单闭环管道流量比值控制系统设计.doc
- 格式:doc
- 大小:1.69 MB
- 文档页数:21
比值控制系统一、比值控制原理基本概念与原理比值控制中,需要保持比例的两种物料:处于主导地位的称为主动量,通常用FM表示,如燃烧中的燃料量。
另一种物料称为从动量,用FS表示,如燃烧比值系统中的空气(氧气)量。
比值控制系统要实现:FS/FM=kk为从动量与主动量的比值。
图9-12 燃烧过程比值控制系统在石化、制药等生产过程中,经常要两种或两种以上的物料保持一定的比例关系。
燃烧过程:燃料与空气要保持一定比例,才能满足生产和环保要求。
造纸过程:浓纸浆与水要以一定比例混合,才能制造出合格的纸浆。
不少化学反应过程,多个进料要保持一定的比例。
比值系数计算流量比值与设置于仪表的比值系数是两个不同的概念,它们都为无量纲系数,但两者的数值是不等的。
流量比值k是流量的比值,它们可以同为质量流量、体积流量或折算为标准情况下的流量。
比值系数K是设置于比值函数模块或比值控制器中的参数。
1、采用线性流量检测单元的情况在正常工况下,主动量与从动量的输出值(无量纲)分别为F1/F1MAX,F2/F2MAX。
所以单元组合仪表的比值系数为:该比值系数只与变送器的量程和所要求从动量与主动量的对应比例关系有关,与变送器的电气零点无关。
2、采用差压法未经开方流量检测单元的情况此时,主动量与从动量的输出值(无量纲)分别为(F1/F1MAX)2,(F1/F1MAX)2 。
所以比值系数为:该比值系数只与变送器的量程和所要求从动量与主动量的对应比例关系有关,与变送器的电气零点无关。
3、几点说明(1)采用线性流量检测方法时,只有在F1MAX=F2MAX的场合,k=K;在采用差压法未经开方流量检测时,在时,k=K(2)采用相乘或相除的方案中,比值函数部件可以改接在F2一侧,即实现。
此时,K’=1/K。
(3)在同样的比值k下,通过调整F1MAX,F2MAX也可以改变比值系数。
《单闭环管道流量比值控制系统》过程控制系统课程设计说明书专业班级:11级自动化1班姓名:孙勇李自强周程鲍凯学号:080311009 080311022080311035 080311047指导教师:陈世军设计时间: 2014年6月11日物理与电气工程学院2014年 6 月11 日摘要在现代工业生产过程中,工艺上常需要两种或两种以上的物料流量保持一定的比例关系,一旦比例失调,就会影响生产的正常进行,影响产品质量,浪费原料,消耗动力,造成环境污染,甚至产生生产事故。
实现两个或两个以上参数符合一定比例关系的控制系统,称为比值控制系统。
通常以保持两种或几种物料的流量为一定比例关系的系统,称之为流量比值控制系统,这次课程设计的内容就是流量比值过程控制系统。
流量测量是比值控制的基础。
各种流量计都有一定的适用范围(一般正常流量选在满量程的70%左右),必须正确选择使用。
在工程上,具体实施比值控制时,通常有比值器、乘法器或除法器等单元仪表可供选择,相当方便。
若采用计算机控制来实现,只要进行乘法或除法运算即可,我们这次就主要使用计算机及组态王软件进行设计。
关键词:组态王;流量;比值控制系统目录1、引言 (1)1.1主要内容 (1)1.2任务要求 (1)2、设计方案 (2)2.1设计原理 (2)2.2系统原理图 (2)2.3 仿真调试 (3)3、硬件设计 (4)3.1使用仪器 (4)4、软件设计 (7)4.1 程序 (7)4.2 系统组态设计 (11)4.2.1组态图 (11)4.2.2静态画面 (12)4.2.3数字字典 (14)4.2.4系统应用程序 (16)4.2.5动画连接 (17)5、课程设计总结 (17)6、参考文献 (18)1、引言1.1主要内容本课程设计是学完《过程控制系统》课程后的一个应用性实践环节。
