组合数学4章作业答案
- 格式:pdf
- 大小:241.35 KB
- 文档页数:2
组合数学(卢开澄)版 第四章答案4.1,若群G 的元素a 均可表示为某一个元素x 的幂,即a=x m,则称这个群为循环群,若群的元素交换律成立。
即a ,b ∈G 满足,a ·b=b ·a证明:令a= x m ,b= x n ,则a ·b= x m ·x n = x n ·x m=b ·a ,因此是阿贝尔群4.2若x 是群G 的一个元素,存在一最小的正整数m ,使x m=e ,则称m 为x 的阶,试证: C={e,x,x 2,…x m-1}是G 的一个子群。
证明:一个群G 的不空集合H 作成G 的一个子群的充分必要条件是:1,a b H ab H a H a H-∈⇒∈∈⇒∈,a b 是H 的任意元素。
由题意知C 中的任意两个元素如,a b C ∈则ab C ∈;a C ∈则1a C -∈。
所以21{,,,,}m C e x x x -= 是G 的一个子群。
4.3设G 是阶为n 的有限群,则G 的所有元素的阶都不超过n 。
证明; 因为G 中每有元素都能生成一个与元素等阶的子群,子群的阶当然不能超过群G 的阶;所以则G 的所有元素的阶都不超过n 。
4.4若G 是阶为n 的循环群,求群G 的母元素的数目,即G 的元素可表示a 的幂: a 1 ,a 2 。
a n 的元素a 的数目。
证明: 若一个群G 的每一个元都是G 的某一固定元a 的乘方,我们就把G 叫做循环群;我们也说,G 是由元a 所生成的,并且用符号()G a =来表示。
所以就有一个这样的a ,即就有一个母元素。
4.5 试证循环群G 的子集也是循环群根据子群的定义,循环群G 的子群应满足循环群G 所满足的所有运算。
所以其子群页应该是循环群。
4.6若H 是G 的子群,x 和y 是G 的元素,试证xH ∩yH 或为空,或为xH=yHx,y ∉G若 xH ⋂yH ≠Φ可知:存在g ∈xH,g ∈yH 由g ∈xH,知存在h 1∈H,有g=xh 1;由g ∈yH,知存在h 2∈H,有g=yh 2; 从而有 xh1=yh2 ⇒x=y(h 2h 11-)------------式1任取z ∈xH,则存在h ∈H,有z=xh-------------------式2将-式1代入-式2: z=y(h 2h 11-)h=y(h 2h 11-h)--------- -式3H 是子群,有h 1,h 2,h ∈H 可推知,h 2h 11-h ∈H从而 y(h 2h 11-h) ∈yH.再由式3知 z ∈yH,这样我们就可推知xH ⊆yH 同理可推得 yH ⊆xH综上知道 yH=xH4.7若H 是G 的子群,H =k ,试证:xH =k ,其中x ∈GH =k设 H={n h h h h 32,1,} 同时对于i,j ∈{k ,3,2,1} 当i ≠j 时,有ah i≠ah j(否则,若有ah i =ah j ,由消去律得h i =h j ,矛盾) 表明{}n h h h h 32,1, 为n 个不同元而aH 恰有这些元组成, 故 aH =k, ∴aH =H4.8有限群G 的阶为n ,H 是G 的子群,则H 的阶必除尽G 的阶。
组合数学第四版答案组合数学第四版答案【篇一:组合数学参考答案(卢开澄第四版)60页】>1.1 题从{1,2,……50}中找两个数{a,b},使其满足(1)|a- b|=5;(2)|a-b|?5;解:(1):由|a-b|=5?a-b=5或者a-b=-5,由列举法得出,当a-b=5时,两数的序列为(6,1)(7,2)……(50,45),共有45对。
当a-b=-5时,两数的序列为(1,6),(2,7)……(45,50)也有45对。
所以这样的序列有90对。
(2):由题意知,|a-b|?5?|a-b|=1或|a-b|=2或|a-b|=3或|a-b|=4 或|a-b|=5或|a-b|=0;由上题知当|a-b|=5时有90对序列。
当|a- b|=1时两数的序列有(1,2),(3,4),(2,1)(1,2)…(49,50),(50,49)这样的序列有49*2=98对。
