金属电化学腐蚀热力学
- 格式:pptx
- 大小:6.87 MB
- 文档页数:39
金属腐蚀电化学热力学1 介绍金属腐蚀是制约金属材料使用寿命的一个主要因素。
它会导致金属物质的质量和性能损失、破坏金属结构的完整性和功能等问题。
解决金属腐蚀问题,对于约束生产和军事用途等领域的安全和可靠性具有重要意义。
电化学热力学是研究金属腐蚀和防护的基础理论,它提供了热力学和动力学方面的基本概念和方法。
2 金属腐蚀金属腐蚀是一种从金属材料表面开始发生的化学反应。
根据腐蚀介质的种类不同,可以分为很多种腐蚀类型,例如在酸性或碱性环境中发生的化学腐蚀、在高温环境下发生的热腐蚀、在海水中发生的海洋腐蚀等等。
3 电化学热力学基础电化学热力学研究了在电化学反应中发生的能量转化和物质转化,研究对象包括纯物质和混合介质。
电化学反应既包括氧化还原反应,也包括非氧化还原反应。
例如,金属在水溶液中发生腐蚀就是非氧化还原反应,而重金属的还原则属于氧化还原反应。
根据能量守恒的原则,电化学反应必须满足能量自由度平衡和物质计量平衡两个条件,这些条件可以通过电动势(电化学电流)和吉布斯自由能来表达。
吉布斯自由能的变化可以用来描述反应的驱动力和平衡状态。
4 符号约定为了方便处理涉及电化学热力学的问题,约定如下的符号:- E:电势(电位)- G:吉布斯自由能(或被称为“自由焓”)- S:熵(系统的随机程度)- H:焓(能量加上压强的乘积)- T:温度- F:法拉第常数(电子和离子的相互作用参量)- n:反应中电子的数目- Q:电化学电量(电荷量)5 电化学反应驱动力发生在电化学反应中的物质转化和能量转化是由自由能的变化所驱动的。
该变化可通过称为“电电势差”(电势差、电位差或电压)的物理量来测量,其单位为“伏特(V)”。
电电势差可以表示为如下的方程式:E = (G_final - G_initial)/nF其中,G_final表示反应结束时的吉布斯自由能,G_initial则表示反应开始时的自由能,n是电子数,F则是法拉第常数。
该式子描述了反应的驱动力的大小和方向,反应是自发的,当E>0时则有外部电源参与。
金属电化学腐蚀热力学王超学号:20114160201(河北联合大学化学工程学院11级化学工程与工艺2班)摘要:通过热力学条件、电位—PH图、合金元素及组织,对电化学腐性机理进行了分析。
结果表明,利用热力学条件和电位—PH图,可以定性判断电化学腐蚀反应趋势和腐蚀产物;提高基体金属的电极电位、降低金属中的第二相含量、控制溶液PH等均有利于提高金属的耐腐蚀性。
关键词:金属电化学腐蚀热力学金属材料以及由它们制成的结构物,在自然环境中或者在工况条件下,由于与其所处环境介质发生化学或者电化学作用而引起的变质和破坏,这种现象称为腐蚀,其中也包括上述因素与力学因素或者生物因素的共同作用。
腐蚀科学的发展历史悠久,古希腊Herodias和古罗马Pinions在2000年前已提出用锡防止铁生锈;我国商代(3000年前)发明锡青铜;出土铁器可见古人防蚀成就。
18世纪工业发展—腐蚀与防护学科形成、发展。
如今,腐蚀科学以及防腐技术应用在了化工、农业、机械制造业、国防等各个方面。
生产生活中,腐蚀无处不在。
腐蚀可以直接造成金属材料的的浪费,造成巨大的经济损失;此外,腐蚀还会给生产过程埋下不易察觉的安全隐患,造成重大的生产安全事故,给国民经济带来重大损失,危及人民生命财产安全。
腐蚀的形式多种多样,包括腐蚀疲劳、应力腐蚀断裂、氢蚀、点蚀、晶间腐蚀、高温腐蚀、化学腐蚀、电化学腐蚀等。
但其中所占比例最大,危害最严重的还是电化学腐蚀。
通过对电化学腐蚀热力学的研究,可以判断电化学腐蚀趋势及腐蚀产物,了解腐蚀机理,从根本上预防腐蚀的发生。
一、金属在电解质溶液中的标准电极电位作判据金属材料的电化学腐蚀的实质是形成了腐蚀原电池,其工作原理如图所示:图示是把大小相等的Zn片和Cu片同时置于盛有稀硫酸的同一烧杯中,并用导线通过毫安表连接起来,以锌为阳极、铜为阴极的原电池装置。
当合上开关,毫安表指针立即偏转,表明有电流通过。
