续流二极管作用及工作原理
- 格式:doc
- 大小:85.50 KB
- 文档页数:3
继电器续流二极管工作原理
继电器续流二极管是一种电子元件,它在继电器中起到防止二极管反向击穿和续流的作用。
在继电器中,当继电器的电磁线圈被激励,继电器的触点会闭合。
当触点闭合时,电流可以从继电器的输入端流入输出端,完成电路的导通。
但是,当电流流经继电器的线圈时,线圈中会产生一种自感电势,并且当触点打开时,线圈中的电流无法立即消失,会产生一个暂时的反向电压。
在继电器的工作环境中,由于一些原因,线圈中的电流不能立即消失,例如电感的自感性质、电容的充电和放电过程等。
这时,继电器续流二极管起到了保护作用。
续流二极管连接在继电器的输出端,它能够防止电流反向击穿芯片,并提供一条低阻抗的续流通路。
当继电器的触点打开时,续流二极管的正向电压抵消了继电器线圈中暂时的反向电压,从而防止了电压反向击穿芯片。
同时,续流二极管提供一个低阻抗的通路,使得继电器的线圈中的电流能够快速消失,而不会在触点开启时产生过高的电压。
综上所述,继电器续流二极管的工作原理是通过防止线圈中的反向电压击穿芯片,并提供低阻抗的续流通路,保护继电器的正常工作。
一、介绍buck芯片是一种常见的电路芯片,用于将输入电压转换为较低的输出电压。
在buck芯片的电路中,续流二极管是一个重要的组成部分,其作用是为电路中的电感元件提供续流路径,从而确保电路正常工作。
本文将对buck芯片电路中的续流二极管的原理进行详细介绍。
二、续流二极管的作用在buck芯片的电路中,当MOSFET管关闭时,电感元件中储存的能量无法释放,为了确保电路正常工作,需要有一个续流路径,让电感元件中的能量得以释放。
这时,续流二极管就发挥了重要作用,它提供了一个能够让电流继续流动的通路,从而保证了电路的稳定工作。
三、续流二极管的原理续流二极管的原理主要涉及到电感元件中贮存的能量的释放过程。
当MOSFET管关闭时,电感元件中的电流无法继续流动,但是电感元件中存储的能量却需要得到释放。
这时,续流二极管就起到了关键作用,它提供了一个能够让电流继续流动的通路,从而实现了对电感元件中能量的释放。
四、续流二极管的选择为了确保buck芯片电路的正常工作,选择合适的续流二极管至关重要。
一般来说,续流二极管需要具有低反向漏电流和快速恢复特性,在实际应用中,还需要考虑其耐压、耐电流和导通压降等参数。
五、结语在buck芯片电路中,续流二极管的作用至关重要,它能够确保电路的稳定工作并提高整体效率。
在设计和选择buck芯片电路时,对于续流二极管的选择和原理都需要充分考虑。
相信经过学习本文的内容,读者对buck芯片电路中的续流二极管有了更深入的了解。
六、续流二极管的工作原理深入解析续流二极管在buck芯片电路中的作用众所周知,但其工作原理和内部结构却是许多人不太清楚的部分。
在本节中,我们将深入解析续流二极管的工作原理,从结构和特性两个方面进行分析。
1. 结构续流二极管通常由P型半导体和N型半导体组成,其中P型半导体的掺杂浓度比N型半导体的掺杂浓度高。
这种结构决定了续流二极管在正向导通和反向截止时的特性。
续流二极管在电路中起到的作用主要是提供一个通路,让电感元件中的储存能量得以释放,从而保证整个buck芯片电路的正常工作。
一文读懂续流二极管的选型与作用
1、续流二极管的概述
续流二极管通常是指反向并联在电感线圈、继电器、可控硅等储能元件两端,在电路中电压或电流出现突变时,对电路中其它元件起保护作用的二极管。
以电感线圈为例,当线圈中有电流通过时,其两端会有感应电动势产生。
当电流消失时,其感应电动势会对电路中的元件产生反向电压。
当反向电压高于元件的反向击穿电压时,会把元件如三极管等烧坏。