通过本课程设计的训练,对过程控制工程设计的概念有完整地了解,同时培养综合应用基础课、专业课所学知识与工程实际知识的能力。
标题:探究基于MCGS的单闭环流量比值控制系统的设计在当今工业自动化控制系统中,流量控制系统是至关重要的一环。
而基于MCGS(多变量控制系统)的单闭环流量比值控制系统的设计,更是一项挑战而又高效的技术。
本文将从深度和广度探讨该主题,帮助读者更好地理解这一概念。
一、流量控制系统概述1.1 什么是流量控制系统在工业生产中,流体的流动是一个普遍存在的过程,而流量控制系统则是用来准确控制流体的流动速度、流量和压力的系统。
它可以应用在化工、石油、制药等领域,对生产过程起着至关重要的作用。
1.2 流量控制系统的主要组成部分基于MCGS的单闭环流量比值控制系统由哪些主要组成部分组成?(这里可以详细介绍各个部分的功能和作用)二、基于MCGS的单闭环流量比值控制系统的设计2.1 MC基于MCGS的单闭环流量比值控制系统的设计,首当其冲的就是MC (多变量控制系统)。
MC是一种先进的控制系统,它采用多个输入、多个输出(MIMO)的控制方法,相比传统的单变量控制系统(SISO),MC能够更准确地控制流量的比值。
2.2 单闭环流量比值控制系统(这里可以详细描述单闭环流量比值控制系统的特点和设计原理,以及与MC的结合)三、个人观点和理解在我看来,基于MCGS的单闭环流量比值控制系统的设计不仅是技术创新的体现,更是工业自动化控制系统发展的必然趋势。
它将有效提高生产过程的稳定性和效率,为工业生产带来巨大的益处。
总结和回顾通过本文的探讨,我们对基于MCGS的单闭环流量比值控制系统的设计有了更深入的了解。
从流量控制系统的概述,到MC和单闭环流量比值控制系统的设计,再到个人观点和理解,我们获得了全面、深刻和灵活的知识体系。
基于MCGS的单闭环流量比值控制系统的设计是一项充满挑战和机遇的工作,它必将推动工业自动化控制系统向更高水平迈进。
希望本文能够帮助读者更好地理解和应用这一技术,为工业生产带来更大的效益。
在文章中,我尽力多次提及了指定的主题文字“基于MCGS的单闭环流量比值控制系统的设计”,并按照知识的文章格式进行撰写,保证了文章内容的丰富和深度。
实验⼆⼗实验⼆⼗⽐值控制系统实验第⼀节单闭环流量⽐值控制系统⼀、实验⽬的1、了解单闭环⽐值控制系统的原理与结构组成。
2、掌握⽐值系数的计算。
3、掌握⽐值控制系统的参数整定与投运。
⼆、实验设备1、THJ-2型⾼级过程控制实验装置2、计算机、上位机MCGS组态软件、RS232-485转换器1只、串⼝线1根3、万⽤表 1只三、系统结构框图图6-1单闭环流量⽐值控制系统结构图四、实验原理在⼯业⽣产过程中,往往需要⼏种物料以⼀定的⽐例混合参加化学反应。
如果⽐例失调,则会导致产品质量的降低、原料的浪费,严重时还发⽣事故。
例如在造纸⼯业⽣产过程中,为了保证纸浆的浓度,必须⾃动地控制纸浆量和⽔量按⼀定的⽐例混合。
这种⽤来实现两个或两个以上参数之间保持⼀定⽐值关系的过程控制系统,均称为⽐值控制系统。
本实验是流量⽐值控制系统。
其实验系统结构图如图6-1所⽰。
该系统中有两条⽀路,⼀路是来⾃于电动阀⽀路的流量Q1,它是⼀个主动量;另⼀路是来⾃于变频器—磁⼒泵⽀路的流量Q2,它是系统的从动量。
要求从动量Q2能跟随主动量Q1的变化⽽变化,⽽且两者间保持⼀个定值的⽐例关系,即Q2/Q1=K。
图6-2 单闭环流量⽐值控制系统⽅框图图6-2为单闭环流量⽐值控制系统的⽅框图。
由图可知,主控流量Q1经流量变送器后为I1(实际中已转化为电压值,若⽤电压值除以250Ω则为电流值,其它算法⼀样),如设⽐值器的⽐值为K,则流量单闭环系统的给定量为KI1。
如果系统采⽤PI调节器,则在稳态时,从动流量Q2经变送器的输出为I2,不难看出,KI1=I2。
