工智能负责将连接起来的物体进行学习,进而使物体实现智能化。
云计算技术
云计算是把一些相关网络技术和计算机发展融合在一起的产物。
它提供动态的可伸缩的虚拟化的资源的计算模式,具有十分强大的计算能力,高达每秒10万亿次的运算能力,可以模拟核爆炸、预测气候变化和市场发展趋势。
同时它也具有超强的存储能力,同样相当于物联网的“大脑”,具有计算和存储能力。
云计算是使计算分布在大量的分布式计算机上,意味着计算能力也可以作为一种商品进行流通,就像煤气、水电一样,取用方便,费用低廉。
我们经常使用的百度搜素功能就是其应用之一。
小结
公开资料显示,到2025年,全球物联网设备基数预计将达到754亿台,较2017年的200亿台左右,复合增长率达17%。
2015年产业规模达到7500亿元人民币,同比增长29.3%。
预计到2020年,中国物联网的整体规模将超过1.8万亿元。
如今物联网的发展速度飞快,这五大关键技术的发展变得尤其重要,发挥各项技术的优势,突破技术的相关难点,从而解决物联网发展的痛点,迎来更加光明的未来。
在物联网方面云里物里也一直在研究,生产出的BLE蓝牙模块和iBeacon 产品远销80多个国家和地区。
我们仍将坚持在IoT领域长期艰苦奋斗,为客户提供更全面更有竞争力的产品。
本文来源网络,如有侵权请联系删除。