如果在线圈两端反向并联一个二极管(有时候会串接一个电阻),当流过线圈中的电流消失时,线圈产生的感应电动势就会通过二极管和线圈构成的回路消耗掉,从而保证电路中的其它元件的安全。
对于继电器而言,由于继电器的线圈是一个很大的电感,它能以磁场的形式储存电能,所以当它吸合的时候会存储大量的磁场。
当控制继电器的三极管由导通变为截至时,线圈就会断电,但此时线圈里磁场并未立即消失,该磁场将产生反向电动势,其电压可高达1000v,这样的高压很容易击穿如三极管或其它电路元件。
如果我们在继电器两端反向并联一个二极管(对。
全桥逆变电路中续流二极管电流全桥逆变电路中的续流二极管电流续流二极管是全桥逆变电路中的一个重要组成部分,它的作用是在电路中提供一个绕过开关管的通路,以确保电流的连续性。
本文将详细介绍续流二极管的作用、工作原理以及在全桥逆变电路中的应用。
一、续流二极管的作用在全桥逆变电路中,开关管的导通和截止会导致电流的间断性,这可能会对电路和负载产生不良影响。
为了解决这个问题,续流二极管被引入到电路中。
续流二极管的主要作用是在开关管截止时提供一个绕过开关管的通路,使电流得以继续流动,从而保持电流的连续性。
通过续流二极管的作用,可以避免电流的间断性,减小开关管的开关频率,提高电路的效率和稳定性。
二、续流二极管的工作原理续流二极管通常选择反向工作,也就是说,当开关管截止时,续流二极管处于导通状态;而当开关管导通时,续流二极管处于截止状态。
当开关管截止时,负载上的电感储能的电流不会立即中断,而是通过续流二极管形成一个回路,使电流继续流动。
当开关管导通时,续流二极管处于截止状态,不影响电流的正常流动。
三、续流二极管在全桥逆变电路中的应用续流二极管通常与全桥逆变电路中的开关管并联连接,构成一个完整的逆变电路。
在逆变过程中,当开关管截止时,续流二极管提供一个绕过开关管的通路,使电流继续流动,以保持电流的连续性。
同时,在开关管导通时,续流二极管处于截止状态,不影响电流的正常流动。
通过这种方式,续流二极管可以保证电流的稳定性和连续性,提高逆变电路的稳定性和效率。
四、续流二极管的选型和参数在选择续流二极管时,需要考虑以下几个关键参数:1. 额定电流:续流二极管的额定电流应大于逆变电路中的最大输出电流,以确保其能够承受电流的负荷。
2. 反向电压:续流二极管的反向电压应大于逆变电路中的最大输出电压,以防止续流二极管的击穿和损坏。
3. 反向恢复时间:续流二极管的反向恢复时间应尽量短,以减小开关过程中的能量损耗和电压波动。
4. 正向压降:续流二极管的正向压降应尽量小,以减小能量损耗和电路的功耗。
直流电机是工业生产中常见的电机之一,它通常以PWM(脉宽调制)方式进行调速。
而在PWM调速过程中,续流二极管扮演了重要角色。
本文将从直流电机的工作原理、PWM调速原理、续流二极管的作用和选择等方面进行详细介绍。
一、直流电机的工作原理直流电机是一种将电能转换为机械能的装置,它的工作原理基于洛伦兹力和带电粒子在磁场中受力的规律。
当直流电流通过电机的线圈时,产生的磁场与永磁体或者电磁铁产生的磁场相互作用,从而使得电机的转子产生力矩,从而驱动机械装置运转。
二、PWM调速原理PWM调速是通过改变电机输入的脉冲宽度来控制电机的平均电压和平均电流,从而改变电机的转速。
具体实现上,PWM调速是将直流电源高频开关,使得电机在分时段内接收到占空比不同的电压脉冲,从而实现调速。
三、续流二极管的作用在PWM调速过程中,电机的正负半周各有一个脉冲开关管,分别为一组导通和一组关断。
当开关管关断时,直流电机线圈中的电流不能突然中断,否则会产生电感压降。
为了避免电感压降引起的反冲电压,需要在开关管关断时,让电流有一条回路可以继续流动,这就是续流二极管的作用。
四、续流二极管的选择续流二极管应具有较快的反向恢复时间,这样才能在开关管关断瞬间尽快导通,避免电感压降引起的反冲电压。