五、⽐值系数的计算设流量变送器的输出电流与输⼊流量间成线性关系,当流量Q由0→Qmax变化时,相应变送器的输出电流为4→20mA。
由此可知,任⼀瞬时主动流量Q1和从动流量Q2所对应变送器的输出电流分别为I1= (1)I2= (2)式中Q1max和Q2max分别为Q1和Q2 最⼤流量值。
设⼯艺要求Q2/Q1=K,则式(1)可改写为Q1= Q1max (3)同理式(2)也可改写为Q2= Q2max (4)于是求得= (5)折算成仪表的⽐值系数K′为:K′ = K (6)六、实验内容与步骤1、按图6-1所⽰的实验结构图组成⼀个为图6-2所要求的单闭环流量⽐值控制系统。
摘要在现代工业生产过程中,工艺上常需要两种或两种以上的物料流量保持一定的比例关系,一旦比例失调,就会影响生产的正常进展,影响产品质量,浪费原料,消耗动力,造成环境污染,甚至产生生产事故。
例如氨分解工艺中的氨分解炉,入炉煤气和空气应保持一定的比例,否那么将使燃烧反响不能正常进展,而煤气和空气比例超过一定的极限将会引起爆炸。
实现两个或两个以上参数符合一定比例关系的控制系统,称为比值控制系统。
通常以保持两种或几种物料的流量为一定比例关系的系统,称之为流量比值控制系统,这次课程设计的内容就是单闭环流量比值过程控制系统。
在实际的生产过程控制中,比值控制系统除了实现一定比例的混合外,还能起到在扰动影响到被控过程质量指标之前及时控制的作用.而且当最终质量指标难于测量,变送时,可以采用比值控制系统,使生产过程在最终质量到达预期指标下平安正常地进展,因为比值控制具有前馈控制的实质。
关键词:流量;比值控制;PID控制;可编程控制器目录1设计背景12比值控制系统概述42.1比值控制系统定义52.2比值控制原理52.3比值控制系统特点52.4比值控制系统的类型6开环比值控制系统6单闭环比值控制系统73单闭环流量比值控制系统方案设计93.1系统方案设计93.2系统硬件设计104上位机组态与程序设计124.1组态软件WinCC104.1.1WinCC简介104.1.2WinCC的开展及应用104.2上位机组态设计114.3PLC程序设计125PID参数整定及系统调试195.1PID控制器19控制器的优点20控制规律的选择205.2PID控制器参数的调节及其对控制性能的影响21比例控制对控制性能的影响19积分控制对控制性能的影响20微分控制对控制性能的影响225.3控制系统的整定23控制系统整定的根本要求23调节器参数的整定方法23 5.4调节器参数的整定及调试27 总结29参考文献301设计背景石油炼制生产过程中,把两种或两种以上根底组分油与各种添加剂按一定比例均匀混合,从而成为一种新产品的过程称为调和。
开封大学毕业论文单闭环流量定值控制系统专业:[电气自动化]班级:[2班]学生姓名:[毕士杰]指导教师:[曹红英]完成时间:2018年10月13日目录第1章实验装置介绍 (1)1.1对象系统组成 (1)1.2 对象系统主要特点 (2)第2章系统的方案设计 (3)2.1硬件设计 (5)2.2软件设计 (6)第3章组态王软件设计 (10)3.1组态王软件介绍 (10)3.2使用组态王 (11)3. 3 创建组态画面 (14)3. 4 动画连接 (18)第4章系统中的问题和解决方案 (22)4.1控制规律的确定 (22)4.2调节器参数的整定方法 (23)总结 (27)参考文献 (28)第1章实验装置介绍1.1 对象系统组成(1)过程控制实验对象系统实验对象系统包含有:不锈钢储水箱;上、中、下三个串接有机玻璃圆筒型水箱;三相4.5kw电加热锅炉(由不锈钢锅炉内胆加热筒和封闭式外循环不锈钢冷却锅炉夹套构成)和铝塑盘管组成。
