第五章 固定床反应器
- 格式:pptx
- 大小:3.40 MB
- 文档页数:47
单元五固定床反应器仿真操作一.单元目标1.了解固定床反应器结构及反应特点。
2.掌握固定床反应器开车、停车操作方法。
3.掌握固定床反应器正常运行的工艺指标及相互影响关系,并寻求最佳工艺条件。
4.正确分析常见事故产生的原因,能判断常见事故,掌握事故正确的处理方法。
5.熟悉各种设备、测量仪表的名称及作用,能识读带控制点工艺流程图。
二.单元内容本流程为利用催化加氢脱乙炔的工艺。
乙炔是通过等温加氢反应器除掉的,反应器温度由壳侧中冷剂温度控制。
反应原料分两股,一股为约-15℃的以C2为主的烃原料,进料量由流量控制器FIC1425控制;另一股为H2与CH4的混合气,温度约10℃,进料量由流量控制器FIC1427控制。
FIC1425与FIC1427为比值控制,两股原料按一定比例在管线中混合后经原料气/反应气换热器(EH-423)预热,再经原料预热器(EH-424)预热到38℃,进入固定床反应器(ER-424A/B)。
预热温度由温度控制器TIC1466通过调节预热器EH-424加热蒸汽(S3)的流量来控制。
ER-424A/B中的反应原料在2.523MPa、44℃下反应生成C2H6。
当温度过高时会发生C2H4聚合生成C4H8的副反应。
反应器中的热量由反应器壳侧循环的加压C4冷剂蒸发带走。
C4蒸汽在水冷器EH-429中由冷却水冷凝,而C4冷剂的压力由压力控制器PIC-1426通过调节C4蒸汽冷凝回流量来控制,从而保持C4冷剂的温度。
比值调节:工业上为了保持两种或两种以上物料的比例为一定值的调节叫比值调节。
对于比值调节系统,首先是要明确那种物料是主物料,而另一种物料按主物料来配比。
在本单元中,FIC1425(以C2为主的烃原料)为主物料,而FIC1427(H2)的量是随主物料(C2为主的烃原料)的量的变化而改变。
主要设备:EH-423:原料气/反应气换热器EH-424:原料气预热器EH-429:C4蒸汽冷凝器EV-429:C4闪蒸罐ER424A/B:C2H2加氢反应器流程图:固定床反应器带控制点工艺流程图固定床反应器DCS 界面固定床反应器现场界面三.操作步骤1.正常运行正常工况下工艺参数(1)正常运行时,反应器温度TI1467A:44.0℃,压力PI1424A控制在2.523MPa。
固定床反应器结构及原理又称填充床反应器,装填有固体催化剂或固体反应物用以实现多相反应过程的一种反应器。
固体物通常呈颗粒状,粒径2~15mm左右,堆积成一定高度(或厚度)的床层。
床层静止不动,流体通过床层进行反应。
它与流化床反应器及移动床反应器的区别在于固体颗粒处于静止状态。
固定床反应器主要用于实现气固相催化反应,如氨合成塔、二氧化硫接触氧化器、烃类蒸汽转化炉等。
用于气固相或液固相非催化反应时,床层则填装固体反应物。
涓流床反应器也可归属于固定床反应器,气、液相并流向下通过床层,呈气液固相接触。
1、轴向绝热式固定床反应器流体沿轴向自上而下流经床层,床层同外界无热交换。
下图是绝热式固定床反应器的示意图。
它的结构简单,催化剂均匀堆置于床内,床内没有换热装置,预热到一定温度的反应物料流过床层进行反应就可以了。
(1)径向绝热式固定床反应器流体沿径向流过床层,可采用离心流动或向心流动,床层同外界无热交换。
径向反应器与轴向反应器相比,流体流动的距离较短,流道截面积较大,流体的压力降较小。
但径向反应器的结构较轴向反应器复杂。
以上两种形式都属绝热反应器,适用于反应热效应不大,或反应系统能承受绝热条件下由反应热效应引起的温度变化的场合。
由多根反应管并联构成。
管内或管间置催化剂,载热体流经管间或管内进行加热或冷却,管径通常在25~50mm之间,管数可多达上万根。
列管式固定床反应器适用于反应热效应较大的反应。
此外,尚有由上述基本形式串联组合而成的反应器,称为多级固定床反应器。
例如:当反应热效应大或需分段控制温度时,可将多个绝热反应器串联成多级绝热式固定床反应器,反应器之间设换热器或补充物料以调节温度,以便在接近于最佳温度条件下操作。
(3)对外换热式固定床反应器对外换热式反应器以列管式为多。