续流二极管的电流和电压等参数也需要根据具体的电机工作条件来选择。
五、总结直流电机的PWM调速是一种常见的调速方式,而续流二极管在PWM调速过程中的作用不可忽视。
正确选择合适的续流二极管,对电机的稳定性和性能有着重要影响。
希望本文对读者对直流电机的PWM 调速和续流二极管有所帮助。
六、续流二极管的工作原理续流二极管在PWM调速过程中,起到了保护开关管和电机的作用。
在电机线圈中的电流无法突然中断的情况下,如果没有合适的续流二极管,就会导致电感压降产生反冲电压,这样会对开关管和电机造成不良影响,甚至损坏设备。
续流二极管的工作原理主要是利用其具有的快速反向恢复时间和导通特性来形成一个回路,让电流有一条通路继续流动,从而避免反冲电压的产生。
续流二极管作用及工作原理1500字续流二极管是一种特殊的半导体器件,通常用来保护其他器件免受电流反向流动的损害。
续流二极管具有低压降和高电流承载能力的特点,广泛用于电源电路、逆变器、电机驱动器等领域。
下面将详细介绍续流二极管的作用和工作原理。
一、续流二极管的作用续流二极管通常安装在电路的输出端,其作用是在电流反向流动时提供一个低阻抗的通路,使电流能够继续流动而不反向损坏其他器件。
当电流方向正确时,续流二极管处于正向偏置状态,此时它的电阻很小,几乎可以忽略不计。
然而,当电流方向反向时,续流二极管就变为反向偏置,此时它会迅速打开,使电流继续流动。
二、续流二极管的工作原理续流二极管的工作原理可以简单地通过瞬态响应的分析来解释。
当出现电流反向时,续流二极管会迅速打开,形成一个低阻抗的通路,使电流继续流动。
这种迅速的转换现象可以通过续流二极管的响应时间来描述。
响应时间越短,续流二极管越快地打开,电流就越能够继续流动。
续流二极管具有双极性结构,其中的PN结能够承受高压,而导致高反向电压的条件下也能正常工作。
当正向电压施加在续流二极管的PN结上时,它会形成一个导电通道,使得电流能够顺利流过。
而当反向电压施加在续流二极管的PN结上时,PN结会产生一种反向击穿的现象,这会使得续流二极管形成一个低阻抗的通路,使电流继续流动。
续流二极管的工作原理也可以用其结构特点来解释。
续流二极管的结构一般由PNPN四层结构组成。
其中,P型区和N型区之间的接触面上会形成一个层状区域,这被称为n+区域,主要用来形成PN结。
在正向偏置时,续流二极管处于导通状态,此时在P型区和N型区之间形成一个弱PN结;而在反向偏置时,续流二极管处于截止状态,此时在P型区和N型区之间形成一个强PN结,从而形成一个低电阻的通路,可以使电流继续流动。
三、续流二极管的特点1.低压降:续流二极管具有很低的正向电压降,通常只有几十mV,这使得续流二极管在电路中会带来很小的功耗。
续流二极管的作用和工作原理续流二极管,又称稳流二极管,是一种特殊的二极管,具有稳定电流的特性。
它能够在特定的电压范围内自动调节电流的大小,使得输出电流保持不变。
续流二极管的工作原理基于基本的二极管原理,但在外加电压作用下,它能够自动调节电流,从而保证电路的稳定性。
下面将详细介绍续流二极管的作用和工作原理。
首先,续流二极管的作用是提供稳定电流源。
在实际电路中,有许多元件或器件需要稳定的电流作为供应,比如液晶显示器背光驱动电路、功率放大器的偏置电流源等。
续流二极管正是为了满足这些需求而设计的。
它能够在一定的工作范围内,自动调节电流的大小,从而保证输出电流的稳定性。
接下来,我们来了解续流二极管的工作原理。
首先,续流二极管的结构和一般的二极管相似,由P-N结构组成,其中P区域是正半导体,N区域是负半导体。
续流二极管的N区域掺杂浓度比一般二极管较高,这样能够提高电流的稳定性。
当续流二极管处于正向偏置时,即P区域连接到正电压,N区域连接到负电压时,电压作用下,自由电子从N区域向P区域移动,空穴则从P区域向N区域移动,形成电流流动。
