遥感技术与应用-04遥感图像校正
- 格式:ppt
- 大小:861.00 KB
- 文档页数:42
如何进行遥感图像的几何校正与分类处理遥感图像是通过人造卫星、航空器或遥感器获取的地球表面的图像信息。
在进行遥感图像的处理和分析时,几何校正和分类处理是其中重要的步骤。
本文将重点探讨如何进行遥感图像的几何校正和分类处理,并介绍相关的方法和技术。
一、遥感图像的几何校正遥感图像的几何校正是指将图像中的像素点与地球表面上真实位置进行对应,以消除因成像过程中的非完美性而引入的误差。
几何校正的目的是提高图像的空间分辨率和地理位置精度,从而能够更准确地用于地表特征的分析和监测。
1. 预处理在进行几何校正之前,需要先对遥感图像进行预处理,包括去除大气影响、辐射校正和减噪等。
这些预处理步骤有助于提高图像的质量和准确性。
2. 控制点的选择几何校正过程中需要选择一些已知地理位置的控制点,用于图像与地理坐标系统的对应。
这些控制点可以是地面标志物、地理信息系统(GIS)数据或其他已知位置的遥感图像。
控制点的选择应均匀分布在图像中,并要尽量选择在不同地貌和地物类型上的点,以提高校正的准确性。
3. 变换模型的选择几何校正过程中需要选择适合图像特性和误差来源的变换模型。
常用的变换模型包括线性变换模型、多项式模型和地面控制点法等。
选择合适的变换模型可以提高校正的准确性和效率。
4. 校正方法和工具进行几何校正时,可以使用遥感软件如ENVI、ERDAS等提供的功能和工具。
这些软件提供了多种校正方法和算法,如影像配准、几何校正、快速校正等。
根据具体需求和图像特性选择合适的校正方法和工具,并进行参数设置和调整。
二、遥感图像的分类处理遥感图像的分类处理是指将图像中的像素按照其所代表的地物类型进行分类和划分。
分类处理的目的是将图像中的信息有效地提取出来,并用于地表特征的研究、资源调查和环境监测等。
1. 数据预处理在进行分类处理之前,需要对遥感图像进行数据预处理,包括辐射校正、几何校正、噪声抑制等。
这些预处理步骤可以提高分类的准确性和可靠性。
遥感图像的几何校正原理遥感图像的几何校正原理是指通过对遥感图像进行几何变换,将图像投影到地球表面上的正确位置,以确保图像的几何特征和空间位置的精确性。
遥感图像的几何校正原理是遥感技术中极为重要的一个环节,它涉及到传感器投影模型的建立以及图像的几何校正方法和参数计算等多个方面。
遥感图像的几何校正原理主要包括以下几个方面:1. 传感器的几何投影模型:遥感图像是通过传感器获取到的,而传感器的几何投影模型是校正的基础。
传感器的几何投影模型是描述传感器观测到的像元在地面坐标系中的位置的数学模型,通常包括摄影几何模型和几何投影模型。
摄影几何模型主要用于航片和卫星图像的几何定位,几何投影模型主要用于平面影像和正射影像的几何定位。
根据传感器的类型和几何特性,选择合适的几何投影模型进行校正。
2. 地面控制点的选择:地面控制点是指已知准确地理坐标的地物特征点,通过对图像与地面控制点的匹配,可以确定图像与地面坐标系之间的几何关系。
地面控制点的选择应具有代表性和充分的空间分布,以保证校正的几何精度。
常用的地面控制点包括地面标志物、地物边界等。
3. 图像配准和校正:图像配准是指将图像与地面控制点进行匹配,确定图像在地面坐标系中的位置。
图像校正是通过几何变换将图像投影到正确位置,保证图像的几何特征和空间位置的准确性。
常用的图像校正方法包括多项式变换、分段线性变换和二次变换等。
多项式变换是基于一阶、二阶或高阶多项式函数进行校正的方法,它可以实现图像的平移、旋转、缩放和错切等变换。
分段线性变换是将图像分成若干个区域,然后在每个区域内进行线性变换。
二次变换是将图像分成若干个二次曲面,然后在每个二次曲面内进行变换。
4. 校正参数的计算:校正参数是指用于实现图像校正的参数,一般包括平移、旋转、缩放和错切等参数。
校正参数的计算是校正过程中的关键一步,一般通过最小二乘法、迭代法和控制点测量法等方法来求解。
最小二乘法是一种常用的数学优化方法,通过最小化图像与控制点之间的误差,求解校正参数。
遥感图像校正实验报告1. 引言遥感图像是通过卫星、飞机等遥感平台获取的地球表面的图像信息,具有广泛的应用价值。
然而,由于地球表面的复杂性和遥感平台的特点,遥感图像中可能存在各种影响因素,如大气、地形、光照等。
为了准确地利用遥感图像进行地物分类、资源监测等应用,需要对遥感图像进行校正。
本实验旨在探索并应用遥感图像校正方法,提高遥感图像的质量和准确度。
2. 实验目标本实验的主要目标是:- 理解遥感图像校正的原理和流程;- 掌握遥感图像校正的常用方法;- 运用所学的遥感图像校正方法,对实验数据进行校正,并评估校正效果。
3. 实验步骤3.1 数据准备本实验使用的遥感图像数据是卫星传感器获得的多光谱图像,包含了红、绿和蓝三个波段的数据。
数据提供了RAW格式的图像文件,需要进行预处理和格式转换,以便进行后续的遥感图像校正实验。
3.2 大气校正大气是遥感图像中主要的影响因素之一,大气校正是遥感图像校正中的重要步骤。
本实验采用了大气校正模型,通过计算大气透射率和反射率,对图像进行校正。
3.3 辐射校正辐射校正是遥感图像校正的另一个重要步骤,其目的是消除图像中的辐射差异,使得不同波段的图像能够进行有效的比较和分析。
本实验使用了辐射校正模型,通过计算辐射矫正系数,将原始图像转换为辐射校正后的图像。
3.4 几何校正几何校正是遥感图像校正的最后一步,其目标是消除图像中的几何形变,使得图像中的特征能够准确地对应地面的实际位置。
本实验使用了几何校正模型,通过对图像进行平移、旋转和缩放等操作,实现图像的几何校正。
4. 实验结果和讨论经过上述的步骤,我们成功地对实验数据进行了遥感图像校正。
校正后的图像显示出更好的质量和准确度,可以更好地用于地物分类和资源监测等应用。
然而,值得注意的是,遥感图像校正是一个复杂的过程,涉及到多个影响因素和数学模型。
在实际应用中,应根据具体需求和数据特点,选择合适的校正方法和参数,以达到最佳的校正效果。