当此类推当|a-b|=2,序列有48*2=96对,当|a-b|=3时,序列有47*2=94对,当|a-b|=4时,序列有46*2=92对,当|a-b|=0时有50对所以总的序列数=90+98+96+94+92+50=5201.2题5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列?(b) 女生两两不相邻有多少种不同的排列?(c) 两男生a 和b之间正好有3个女生的排列是多少?所以总的排列数为上述6种情况之和。
1.3题m个男生,n个女生,排成一行,其中m,n都是正整数,若(a)男生不相邻(m?n?1); (b)n个女生形成一个整体;(c)男生a和女生b排在一起;分别讨论有多少种方案。
解:(a) 可以考虑插空的方法。
n个女生先排成一排,形成n+1个空。
因为m?n?1正好m个男生可以插在n+1个空中,形成不相邻的关系。
则男生不相邻的排列个数为ppnnn?1m(b) n个女生形成一个整体有n!种可能,把它看作一个整体和m个男生排在一起,则排列数有(m+1)!种可能。
作业习题答案习题二2.1证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。
证明:假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少有2个人认识的人数相同。
假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。
2.3证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。
证明:方法一:有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。
由鸽巢原理知,至少有2个坐标的情况相同。
又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。
因为奇数+奇数= 偶数;偶数+偶数=偶数。
因此只需找以上2个情况相同的点。
而已证明:存在至少2个坐标的情况相同。
证明成立。
方法二:对于平面上的任意整数坐标的点而言,其坐标值对2取模后的可能取值只有4种情况,即:(0,0) ,(0,1) ,(1,0), (1,1),根据鸽巢原理5个点中必有2个点的坐标对2取模后是相同类型的,那么这两点的连线中点也必为整数。
2.4一次选秀活动,每个人表演后可能得到的结果分别为“通过”、“淘汰”和“待定”,至少有多少人参加才能保证必有100个人得到相同的结果?证明:根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。
2.9将一个矩形分成(m+1)行112mm+⎛⎫+⎪⎝⎭列的网格每个格子涂1种颜色,有m种颜色可以选择,证明:无论怎么涂色,其中必有一个由格子构成的矩形的4个角上的格子被涂上同一种颜色。
证明:(1)对每一列而言,有(m+1)行,m种颜色,有鸽巢原理,则必有两个单元格颜色相同。
(2)每列中两个单元格的不同位置组合有12m+⎛⎫⎪⎝⎭种,这样一列中两个同色单元格的位置组合共有12mm+⎛⎫⎪⎝⎭种情况(3)现在有112m m +⎛⎫+⎪⎝⎭列,根据鸽巢原理,必有两列相同。
组合数学第4章答案4.1证明所有的循环群是ABEL 群 证明:nn ,,**×x ,x m nm na b G G a b b a x xa b b a ++∈==∴=mmm 循环群也是群,所以群的定义不用再证,只需证明对于任意是循环群,有成立,因为循环群中的元素可写成a=x 形式所以等式左边x 等式右边x =,,即所有的循环群都是ABEL 群。
4.2x 是群G 的一个元素,存在一最小的正整数m ,使x m =e ,则称m 为x的阶,试证:C={e,x,x 2, …,x m-1} 证:x 是G 的元素,G 满足封闭性所以,xk 是G 中的元素 C ∈G再证C 是群:1、x i , x j ∈C , x i ·x j = x i+j 若i+j<=m-1,则x i+j ∈C若i+j>m,那么x i+j =x m+k =x m ·x k =x k ∈C 所以C 满足封闭性。