在正常工作范围内,续流二极管呈现出类似一般二极管的特性,即正向电压大于续流二极管的正向压降(一般为0.7V),则电流呈指数增长。
然而,当正向电压达到续流二极管的压降时,续流二极管的电流开始饱和并保持稳定,不再继续增大。
这是因为在续流二极管管中存在一个内部的反向偏置电流源,它在电压达到一定值时开始工作,将多余的电流反向流回,从而保持输出电流的稳定。
当正向电压增加超过续流二极管的续流能力时,续流二极管的电流仍然保持稳定,不再随电压增大而增大。
续流二极管的续流能力是由管芯内浸渍的特殊物质控制的。
这种物质能够在电压达到一定值时,使续流二极管的电流保持恒定。
这意味着续流二极管能够提供稳定的电流源,无需其他电路元件来调节电流。
这对于需要稳定电流源的电路来说,非常方便。
由于续流二极管的特殊结构和材料,使其具有一些特殊的性能和应用。
整流电路中续流二极管的作用一、续流二极管的基本原理和作用在整流电路中,续流二极管是起到续流作用的元件。
续流二极管是一种具有单向导电性的二极管,其正向导通电压较低,反向截止电压较高。
续流二极管的作用是在交流电输入时,将电流限制在一个方向上,使得输出电流为单向的直流电,实现整流功能。
具体来说,续流二极管在正半周时导通,将正半周的交流电信号通过;在反半周时截止,阻止反半周的交流电信号通过。
二、续流二极管的工作原理续流二极管具有正向导通和反向截止的特性。
在正向导通时,续流二极管的正向导通电压较低,一般为0.6-0.7V。
当正向电压大于该值时,续流二极管进入正向导通状态,电流可以通过二极管。
而在反向截止时,续流二极管的反向截止电压较高,一般为几十伏到几百伏。
当反向电压大于该值时,续流二极管处于反向截止状态,电流无法通过二极管。
三、续流二极管在全波整流电路中的作用在全波整流电路中,续流二极管的作用是将交流电信号整流为单向的直流电信号。
全波整流电路通过两个二极管的交替导通,使得输入的交流电信号在输出端呈现出单向的直流电信号。
其中,续流二极管起到了关键的作用。
当输入的交流电信号为正半周时,续流二极管导通,电流通过;而当输入的交流电信号为反半周时,续流二极管截止,电流无法通过。
通过续流二极管的导通和截止,使得输出信号为单向的直流电。
四、续流二极管的选择和注意事项在选择续流二极管时,需要考虑其正向导通电压、反向截止电压和最大电流等参数。
根据实际需求选择合适的续流二极管,以确保电路的正常工作和可靠性。
此外,还需要注意续流二极管的散热问题,避免其过热损坏。
五、续流二极管的应用领域续流二极管广泛应用于各种需要整流电路的场合,如电源适配器、电子设备的电源电路、交流电动机的驱动电路等。
在这些应用中,续流二极管不仅起到了整流的作用,还能保护电路和设备,提高系统的稳定性和可靠性。
续流二极管在整流电路中起到了续流作用,将交流电信号整流为单向的直流电信号。
续流二极管在直流电机中的作用续流二极管(也称为自由轮二极管或飞轮二极管)是一种专用二极管,广泛应用于直流电机、电路中。
其主要作用是通过控制反电动势的产生和消失,保护直流电机和相关电路部件。
直流电机是一种常见的电动机类型,其特点是通过直流电源供电,产生机械旋转功效。
直流电机通常由电枢、励磁线圈和换向器构成。
电枢通过与电源连接,产生电流,并且与励磁线圈一起形成磁场。
当电流通过电枢,产生磁场后,会与换向器的磁场相作用,使电机转动。
然而,当直流电机运行时,其电枢产生的磁场相对于励磁线圈的磁场感应可能会导致感应电动势的产生。
这种感应电动势会产生一个逆向电流,称为反电动势(也称为反向电流)。
反电动势的大小取决于电机运行的速度和负载的情况,通常情况下,电机运行速度越快,负载越重,产生的反电动势就越大。
当直流电机停止供电时,即切断电源,电机仍然会继续旋转一段时间,这是由于旋转惯性的作用。