阳极锌失去的电子流向与锌接触的阴极铜,并与阴极铜表面上溶液中的氢离子结合,形成氢离子并聚合成氢气逸出。
第10章腐蚀电化学Corrosion Electrochemistry10.2 腐蚀电化学热力学Thermodynamics of corrosionelectrochemistry第二部分:电化学的应用《电化学》第28讲10.2.1. 金属腐蚀的热力学条件浙江大学电化学2腐蚀电化学热力学1金属腐蚀发生的热力学条件:为什么会发生腐蚀?2金属腐蚀平衡图:电位-pH 图浙江大学电化学1. 金属腐蚀的热力学阳极反应:Me –n eMen+ e,a = a+ RT/nF ln [Me n+]阴极反应:O + n e Re,c = c 0+ RT/nF ln ([O]/[R])e,a < e,c(1)概述3浙江大学电化学41M HCl 水溶液中,Fe 和Cu 是否会发生腐蚀?Fe 在酸性溶液中会发生析氢腐蚀,但Cu 在上述溶液中却不会发生析氢腐蚀EvidenceFe = Fe 2+ + 2e (1)Cu = Cu2+ + 2e (1)2H + (1M) + 2e = H 2(2)计算数值均相对于氢标电极浙江大学电化学5Cu在自然环境中不发生腐蚀了吗?NO!若溶液中有氧气存在时,则有:阴极:O 2 + 4H + + 4e = 2H 2O (O 2作为电子受体、氧化剂)浙江大学电化学6思考题:金会发生腐蚀吗?已知:浙江大学电化学(2) -pH 图(Pourbaix 图)很多电极反应的平衡电极电位与溶液的pH 值有关,最常见的如H +和O 2的还原。
O 2+ 4H ++ 4e = 2H 2O2H ++ 2e = H 2因此,金属在不同pH 溶液中的热力学稳定性是有差异的。
由平衡电极电位与pH 值间的关系曲线组成的“相图”称为 -pH 图7金属的腐蚀与防护、湿法冶金、电解电镀浙江大学电化学M. Pourbaix U.R. Evans-pH 图对腐蚀科学的贡献相当于微分方程对数学的贡献。
8浙江大学电化学。
第二章电化学腐蚀热力学2.1金属腐蚀倾向的热力学判据自然界中绝大多数金属元素(除Au,Pt等贵金属之外)均以化合态存在。
大部分金属单质是通过外界对化合态体系提供能量(热能或者电能)还原而成的,因此,在热力学上金属单质是一个不稳定体系。
在一定的外界环境条件下,金属的单质状态可自发地转变为化合物状态,生成相应的氧化物、硫化物和相应的盐等腐蚀产物,使体系趋于稳定状态,即有自动发生腐蚀的倾向。
金属发生腐蚀的可能性和程度不仅与金属性质有关,还与腐蚀介质的特性和外界条件有关。
研究腐蚀现象需要从两个方面着手,一方面是看腐蚀的自发倾向大小。
另—方面是看腐蚀进程的快慢,前者需要用热力学原理进行分析,后者则要借助动力学理论。
金属腐蚀反应体系是一个开放体系。
在反应过程中,体系与环境既有能量的交换又有物质的交换。
金属腐蚀反应一般都是在恒温和恒压的条件下进行的,用体系的热力学状态函数吉布斯(Gibb)自由能判据来判断反应的方向和限度较为方便。
吉布斯自由能用G表示,对于等温等压并且没有非体积功的过程,腐蚀体系的平衡态或稳定态对应于古布斯自由能G为最低的状态。
设物质系统吉布斯自由能变化为ΔG,则有<0自发过程ΔG=0平衡状态(2-1)>0非自发过程自然环境中的大多数金属的单质态和化合物状态的吉布斯自由能高低表现出如图2.1所示的状况,即腐蚀产物与矿石一样处于低能的稳定状态,金属单质处于高能的状态。
因此金属腐蚀具有自发倾向。
图2.1物质的吉布斯自由能一个腐蚀体系是由金属和外围介质组成的多组分敞开体系。
对于一个腐蚀化学反应,可用下式表示。
0iiAi(2-2)式中νi为反应式中组分i的化学计量数,反应物的计量数取负值,生成物的计量数取正值;Ai为参加腐蚀反应的物质组分。
在任意情况下,腐蚀反应体系吉布斯自由能的改变ΔG服从范特荷甫等温方程。
GGRTlnQ(2-3)式中ΔG为反应的标准吉布斯自由能的改变;R为气体常数;T为热力学温度,Q为活度商(或者逸度商)用下式表示。