系统动力系统两套:一套由三相(380V交流)不锈钢磁力驱动泵、电动调节阀、交流电磁阀、涡轮流量计等组成;另一套由日本三菱变频器、三相不锈钢磁力驱动泵(220V变频)、涡轮流量计等组成。
整套对象系统完全由不锈钢材料制造,包括对象框架、管道、底板、甚至小到每一颗紧固螺钉。
如图1-1(2)对象系统中的各类检测变送及执行装置扩散硅压力变送器三只:分别检测上水箱、中水箱、下水箱液位;涡轮流量计三只:分别检测两条动力支路及盘管出水口的流量;Pt100热电阻温度传感器六只:分别用来检测锅炉内胆、锅炉夹套、盘管(三只)及上水箱出水口水温;控制模块:包括电磁阀、电动调节阀各一个;三相380V不锈钢磁力驱动泵、三相220V不锈钢磁力驱动泵;1.2 对象系统主要特点(1)被调参数囊括了流量、压力、液位、温度四大热工参数;(2)执行器中既有电动调节阀仪表类执行机构,又有变频器等电力拖动类执行器;(3)系统除了能改变调节器的设定值作阶跃扰动外,还可在对象中通过电磁阀和手操作阀制造各种扰动;(4)一个被调参数可用不同的动力源、不同的执行器和不同的工艺线路下可演变成多种调节回路,以利于讨论、比较各种调节方案的优劣;(5)能进行多变量控制系统及特定的过程控制系统实验。
摘要在现代工业生产过程中,工艺上常需要两种或两种以上的物料流量保持一定的比例关系,一旦比例失调,就会影响生产的正常进展,影响产品质量,浪费原料,消耗动力,造成环境污染,甚至产生生产事故。
例如氨分解工艺中的氨分解炉,入炉煤气和空气应保持一定的比例,否如此将使燃烧反响不能正常进展,而煤气和空气比例超过一定的极限将会引起爆炸。
实现两个或两个以上参数符合一定比例关系的控制系统,称为比值控制系统。
通常以保持两种或几种物料的流量为一定比例关系的系统,称之为流量比值控制系统,这次课程设计的内容就是单闭环流量比值过程控制系统。
在实际的生产过程控制中,比值控制系统除了实现一定比例的混合外,还能起到在扰动影响到被控过程质量指标之前与时控制的作用.而且当最终质量指标难于测量,变送时,可以采用比值控制系统,使生产过程在最终质量达到预期指标下安全正常地进展,因为比值控制具有前馈控制的实质。
关键词:流量;比值控制;PID控制;可编程控制器目录1设计背景12比值控制系统概述4比值控制系统定义5比值控制原理5比值控制系统特点5比值控制系统的类型6开环比值控制系统6单闭环比值控制系统73单闭环流量比值控制系统方案设计9系统方案设计9系统硬件设计104上位机组态与程序设计124.1组态软件WinCC104.1.1WinCC简介104.1.2WinCC的开展与应用104.2上位机组态设计114.3PLC程序设计125PID参数整定与系统调试19控制器19控制器的优点20控制规律的选择20控制器参数的调节与其对控制性能的影响21比例控制对控制性能的影响19积分控制对控制性能的影响20微分控制对控制性能的影响22控制系统的整定23控制系统整定的根本要求23调节器参数的整定方法23 调节器参数的整定与调试27总结29参考文献301设计背景石油炼制生产过程中,把两种或两种以上根底组分油与各种添加剂按一定比例均匀混合,从而成为一种新产品的过程称为调和。
《单闭环管道流量比值控制系统》过程控制系统课程设计说明书专业班级: 11级自动化1班姓名:孙勇李自强周程鲍凯学号:080311009 080311022080311035 080311047指导教师:陈世军设计时间: 2014年6月11日物理与电气工程学院2014年 6 月 11 日摘要在现代工业生产过程中,工艺上常需要两种或两种以上的物料流量保持一定的比例关系,一旦比例失调,就会影响生产的正常进行,影响产品质量,浪费原料,消耗动力,造成环境污染,甚至产生生产事故。
实现两个或两个以上参数符合一定比例关系的控制系统,称为比值控制系统。