在这个过程中,电机起到一个发电机的作用,产生的电动势反向并形成连续的逆向电流。
这种逆向电流可能会造成一些问题,如电机反向旋转、电机继续驱动其他装置或负载等。
续流二极管的作用就是解决这些问题。
当电机停止供电时,续流二极管提供一个低阻抗的通路,让流经电机的逆向电流可以通过续流二极管而不是通过电机本身。
这样就避免了逆向电流对电路和设备的负面影响。
续流二极管的工作原理是,当电机停止供电时,其电枢感应的反电动势的方向与电源电压相反。
综合系统的工作,电枢电势通过续流二极管接地,续流二极管被正向偏置。
在这种情况下,续流二极管具有低电阻状态,允许逆向电流通过。
续流二极管可以处理电机在停止供电时产生的逆向电流,保护电路和电机不受损坏。
此外,续流二极管还能改善电机的效率和性能。
正常工作时,电机通过电源获取能量,转换为机械功效。
然而,当电机停止供电,机械旋转惯性会将能量转化为电能,并产生逆向电流。
续流二极管可以捕获和利用这些逆向电流,将其重新导向到电源中,以减少能量的浪费,提高电机的效率。
uln2003内部的续流二极管电流不够。
ULN2003是一种常用的集成继电器和驱动器芯片,它由7个双NPN开关结构组成,可以用于驱动大功率负载和控制电机等应用。
在ULN2003内部的每个开关结构中,都包含了一个二极管来实现续流功能。
然而,有时候在实际应用中会出现ULN2003内部的续流二极管电流不够的情况。
接下来,我将详细解释这个问题及可能的解决方法。
首先,我们需要了解ULN2003内部续流二极管的作用和原理。
当输入信号为高电平时,开关结构会打开,允许电流流过负载。
当输入信号为低电平时,开关结构关闭,此时续流二极管起作用,维持负载电流的稳定性。
续流二极管的主要作用是提供一条低阻抗的回路,让电流继续流动。
因此,续流二极管的性能直接影响到负载电流的稳定性和可靠性。
当ULN2003内部续流二极管电流不够时,可能会出现以下问题:1.负载电流不稳定。
由于续流二极管电流不够,负载电流可能会出现波动或不稳定的情况,导致系统性能下降。
2.负载工作不正常。
如果负载电流要求较高,而续流二极管电流不够,可能无法满足负载的工作需求,导致系统失效。
3.续流二极管温升过高。
当续流二极管电流不够时,会导致它的工作状态变得不稳定,过载时续流二极管的温度较高,可能会造成损坏。
为了解决ULN2003内部续流二极管电流不够的问题,我们可以尝试以下解决方法:1.更换合适的ULN2003芯片。
有些ULN2003芯片具有更高的电流承载能力,可以满足负载的要求。
因此,通过选择合适的ULN2003芯片,可以解决电流不够的问题。
2.增加二极管的数量。
在ULN2003内部的续流二极管不够用时,可以考虑增加续流二极管的数量来增加电流承载能力。
3.使用外部续流电路。
如果ULN2003内部的续流二极管的电流仍然不够,可以使用外部续流电路来提供额外的电流支持。
4.优化系统设计。
在系统设计中,可以考虑减小负载电流的需求或者增加供电电压等措施,来减轻续流二极管的负载压力。
续流二极管作用及工作原理
续流二极管都是并联在线圈的两端,线圈在通过电流时,会在其两端产生感应电动势。
当电流消失时,其感应电动势会对电路中的原件产生反向电压。
当反向电压高于原件的反向击穿电压时,会把原件如三极管,等造成损坏。
续流二极管并联在线两端,当流过线圈中的电流消失时,线圈产生的感应电动势通过二极管和线圈构成的回路做功而消耗掉。
丛而保护了电路中的其它原件的安全。
在电路中反向并联在继电器或电感线圈的两端,当电感线圈断电时其两端的电动势并不立即消失,此时残余电动势通过一个二极管释放,起这种作用的二极管叫续流二极管。
其实还是个二极管只不过它在这起续流作用而以,例如在继电器线圈两端反向接的那个二极管或单向可控硅两端反向接的也都是为什么要反向接个二极管呢?