2、存在单位元e.3、显然满足结合性。
4、存在逆元, 设x a ·x b =e=x m x b =x m-ax a ∈C, (x a )-1= x b =x m-a4.3设G 是阶为n 的有限群,则G 的所有元素的阶都不超过n.证明:设G 是阶为n 的有限群,a 是G 中的任意元素,a 的阶素为k , 则此题要证n k ≤首先考察下列n+1个元素a a a a a n 1432,....,,,+由群的运算的封闭性可知,这n+1个元素都属于G ,,而G 中仅有n 个元素,所以由鸽巢原理可知,这n+1个元素中至少有两个元素是相同的,不妨设为aaji i+=(n j ≤≤1)aa ajii*=由群的性质3可知,a j是单位元,即a j=e ,又由元素的阶数的定义可知,当a 为k 阶元素时a k=e ,且k 是满足上诉等式的最小正整数,由此可证n j k ≤≤4.4 若G 是阶为n 的循环群,求群G 的母元素的数目,即G 的元素可表示a 的幂:a,a2……..an解:设n=p 1a1…….p k ak ,共n 个素数的乘积,所以群G 中每个元素都以用这k 个素数来表示,而这些素数,根据欧拉定理,一共有 Φ(n)=n(1-1/p 1)………(1-1/p k )所以群G 中母元素的数目为n(1-1/p 1)………(1-1/p k )个. 4.5证明循环群的子群也是循环群证明:设H 是G=<a>的子群,若H=<e>,显然H 是循环群,否则取H 中最小的正方幂元m a ,下面证明m a 是H 的生成元,易见m a ⊆H ,只要证明H 中的任何元素都可以表成m a 的整数次方,由除法可知存在q 和r,使得l=qm+r,其中0≤r ≤m-1,因此有r a =qm l a -,因为m a 是H 中最小的正方幂元,必有r=0,这就证明出la=mq a }{m a ∈证明完毕。
第1章 排列与组合1.1 从{1,2,…,50}中找一双数{a,b},使其满足:()5;() 5.a ab b a b -=-≤[解] (a) 5=-b a将上式分解,得到55a b a b -=+⎧⎨-=-⎩a =b –5,a=1,2,…,45时,b =6,7,…,50。
满足a=b-5的点共50-5=45个点. a = b+5,a=5,6,…,50时,b =0,1,2,…,45。
满足a=b+5的点共45个点. 所以,共计2×45=90个点. (b) 5≤-b a(610)511(454)1651141531+⨯+⨯-=⨯+⨯=个点。
1.2 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列? (b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?[解] (a) 女生在一起当作一个人,先排列,然后将女生重新排列。
(7+1)!×5!=8!×5!=40320×120=4838400(b) 先将男生排列有7!种方案,共有8个空隙,将5个女生插入,故需从8个空中选5个空隙,有58C 种选择。
将女生插入,有5!种方案。
故按乘法原理,有:7!×58C ×5!=33868800(种)方案。
(c) 先从5个女生中选3个女生放入A ,B 之间,有35C 种方案,在让3个女生排列,有3!种排列,将这5个人看作一个人,再与其余7个人一块排列,有(7+1)! = 8!由于A ,B 可交换,如图**A***B** 或 **B***A**故按乘法原理,有:2×35C ×3!×8!=4838400(种)1.3 m 个男生,n 个女生,排成一行,其中m ,n 都是正整数,若(a) 男生不相邻(m ≤n+1); (b) n 个女生形成一个整体; (c) 男生A 和女生B 排在一起; 分别讨论有多少种方案.[解] (a) 先将n 个女生排列,有n!种方法,共有n+1个空隙,选出m 个空隙,共有mn C 1+种方法,再插入男生,有m!种方法,按乘法原理,有:n!×mn C 1+×m!=n!×)!1(!)!1(m n m n -++×m!=)!1()!1(!m n n n -++种方案。