通常以保持两种或几种物料的流量为一定比例关系的系统,称之为流量比值控制系统,这次课程设计的内容就是流量比值过程控制系统。
流量测量是比值控制的基础。
各种流量计都有一定的适用范围(一般正常流量选在满量程的70%左右),必须正确选择使用。
在工程上,具体实施比值控制时,通常有比值器、乘法器或除法器等单元仪表可供选择,相当方便。
若采用计算机控制来实现,只要进行乘法或除法运算即可,我们这次就主要使用计算机及组态王软件进行设计。
关键词:组态王;流量;比值控制系统目录1、引言 (1)1.1主要内容 (1)1.2任务要求 (1)2、设计方案 (2)2.1设计原理 (2)2.2系统原理图 (2)2.3 MATLAB仿真调试 (3)3、硬件设计 (4)3.1使用仪器 (4)4、软件设计 (7)4.1 PLC程序 (7)4.2 MCGS系统组态设计 (11)4.2.1组态图 (11)4.2.2静态画面 (12)4.2.3数字字典 (14)4.2.4系统应用程序 (16)4.2.5动画连接 (17)5、课程设计总结 (17)6、参考文献 (18)1、引言1.1主要内容本课程设计是学完《过程控制系统》课程后的一个应用性实践环节。
通过本课程设计的训练,对过程控制工程设计的概念有完整地了解,同时培养综合应用基础课、专业课所学知识与工程实际知识的能力。
单闭环流量比值控制系统一、实验目的1.了解单闭环比值控制系统的原理与结构组成。
2.掌握比值系数的计算方法。
3.掌握比值控制系统的参数整定与投运方法。
二、实验设备三、实验原理在工业生产过程中,往往需要几种物料以一定的比例混合参加化学反应。
如果比例失调,则会导致产品质量的降低、原料的浪费,严重时还会发生事故。
这种用来实现两个或两个以上参数之间保持一定比值关系的过程控制系统,均称为比值控制系统。
本实验是单闭环流量比值控制系统。
其实验系统结构图如图1所示。
该系统中有两条支路,一路是来自于电动调节阀支路的流量Q1,它是一个主流量;另一路是来自于变频器—磁力泵支路的流量Q2,它是系统的副流量。
要求副流量Q2能跟随主流量Q1的变化而变化,而且两者之间保持一个定值的比例关系,即Q2/Q1=K。
图1 单闭环流量比值控制系统(a)结构图 (b)方框图由图中可以看出副流量是一个闭环控制回路,当主流量不变,而副流量受到扰动时,则可通过副流量的闭合回路进行定值控制;当主流量受到扰动时,副流量按一定比例跟随主流量变化,显然,单闭环流量控制系统的总流量是不固定的。
四、比值系数的计算设流量变送器的输出电流与输入流量间成线性关系,即当流量Q 由0~Q max 变化时,相应变送器的输出电流为4~20mA 。
由此可知,任一瞬时主流量Q 1和副流量Q 2所对应变送器的输出电流分别为I 1=416max11+⨯Q Q (1) I 2=416max 22+⨯Q Q (2) 式中Q 1max 和Q 2max 分别为Q 1和Q 2 最大流量值,即涡轮流量计测量上限,由于两只涡轮流量计完全相同,所以有Q 1max =Q 2max 。
设工艺要求Q 2/Q 1=K ,则式(1)、(2)可改写为Q 1=16)4(1-I Q 1max (3) Q 2=16)4(2-I Q 2max (4) 于是求得12Q Q =4412--I I ×max 1max 2Q Q =4412--I I (5) 折算成仪表的比值系数K ′为K ′=K ×max2max 1Q Q =K (6) 五、实验内容与步骤本实验选择电动阀支路和变频器支路组成流量比值控制系统。
一.设计任务分析1.1设计任务的描述在了解、熟悉和掌握双闭环流量比值控制系统的工艺流程和生产过程的静态和动态特性的基础之上,根据生产过程对控制系统所提出的安全性、经济性和稳定性要求,应用控制理论对控制系统进行分析和综合,最后采用计算机控制技术予以实现。
