导热高分子复合材料的研究进展
- 格式:pdf
- 大小:386.53 KB
- 文档页数:4
导热高分子复合材料的研究与应用作者:张超来源:《科协论坛·下半月》2013年第11期摘要:社会发展以及工业的发展给工业领域带来了更多改革的可能性,人们对工业产品的功能也提出了更高的要求。
对于导热材料,由于其导性能较好,但是无法满足绝缘的条件。
因此,一种能够中和绝缘性与导热性功能的导热高分子复合材料应运而生,满足了当前生产生活的要求的同时也需要不断在其基础上进行深层次的探索,发挥其在社会各个领域的最大作用,得到最佳的经济效益。
关键词:导热高分子复合材料研究应用中图分类号:TB332 文献标识码:A 文章编号:1007-3973(2013)011-070-02从上世纪40年代以来,人类对于高分子复合材料的研究已经有将近70年的历史,并且在工业材料应用领域得以普遍应用。
但是,随着经济的发展、科技的进步,人们在导热材料应用程度与范围方面提出了更高的要求,不仅仅是满足于传统材料的单一性能,而是对材料优良的综合性能寄予了更高的期望,如用在化工生产以及废水处理的热交换器一方面要有良好的导热能力,另一方面又要能够耐化学腐蚀、耐高温;相应地在电子电气领域,随着集成技术以及组装技术方面的迅猛发展,电子元件以及逻辑电路的占地空间也越来越小,所以传统的高分子复合材料就不仅仅是需要良好的导热的功能,还要能够具备一定的绝缘能力。
但是,由于受到传统工艺的限制,复合材料大部分属于导热性能良好的金属材料,往往不耐腐蚀,当前的技术为了克服导热材料的耐腐蚀性而采用了合金技术以及进行防腐涂层的技术,同时,复合材料的耐热性却降低了。
由于传统导热材料无法满足人们对于工业生产中的应用,因此,新型导热高分子复合材料应运而生,人们更多地将其应用于各个领域。
如何提升导热高分子材料的综合功能成为了工业领域乃至社会各界的重要研究课题。
1 对于导热高分子复合材料的课题研究现状1.1 导热高分子复合材料的运作原理声子、光子以及电子是固体形态内部的导热介质。
高导热金刚石Cu复合材料研究进展
高导热金刚石/铜(Diamond/Copper)复合材料是一种具有高导热性能的材料,由金刚石颗粒和铜基体组成。
这种复合材料结合了金刚石的优异导热性和铜的良好导电性,具有广泛的应用前景。
以下是关于高导热金刚石/铜复合材料研究的一些进展:
1. 制备技术:制备高导热金刚石/铜复合材料的主要方法包括电化学沉积法、热压法、高压高温法和黏结剂法等。
这些方法可以在金刚石颗粒和铜基体之间形成牢固的结合,并实现优异的导热性能。
2. 导热性能:高导热金刚石/铜复合材料具有出色的导热性能,可以达到甚至超过单晶金刚石。
金刚石颗粒的高导热性能和铜基体的良好导电性使这种复合材料能够有效传导热量,具有广泛的热管理应用潜力。
3. 界面热阻:金刚石颗粒和铜基体之间的界面热阻是影响高导热金刚石/铜复合材料导热性能的重要因素。
研究者通过界面改性、介入层和界面强化等方法来减小界面热阻,以提高导热性能。
4. 织构控制:研究者通过优化工艺和添加适当的添加剂,以控制金刚石颗粒在铜基体中的分布和方向,从而改善复合材料的导热性能。
例如,添加剂可以调节金刚石颗粒的尺寸、形状和分散性,以实现更均匀的导热路径。
5. 应用领域:高导热金刚石/铜复合材料在热管理领域有广泛的应用前景,例如半导体封装材料、电子器件散热器、高功率电子器件、激光器冷却器和热电模块等。
总体而言,高导热金刚石/铜复合材料的研究一直是一个活跃的领域。
通过不断优化制备工艺和界面控制技术,希望能够进一步提高复合材料的导热性能,扩大其在热管理应用中的应用范围和效果。
导电高分子材料的研究进展一、本文概述导电高分子材料作为一种新兴的功能材料,因其独特的导电性能和可加工性,在电子、能源、生物医学等领域展现出广阔的应用前景。
本文旨在综述导电高分子材料的研究进展,重点关注其导电机制、性能优化以及实际应用等方面。