通常是在管内放催化剂,管间走热载体(在用高压水或用高压蒸汽作热载体时,则把催化剂放在管间,而使管内走高压流体)。
(4)多段绝热式固定床反应器3、自身换热式反应器(自热式反应器)反应前后的物料在床层中自己进行换热称作自热式反应器。
化工反应过程之固定床反应器固定床反应器是一种常见的化工反应器,广泛应用于工业生产中的催化反应、气体吸附分离、气体净化等领域。
它的特点是反应物固定在反应器内的催化剂床层上,反应过程中通过流体将反应物质质量传递到催化剂表面进行反应,反应生成物质通过床层离开反应器。
固定床反应器的结构主要由反应器本体、进料管、排料管和反应器床层组成。
反应器本体通常由金属材料制成(如不锈钢),具有良好的发热、承压和耐腐蚀性能。
进料管在反应器底部引入反应物质,排料管则在反应器顶部将反应生成物排出。
床层是固定床反应器的核心部分,通常由催化剂颗粒物质装填而成,具有大的比表面积和较高的孔隙度,以提供足够的反应表面积和反应空间。
固定床反应器在化工生产中具有重要的应用。
首先,它广泛用于催化反应。
在固定床反应器中,催化剂床层有效地提供了反应的活性表面,使得反应速率得以提高。
例如,加氢反应、氧化反应、脱氢反应等都可以使用固定床反应器进行。
其次,固定床反应器也被用于气体吸附分离和气体净化。
吸附剂床层能够吸附特定成分,实现气体组分的分离和纯化。
此外,固定床反应器还适用于颗粒物质的固液分离、固气分离等过程。
固定床反应器的工作原理主要包括质量传递和物质平衡两个方面。
在反应物进入床层前,需要先经过预热区,以使其达到适宜的反应温度。
之后,在床层内发生质量传递过程,即反应物质通过流体传递到催化剂表面,发生化学反应。
在反应过程中,需要保持适宜的温度和压力条件,以提供反应的最佳反应速率和选择性。
反应生成物质则随着流体一起流出固定床反应器。
固定床反应器的优势在于:一、反应物质与催化剂的接触充分,反应效率高;二、催化剂寿命长,催化剂载体不易破碎;三、床层的填料物质易于更换和维护;四、反应器体积相对较小,能够实现高度效能的连续化生产。
然而,固定床反应器也有一些缺点需要克服。
首先,反应床层在长时间运行后会出现积碳、堵塞等现象,需进行定期清洗和更换床层。
其次,固定床反应器对反应物料的物理性质要求较高,如化学性质、颗粒度等。
固定床反应器§5.1 固定床反应器的特点凡是流体通过不动的固体物料形成的床层面进行反应的设备称为固定床反应器,而其中尤以利用气态的反应物料,通过由固体催化剂所构成的床层进行反应的气固相催化反应器,在工业生产中应用最为广泛。
如乙烯氧化制环氧乙烷、乙苯脱氢制苯乙烯、乙烯水合制乙醇等反应都在固定床反应器中进行。
固定床反应器之所以成为气固相反应器的主要形式,是和它具有下述优点分不开的。
(1)在生产操作中,除床层极薄和气体流速很低的特殊情况外,床层内气体的流动皆可看成是理想置换流动。
因此其化学反应速度较快,在完成同样生产能力时,所需要的催化剂用量和反应体积较小。
(2)气体停留时间可以严格控制,温度分布可以调节,因而有利于提高化学反应的转化率和选择性。
(3)催化剂不易磨损,可以较长时间连续使用。
(4)适宜于在高温高压下操作。
固定床反应器由于固体催化剂在床层静止不动,也存在一些缺点:(1)化学反应总是伴随着热效应,温度对反应速度影响很大,反应过程要求及时移走或供给热量,但在固定床内,由于催化剂载体往往导热性不良,流体流速受压降限制又不能太大,这就造成了传热和温度控制上的困难。
对于放热反应,在换热式反应器的入口处,因为反应物浓度较高,反应速度较快,放出的热量往往来不及移走,而使物料温度升高,这又促使反应以更快的速度进行,放出更多的热量,物料温度继续升高,直到反应物浓度降低,反应速度降低,反应速度减慢,使传热速度超过了反应速度时,温度才逐渐下降。
所以在放热反应时,通常在换热式反应器的轴向存在一个最高温度点,称为“热点”。
如设计或操作不当,则在强放热反应时,床内热点温度会超过工艺允许的最高温度,甚至失去控制,称为“飞温”。
此时,对反应的选择性、催化剂的活性和寿命、设备的强度等均极不利。
所以,固定床反应器从结构到操作控制所作的种种改进,大多数是为了解决这个问题。
(2)不能使用细粒催化剂,否则流体阻力增大,破环了正常操作,所以催化剂的活性内表面得不到充分利用。