调速型液力偶合器原理PPT幻灯片
- 格式:ppt
- 大小:4.50 MB
- 文档页数:24
调速型液力偶合器的工作原理调速型液力偶合器,由于具有空载及慢速起动、无级调速等功能,因而在国民经济的各行业得到广泛应用。
1、液力偶合器基本构成下图是调速型液力偶合器基本构成原理图。
▲液力偶合器基本构成原理图1—背壳2—涡轮3—泵轮4—外壳5—电动执行器6—勺管7—油泵8—压力表9—温度表10—铂热电阻11—压力变送器12—油冷却器13—综合参数测试仪(现场用)14—综合参数测试仪(控制室用)15—转速传感器16—转速仪17—伺服放大器18—电动操作器19—液位传感器20—液位报警器21—电加热器22—电加热自动控制器主要是由泵轮、涡轮和旋转外套组成。
由泵轮与涡轮、涡轮与旋转外套之间分别形成两个腔室。
泵轮与涡轮之间形成的是环形空腔,两轮内分别装有20~40片径向叶片,涡轮内叶片比泵轮叶片少1~4片,以免共振。
泵轮安装在主动轴端部,主动轴与电动机轴连接;而涡轮与从动轴连接,从动轴连接泵的转轴。
当泵轮在主动轴驱动下旋转时,循环圆内的工作油在离心力作用下沿径向流道外甩而升压,在出口以径向相对速度与圆周速度的合速度冲入涡轮进口径向流道,工作油在涡轮的径向流道内动量矩降低了,进而对涡轮产生了转动力矩,使涡轮旋转。
工作油消耗了能量之后从涡轮出口流出,又流入泵轮入口径向流道,以重新获得能量。
就这样,工作油在循环圆内周而复始地自然循环,传递能量。
另一空腔是由涡轮与旋转外套构成,腔内有从泵轮与涡轮的间隙流出的工作油,随着旋转外套和涡轮旋转。
在离心力作用下,工作油在此腔室内沿外圆形成油环。
泵轮的转速是固定的,而涡轮的转速则是根据工作油量的多少而改变,工作油越多,泵轮传给涡轮的力矩越大,则涡轮转速越高,反之涡轮转速越低。
因而,只要改变工作油量就可以改变涡轮转速。
而循环圆内工作油量的控制有三种方法:(1)移动旋转内套空腔中勺管端口的位置改变工作油量;(2)改变由工作油泵经控制阀进入循环圆内的进油量;(3)这两种方法的联合使用。
调速型液力偶合器工作原理
调速型液力偶合器是一种根据工作条件来调整输出转矩和转速的液力偶合器。
它的工作原理如下:
液力偶合器由一个驱动轴和一个被驱动轴组成,中间通过液力传递能量。
其主要组成部分包括泵轮、涡轮和导向叶片。
当输入轴(驱动轴)转动时,泵轮也会随之转动。
泵轮的转动会产生液体的离心力,将液体流向涡轮,并使其开始旋转。
涡轮的旋转会将动能传递给被驱动轴,从而将转矩传递给被驱动轴。
液体从涡轮出口流出后会经过导向叶片进行重定向,以循环回到泵轮形成一个闭合的液力传递系统。
在液力偶合器中,泵轮和涡轮之间存在转差,从而产生涡流,涡流带走了一部分转动能量。
因此,液力偶合器的输出转矩小于输入转矩。
调速型液力偶合器通过改变导向叶片的角度,可以改变液力传递系统中的阻尼特性。
当导向叶片的角度增大时,液体流动的阻力增加,从而减小液力传递效率,使输出转矩和转速降低。
相反,当导向叶片的角度减小时,液体流动的阻力减小,液力传递效率增加,使输出转矩和转速增加。
通过调整导向叶片角度,调速型液力偶合器可以在不同工作条件下调整输出转矩和转速,以适应不同的负载要求和工艺参数。