因为继电器的线圈是一个很大的电感,它能以磁场的形式储存电能,所以当他吸合的时候存储大量的磁场当控制继电器的三极管由导通变为截至时线圈断电但是线圈里有磁场这时将产生反向电动势电压可高达1000V以上很容易击穿推动三极管或其他电路元件,这是由于二极管的接入正好和反向电动势方向一致把反向电势通过续流二极管以电流的形式中和掉从而保护了其他电路元器件,因此它一般是开关速度比较快的二极管,象可控硅电路一样因可控硅一般当成一个触点开关来用,如果控制的是大电感负载一样会产生高压反电动势原理和继电器一样的。
在显示器上也用到一般用在消磁继电器的线圈上。
经常和储能元件一起使用,防止电压电流突变,提供通路。
电感可以经过它给负载提供持续的电流,以免负载电流突变,起到平滑电流的作用!在开关电源中,就能见到一个由二极管和电阻串连起来构成的的续流电路。
这个电路与变压器原边并联。
当开关管关断时,续流电路可以释放掉变压器线圈中储存的能量,防止感应电压过高,击穿开关管。
一般选择快速恢复二极管或者肖特基二极管就可以了,用来把线圈产生的反向电势释放掉!
在图3中KR在VT导通时,上面电压为上正下负,电流方向由上向下。
在VT关断时会,KR 中电流突然中断,会产生感应电势,其方向是力图保持电流不变,即总想保持KR电流方向为由下至下。
这个感应电势与电源电压迭加后加在VT两端,容易使VT出穿。
为此加上VD,将KR产生的感应电势短路掉,电注是你所说的“顺时针方向在二极管和继电器所的小回路里面流动”,从而保护VT。
图2中的R、C也是利用C上电压不能突变的原理,来吸收感应电势。
可见“续流二极管”并不是一个实质的元件,它只不过在电路中起到的作用称做“续流”。
续流二极管在正激开关电源的作用?
在正激开关电源中,当MOS关断的时候,变压器副边靠电感中储存的能量对外提供电流。
为使电感在有负载时发挥这种作用,在变压器的副边增加续流二极管。
当MOS关断时,电感,负载和续流二极管会产生通路,将电感中的能量对外传递。
只有在有外负载的情况下,续流二极管中采用电流流过
变流技术中,续流二极管在电路里起什么作用?
在电子变流电路中,整流部分单相桥式整流是实际应用最多的单相整流电路。
而三相桥式整流是电力系统特别是发电机励磁系统应用最多的方式。
这两种电路都要接入续流二极管。
其作用大致是一样的,以单相桥式电路为例说明:当可控整流桥接入感性负载时,由于电感电流不能突变,在可控硅关断期内,必须在负载两端接入续流二极管以保持电感电流的通路,以防止可控硅关断时在电感负载两端产生危险的过电压和可控硅能够换相导通。
然而发电机励磁系统应用较多的三相桥式整流电路有三相半控桥与三相全控桥电路之分。
因此为了保证整流元件可靠换流,半控桥需要在感性负载两端并联续流二极管,而全控桥不需要这样做。
当导通角改变时,半控桥的平均电压和线电流的变化较全控桥慢。
在现如今使用较多的如变频器等设备中包含有整流和逆变等变流电路,其中用到的续流二极管,一般都是在变频器内部的直流母线上加续流二极管,那是因为如果负载是电感元件时当母线上大容量的逆变器发生故障时,直流母线上会产生巨大的反向浪涌能量,此时,我们需要给这些能量提供一个泻放通道,否则巨大的能量将击穿或烧毁小逆变器. 而这个通道就需要二极管来构成,故应为续流二极管.