习题四4。
1。
若群G的元素a均可表示为某一元素x的幂,即a= x m,则称这个群为循环群.若群的元素交换律成立,即a , b G满足a b = b a则称这个群为阿贝尔(Abel)群,试证明所有的循环群都是阿贝尔群。
[证].设循环群(G,)的生成元是x0ÎG。
于是,对任何元素a ,b G,m,nÎN,使得a= x0m , b= x0n,从而a b = x0m x0n= x0m +n (指数律)= x0n +m (数的加法交换律)= x0n x0m(指数律)= b a故运算满足交换律;即(G, )是交换群.4.2。
若x是群G的一个元素,存在一个最小的正整数m,使x m=e,则称m为x的阶,试证:C={e,x,x2, ,x m—1}是G的一个子群。
[证].(1)非空性C :因为eÎG;(2)包含性C G:因为xÎG,根据群G的封闭性,可知x2, ,x m—1,(x m=)eÎG,故C G;(3)封闭性 a , b C a b C: a , b C,k,lÎN (0k〈m,0l〈m),使a = x k,b = x l,从而a b = x k x l = x(k+l)mod m C(因为0 (k+l) mod m〈m) ;(4)有逆元 a C a —1C: a C,kÎN (0k<m),使a = x k, 从而a -1= x m—k C(因为0 m-k < m)。
综合(1) (2)(3) (4),可知(C, )是(G, )的一个子群.4.3。
若G是阶为n的有限群,则G的所有元素的阶都不超过n。
[证]。
对任一元素xÎG,设其阶为m,并令C={e,x,x2,,x m-1},则由习题4.2.可知(C, )是(G, )的一个子群,故具有包含性C G。
因此有m = |C|£|G|= n所以群G的所有元素的阶都不超过n。
4.3 组合第1课时组合与组合数A级必备知识基础练1.(2022天津河西高二期中)学校要求学生从物理、历史、化学、生物、政治、地理这6科中选3科参加考试,规定先从物理和历史中任选1科,然后从其他4科中任选2科,不同的选法种数为()2.某新农村社区共包括n个自然村,且这些村庄分布零散,没有任何三个村庄在一条直线上,现要在该社区内建“村村通”工程,共需建公路的条数为28,则n=()3.(2022湖北鄂东南教改联盟高二期中)某中学招聘5位老师,其中安排2位老师去高一,安排2位老师去高二,安排1位老师去高三,则不同的安排方法有()4.国庆期间,甲、乙等6人计划分两组(每组3人)去旅行,每组将在云南丽江、广西桂林、河北石家庄、内蒙古呼和浩特选1个地方,且每组去的地方不同.已知甲不想去云南,乙只想去广西,其余4人这4个地方都想去,则他们分组旅行的方案种数为()5.(2022重庆南开中学高二期中)在某社会实践活动中,某班有一个7人小组参加烧烤活动,老师将从小组成员中选出2名同学整理烧烤架,再选出3名同学生火.若小组中的甲、乙两位同学至多有1人生火,则不同的安排方案种数为()6.若=12,则n= .7.方程中的解x= .8.(2022北京西城高二期末)生物兴趣小组有12名学生,其中正、副组长各1名,组员10名.现从该小组选派3名同学参加生物学科知识竞赛.(1)如果正、副组长2人中有且只有1人入选,共有多少种不同的选派方法?(2)如果正、副组长2人中至少有1人入选,且组员甲没有入选,共有多少种不同的选派方法?B级关键能力提升练9.(多选题)(2022安徽铜陵高二期末)已知+0!=4,则m的值可以是()10.(2022福建龙岩高二期中)=()A. B. C. D.11.(2022山东济宁高二期末)2名老师和4名学生共6人参加两项不同的活动,每人参加一项活动,每项活动至少有2人参加,但2名老师不能参加同一项活动,则不同的参加方式的种数为()12.有10台不同的电视机,其中甲型3台,乙型3台,丙型4台.现从中任意取出3台,若其中至少含有两种不同的型号,则不同的取法共有()13.某省派出5个医疗队去支援4个灾区,每个灾区至少分配一个医疗队,则不同的分配方案共有种.(用数字填写答案)14.(2022山东滕州高二期中)要从6名男生4名女生中选出5人参加一项活动.