我们将简要介绍导电高分子材料的基本概念、分类和导电原理,为后续讨论奠定基础。
接着,我们将重点回顾近年来导电高分子材料在合成方法、性能调控以及导电性能提升等方面的研究成果。
本文还将探讨导电高分子材料在电子器件、能源存储与转换、生物传感器等领域的应用进展,并展望未来的发展趋势和挑战。
通过本文的综述,希望能够为相关领域的研究人员提供有价值的参考信息,推动导电高分子材料的进一步发展。
二、导电高分子材料的分类导电高分子材料可以按照其导电机制、化学结构、应用方式等多种维度进行分类。
从导电机制来看,导电高分子材料主要分为电子导电高分子和离子导电高分子两大类。
电子导电高分子主要依靠其共轭结构中的π电子进行导电,如聚乙炔、聚吡咯、聚噻吩等;而离子导电高分子则通过离子在固态中移动实现导电,如聚电解质、离子液体等。
从化学结构上看,导电高分子材料主要包括共轭聚合物、金属络合物高分子、复合型导电高分子等。
共轭聚合物由于具有大的共轭体系和离域π电子,表现出优异的电子导电性;金属络合物高分子则通过金属离子与高分子链的配位作用,形成导电通道;复合型导电高分子则是通过在绝缘高分子基体中添加导电填料(如碳黑、金属粒子、导电聚合物等),实现导电性能的提升。
在应用方式上,导电高分子材料可以分为结构型导电高分子和复合型导电高分子。
结构型导电高分子本身即具有导电性,可以直接用于电子器件的制备;而复合型导电高分子则需要通过添加导电填料等方式实现导电性能的调控,其导电性能受填料种类、含量、分散状态等多种因素影响。
根据导电高分子材料的导电性能,还可以分为导电高分子、抗静电高分子和高分子电解质等。
导电高分子具有高的导电性,可以作为电极材料、电磁屏蔽材料等;抗静电高分子则主要用于防止静电积累,如抗静电包装材料、抗静电涂层等;高分子电解质则具有离子导电性,可应用于电池、传感器等领域。
高导热复合材料研究进展崔永红;焦剑;汪雷;吕盼盼【摘要】The thermal conducting mechanism and the theoretical models were introduced. The development of thermally conductive polymer based composites and their thermally conductive or hybrid fillers was summarized. Finally,the existent problems in the high thermally conductive polymer based composites were discussed and some suggestions were advocated.%综述了高导热型聚合物基纳米复合材料的导热机理、填充型复合材料的导热模型、高导热型聚合物基复合材料及其导热填料的研究现状。
最后,提出了高导热型聚合物基纳米复合材料存在的问题,并对其发展方向进行了展望。
【期刊名称】《粘接》【年(卷),期】2015(000)001【总页数】5页(P83-87)【关键词】高热导率;导热复合材料;导热模型;纳米填料【作者】崔永红;焦剑;汪雷;吕盼盼【作者单位】西北工业大学理学院应用化学系,陕西西安 710129;西北工业大学理学院应用化学系,陕西西安 710129;西北工业大学理学院应用化学系,陕西西安 710129;西北工业大学理学院应用化学系,陕西西安 710129【正文语种】中文【中图分类】TQ050.43导热高分子复合材料作为热管理材料,广泛应用于国防建设和国民经济中的各个领域。
近年来,电子行业尤其是LED节能灯产业的飞速发展,使导热复合材料的市场需求量大增。
随微电子集成技术和空芯印制板高密度组装技术的高速发展,电子仪器及设备日益朝轻、薄、短、小方向发展。
高导热金属基复合材料的制备与研究进展摘要:随着电子器件芯片功率的不断提高,对散热材料的热物理性能提出了更高的要求。