单向半波可控整流电路带大电感负载时,为什么必须加续流二极管?
单向半波可控整流带大电感负载,在负半周可控硅截止时,电感负载会产生很高的反向感应电动势,此反向电动势足以使可控硅击穿烧毁,加续流二极管后可使反向电动势泄放为二极管的正向压降(约0.7v),从而有效保护可控硅
续流二极管二极管的供应商通常是指反向并联在电感线圈,继电器继电器的供应商,可控硅可控硅的供应商等储能元件两端,在电路中电压或电流出现突变时,对电路中其它元件起保护作用的二极管.续流二极管由于在电路中起到续流的作用而得名,一般选择快速恢复二极管或者肖特基二极管来作为续流二极管。
续流二极管的简介
以电感线圈为例,当线圈中有电流通过时,其两端会有感应电动势产生。
当电流消失时,其感应电动势会对电路中的元件产生反向电压。
当反向电压高于元件的反向击穿电压时,会把元件如三极管等烧坏。
如果在线圈两端反向并联一个二极管(有时候会串接一个电阻),当流过线圈中的电流消失时,线圈产生的感应电动势就会通过二极管和线圈构成的回路消耗掉,从而保证电路中的其它元件的安全。
对于继电器而言,由于继电器的线圈是一个很大的电感,它能以磁场的形式储存电能,所以当它吸合的时候会存储大量的磁场。
当控制继电器的三极管由导通变为截至时,线圈就会断电,但此时线圈里磁场并未立即消失,该磁场将产生反向电动势,其电压可高达1000v,这样的高压很容易击穿如三极管或其它电路元件。
如果我们在继电器两端反向并联一个二极管(对于继电器,通常会在续流二极管上串接一个电阻以防止回路电流过高),由于该二极管的接入正好和反向电动势方向一致,这样就可以把反向电动势以电流的形式消耗掉,从而达到保护其它电路元器件的目的。
对于可控硅电路,由于可控硅一般当成一个触点开关开关的供应商来用,如果控制的是大电感负载,一样会产生高压反电动势,其原理和继电器一样。
在显示器上同样也会用到续流二极管,一般是用在消磁继电器的线圈上。
续流二极管的工作原理
上图给出了续流二极管的典型应用电路,其中电阻R视情况决定是否需要。
储能元件在VT导通时,电压为上正下负,电流方向从上向下。
当VT关断时,储能元件中的电流突然中断,此时会产生感应电势,其方向是力图保持电流不变,即总想保持储能元件电流方向从上向下。
这个感应电势与电源电源的供应商电压迭加后加在VT两端,容易使VT击穿,为此可以加上VD,这样就可以将储能元件产生的感应电势短路掉,从而达到保护VT的目的。
续流二极管的作用
续流二极管通常和储能元件一起使用,其作用是防止电路中电压电流的突变,为反向电动势提供耗电通路。
电感线圈可以经过它给负载提供持续的电流,以免负载电流突变,起到平滑电流的作用!在开关电源开关电源的供应商中,就能见到一个由二极管和电阻串连起来构成的的续流电路。
这个电路与变压器原边并联。
当开关管关断时,续流电路可以释放掉变压器线圈中储存的能量,防止感应电压过高,击穿开关管。
续流二极管的选型
一般选择快速恢复二极管或者肖特基二极管,如FR254、FR255、FR256、FR257、1N5204、1N5205、1N5206、1N5207、1N5208、1N5404、1N5405、5406、5407、5408等。
续流二极管的注意事项
续流二极管通常应用在开关电源、继电器电路、可控硅电路、IGBTIGBT 的供应商等电路中,其应用非常广泛。
在使用时应注意一下几点:
(1) 续流二极管是防止直流线圈断电时,产生自感电势形成的高电压对相关元器件造成损害的有效手段!
(2) 续流二极管的极性不能接错,否则将造成短路事故;
(3) 续流二极管对直流电压总是反接的,即二极管的负极接直流电的正极端;
(4) 续流二极管是工作在正向导通状态,并非击穿状态或高速开关状。