(1)甲当选且乙不当选,有多少种不同的选法?(2)至多有3名男生当选,有多少种不同的选法?C级学科素养创新练15.按照下列要求,分别求有多少种不同的方法?(1)5个不同的小球放入3个不同的盒子;(2)5个不同的小球放入3个不同的盒子,每个盒子至少一个小球;(3)5个相同的小球放入3个不同的盒子,每个盒子至少一个小球;(4)5个不同的小球放入3个不同的盒子,恰有1个空盒.参考答案4.3组合第1课时组合与组合数1.B第一步,从物理和历史中任选1科,有=2种选法;第二步,从其他4科中任选2科,有=6种选法.根据分步乘法计数原理,共有2×6=12种选法.故选B.2.B由于“村村通”公路的修建,是组合问题,故共需要建公路的条数为=28,解得n=8或n=-7(舍去).3.A根据题意,不同的安排方法可以分三步完成:第一步,在5个老师中选出2人,安排去高一,有=10种选法;第二步,在剩下3人中,选出2人,安排到高二,有=3种选法;第三步,将最后1人安排到高三,有1种选法.根据分步乘法计数原理,共有10×3×1=30种不同的安排方法.故选A.4.A若甲和乙都去广西桂林,则有=12种方案;若甲不去广西桂林,则有=12种方案.故他们分组旅行的方案种数为12+12=24.故选A.5.C小组中的甲、乙两位同学都生火,共有=30种,故甲、乙两位同学至多有1人生火的不同的安排方案种数为-30=180.故选C.6.8由题得,=n(n-1)(n-2),n(n-1),所以n(n-1)(n-2)=12×n(n-1).因为n∈N+,且n≥3,解得n=8.7.2原式可化为.∵0≤x≤5,∴x2-23x+42=0,解得x=21(舍去)或x=2,即x=2为原方程的解.8.解(1)正、副组长2人中有且只有1人入选,则选派方法数为=90.(2)正、副组长2人都入选,且组员甲没有入选,选派方法数为=9.正、副组长2人中有且只有1人入选,且组员甲没有入选,选派方法数为=72.故正、副组长2人中至少有1人入选,且组员甲没有入选的选派方法数为9+72=81.9.BC∵+0!=4,∴=6.当m=2时,等式成立;当m=3时,等式成立.故选BC.10.A由题可得,=1+5+15=21.对于A,=21,故A正确;对于B,=6,故B错误;对于C,=7,故C错误;对于D,=6×5×4×3=360,故D错误.故选A.11.B由题意参加方式分为两类:第一类,一项活动有1名老师和1名学生,另一项活动有1名老师和3名学生,有种参加方式;第二类,一项活动有1名老师和2名学生,另一项活动有1名老师和2名学生,有种参加方式.根据分类加法计数原理,不同的参加方式的种数共有=28.故选B.12.C根据题意,从10台不同的电视机中任意取出3台,有=120种取法,其中只有甲型电视机的取法有=1种,只有乙型电视机的取法有=1种,只有丙型电视机的取法有=4种,则其中至少含有两种不同的型号的取法有120-1-1-4=114种.故选C.13.240派出5个医疗队去支援4个灾区,每个灾区至少分配一个医疗队,则其中有一个灾区安排两个医疗队,剩下的3个灾区各安排一个医疗队,可以分两步:第一步,先选出一个灾区分配两个医疗队,有种分配法;第二步,为剩下的3个灾区各分配一个医疗队有种分配法.根据分步乘法计数原理,不同的分配方案有=240种.14.解(1)若甲当选,乙不当选,则从剩余8人选4人即可,即有=70种选法.(2)至多有3名男生当选,则有1男4女,2男3女,3男2女三种情况,共有=6+60+120=186种选法.15.解(1)5个不同的小球放入3个不同的盒子,每个小球都有3种可能,利用分步乘法计数原理可得不同的方法有35=243种.(2)5个不同的小球放入3个不同的盒子,每个盒子至少一个小球,先把5个小球分组,分法有2,2,1和3,1,1两种,再放入3个不同的盒子,故不同的方法共有=150种.(3)5个相同的小球放入3个不同的盒子,每个盒子至少一个小球,类似于在5个小球间的空隙中,放入2个隔板,把小球分为3组,故不同的方法共有=6种.(4)5个不同的小球放入3个不同的盒子,恰有一个空盒,先把5个小球分2组,分法有3,2,0和4,1,0两种,再放入3个不同的盒子,故不同的方法共有(=90种.。