将高导热、低膨胀的增强相和高导热的金属进行复合得到的金属基复合材料,能够兼顾高的热导率和可调控的热膨胀系数,是理想的散热材料。
本文对以 Si、 SiCp、金刚石、鳞片石墨为增强相的铜基及铝基复合材料的研究进展进行了总结,并就金属基复合材料目前存在的问题及未来的研究方向进行了展望。
关键词:制备;研究进展;金属复合材料提升相和基体原材料的润滑性对复合材料的热性能有很大影响。
除此之外,基体中加强相的趋向和分布、复合材料的相组成和微观结构也会影响到原材料的导热系数。
为了防止复合材料中加强相分别不匀、趋向不匀等问题造成导热系数降低,在挑选复合材料制备方式时,应充分考虑各种方法的优缺点,并完善相关工艺指标,就可以获得导热系数最理想的金属基复合材料。
现阶段,铜基和铝基复合材料的制备技术大概可以分为固相法和液相法两类。
固相法有热压烧结法、高温高压烧结法和等离子放电烧结法等,液相法有搅拌铸造法和熔渗法等。
一、热压烧结法热压是制备复合材料传统的方式,主要加工工艺是将基体与加强相粉末混合匀称,然后放入磨具中增加工作压力,除气后升温至固相线环境温度下,在空气、真空泵及保护气中致密化,产生复合材料。
热压烧结法是金属基复合材料的重要制备方式,此方法的优势是生产出的复合金属质量稳定,加强相和金属粉占比可调。
可是,缺陷非常明显,烧结必须使用磨具,无法制备外观繁杂、尺寸大的金属基复合材料,且工艺成本高。
Goryuk 研发了电子元件基材使用于SiC/Al复合材料的压合工艺流程之中,通过隔热保温时间与压力对SiC/Al复合材料相对密度和导热系数产生的影响。
通过Goryuk的研究最佳的制备参数为:烧结环境温度700摄氏度、烧结工作压力20 MPa、隔热保温时长1 h、保护气为N2。
选用该加工工艺所得到的复合材料导热系数为240 W m-1K-1。
《高导热绝缘高分子复合材料研究》篇一一、引言随着电子设备的快速发展和微型化,对高导热绝缘材料的性能要求越来越高。
为了满足这些需求,研究者们开始探索高导热绝缘高分子复合材料。
这种材料具有优异的导热性能和绝缘性能,同时具备轻质、低成本、易加工等优点,因此具有广泛的应用前景。
本文旨在研究高导热绝缘高分子复合材料的制备方法、性能及其应用。
二、高导热绝缘高分子复合材料的制备方法1. 材料选择高导热绝缘高分子复合材料的制备主要涉及基体材料、导热填料和添加剂的选择。
基体材料通常为高分子聚合物,如聚酰亚胺、聚四氟乙烯等。
导热填料可选择金属氧化物、碳材料等。
添加剂则用于改善材料的性能,如增强导热性能、提高绝缘性能等。
2. 制备方法高导热绝缘高分子复合材料的制备方法主要包括溶液共混法、熔融共混法和原位聚合法等。
其中,溶液共混法是将基体材料与导热填料在溶液中混合,然后通过干燥、热压等工艺制备成复合材料。
熔融共混法则是将基体材料与导热填料在高温下熔融混合,然后冷却固化。
原位聚合法则是将填料与单体混合,通过原位聚合反应制备复合材料。
三、高导热绝缘高分子复合材料的性能研究1. 导热性能高导热绝缘高分子复合材料的导热性能是其最重要的性能之一。
研究表明,通过调整导热填料的种类、含量和分布,可以显著提高复合材料的导热性能。
此外,基体材料的性质、填料的形状和尺寸等因素也会影响材料的导热性能。
2. 绝缘性能高导热绝缘高分子复合材料还具有良好的绝缘性能。
这主要归因于基体材料的绝缘性能以及填料与基体之间的界面效应。
在实际应用中,该材料能够有效地防止电流泄漏和电磁干扰。
3. 其他性能除了导热性能和绝缘性能外,高导热绝缘高分子复合材料还具有优异的机械性能、化学稳定性和耐候性等。
这些性能使得该材料在各种恶劣环境下都能保持良好的性能。
四、高导热绝缘高分子复合材料的应用高导热绝缘高分子复合材料在电子设备、航空航天、新能源等领域具有广泛的应用前景。
导热聚合物复合材料用填料研究进展宋维东/文【摘要】填充型导热聚合物复合材料因具有高热导率、价格低以及易于加工等优点,得到了广泛的应用,其导热系数的提高主要依靠其中添加的导热填料,包括金属类填料、碳类填料以及陶瓷类填料等。
本文综述了不同填料对导热聚合物复合材料性能的影响,并介绍了导热填料的研究进展。
【关键词】聚合物复合材料;导热填料;热导率聚合物材料作为一种新型的功能高分子材料在导热领域展现巨大的应用前景,聚合物材料绝缘性好,且易于成型加工,但聚合物材料最大的缺点是导热性能差,聚合物本身是热的不良导体[1]。
因此为满足微电子、电机电器、航空航天、军事装备等诸多制造业及高科技领域的发展需求,制备具有优良综合性能的高导热聚合物绝缘材料成为研究的热点。
1.导热聚合物材料的种类根据材料制备工艺的不同可以将导热聚合物材料分为本征型导热聚合物和填充型导热聚合物。
本征型导热聚合物是指具有高导热系数的结构聚合物,它是在材料合成及成型加工过程中通过改变材料分子和链接结构获得的特殊物理结构。
填充型导热聚合物是指通过物理共混的方法直接将高导热填料加入到聚合物基体中,以提高聚合物的热导率,该方法加工便捷简单,成本较低,可工业化生产,是目前国内外高导热聚合物材料的主要制备方法[2]。
2.填料对导热聚合物导热性能的影响2.1填料的种类不同填料的导热率不同,其填充的聚合物的导热率也会有所不同,通常填料的导热率越高,聚合物复合材料的导热性能就会越好。
[3]2.2填料的添加量在导热复合材料中,当填料含量较少,粒子之间未能形成相互接触作用,填料对体系的导热性能影响较小,复合材料的热导率不高;当填料达到一定添加量时,填料间接触增多,体系内形成导热网链,使得复合材料的热导率大大提高。
[4]2.3填料的尺寸分布填料的不同尺寸分布也会硬性复合材料的导热性能,对于多组分填料填充型导热复合材料来说,使用大小颗粒混合堆积能够提高材料的热导率。
这是因为小颗粒能够进入大颗粒无法占据的空间,存在于大颗粒之间的间隙中,与大颗粒或小颗粒形成更紧密的堆积,增加中国粉体工业 2020 No.412填料之间的接触,从而提高材料的导热性能。
高分子材料导热性能影响因素研究进展摘要:目前信息化的不断发展,经济社会进程的不断加快,然而人们对高分子材料的了解也越来越多。
但电子产品中的高分子材料因导热性差在使用中常常会产生温升,影响其性能,因此热导率成为高分子材料在航空航天、微电子封装、热交换工程等领域应用中的一个重要参数。
物质内部的热载体主要包括分子、电子、声子、光子等。
声子是晶格振动中的简谐振动的能量量子,是高分子材料传递热量的主要载体。
但高分子材料分子链无规则缠结、相对分子质量高且有多分散性(不均一性)、分子振动及晶格振动的不协调性使其不能很好地利用声子作为荷载体达到高传热的效果。
高分子材料的热导率一般在0.1W/(m·K)量级,不能满足工业应用要求。
通常有2种方法用于提高高分子材料的导热性能。
一是在加工或合成过程中通过改变高分子材料的结构构建本征型导热高分子材料,但制备工艺难度大。
另一种方法是将导热填料与高分子材料复配制备导热高分子材料(TCPs),其具有工艺简单、成本较低、选择性宽等优点,受到广泛关注。
高分子材料导热性能的研究主要集中在聚合物基体结构的调控、导热填料种类、尺寸的选择与配比最优化和制备方法等方面。
关键词:高分子材料;导热性能;影响因素引言材料在人们的日常生活中随处可见,材料能否得到高水平的发展,关系着人们能否获得高质量的生活。
人们在日常生活中通过应用高分子材料,能够获得较多优势,与现代生产相适应。
同时,还能带来较高的经济效益等。
因此,功能高分子材料在工业领域得到了快速的发展。
1高分子材料基本特点高分子材料是以高分子化合物为基体,再加上添加剂而构成的新的材料。
分析高分子材料时我们可以通过化学结构和使用性能两方面进行分析。
高分子材料从化学结构上看,其具有大的分子量,而且具有分散性;高分子材料与所形成的分子链的几何形状不同,它们所体现的性能也是不同的;高分子材料的形成往往还添加了其他化合物,而形成更加复杂的结构,所以高分子材料所呈现的种类和功能也是多样化的。