1.2设计的目的通过对一个完整的生产过程控制系统的课程设计,使我们进一步加深对《过程控制系统》课程中所学内容的理解和掌握,提高我们将《过程检测与控制仪表》、《自动控制原理》、《微机控制技术》和《过程工程基础》等课程中所学到知识综合应用的能力。
锻炼学生的综合知识应用能力,让学生了解一般工程系统的设计方法、步骤,系统的集成和投运。
从而培养学生分析问题和解决问题的能力。
1.3设计的要求1.从组成、工作原理上对工业型流量传感器、执行机构有一深刻的了解和认识。
2.分析控制系统各个环节的动态特性,从实验中获得各环节的特性曲线,建立被控对象的数学模型。
3.根据其数学模型,选择被控规律和整定调节器参数。
4.在Matlab上进行仿真,调节控制器参数,获得最佳控制效果。
5.了解和掌握自动控制系统设计与实现方法,并在THJ-2型高级过程控制系统平台上完成本控制系统线路连接和参数调试,得到最佳控制效果。
6.分析仿真结果与实际系统调试结果的差异,巩固所学的知识。
1.4本次设计的具体要求1.控制电磁阀的开度实现流量的单闭环的PI调节。
2.通过变频器控制电磁阀运行实现流量的单闭环的PI调节3.用比例控制系统使副回路的流量跟踪主回路的流量,满足一定的工艺生产要求二.总体设计方案2.1方案论证根据实际生产情况,比值控制系统可以选择不同的控制方案,比值控制系统的控制方案主要有开环比值控制系统,单闭环比值控制系统,双闭环比值控制系统几种。
方案一:单闭环控制系统原理设计的系统框图如图2.1所示。
图2.1 单闭环流量比值控制系统原理图单闭环流量比值控制系统与串级控制系统相似,但功能不同。
可见,系统中没有主对象和主调节器,这是单闭环比值控制系统在结构上与串级控制不同的地方,串级控制中的副变量是调节变量到被控变量之间总对象的一个中间变量,而在比值控制中,副流量不会影响主流量,这是两者本质上的区别。
《单闭环管道流量比值控制系统》过程控制系统课程设计说明书
专业班级:11级自动化1班
姓名:孙勇李自强周程鲍凯
学号:080311009 080311022
080311035 080311047
指导教师:陈世军
设计时间: 2014年6月11日
物理与电气工程学院
2014年 6 月11 日
摘要
在现代工业生产过程中,工艺上常需要两种或两种以上的物料流量保持一定的比例关系,一旦比例失调,就会影响生产的正常进行,影响产品质量,浪费原料,消耗动力,造成环境污染,甚至产生生产事故。
实现两个或两个以上参数符合一定比例关系的控制系统,称为比值控制系统。
通常以保持两种或几种物料的流量为一定比例关系的系统,称之为流
量比值控制系统,这次课程设计的内容就是流量比值过程控制系统。
流量测量是比值控制的基础。
各种流量计都有一定的适用范围(一般正常流量选在满量程的70%左右),必须正确选择使用。
在工程上,具体实施比值控制时,通常有比值器、乘法器或除法器等单元仪表可供选择,相当方便。
若采用计算机控制来实现,只要进行乘法或除法运算即可,我们这次就主要使用计算机及组态王软件进行设计。
关键词:组态王;流量;比值控制系统
目录
1、引言 (1)
1.1主要内容 (1)
1.2任务要求 (1)
2、设计方案 (2)
2.1设计原理 (2)
2.2系统原理图 (2)
2.3 MATLAB仿真调试 (3)
3、硬件设计 (4)
3.1使用仪器 (4)
4、软件设计 (7)
4.1 PLC程序 (7)
4.2 MCGS系统组态设计 (11)
4.2.1组态图 (11)
4.2.2静态画面 (12)
4.2.3数字字典 (14)
4.2.4系统应用程序 (16)
4.2.5动画连接 (17)
5、课程设计总结 (17)
6、参考文献 (18)
1、引言
1.1主要内容
本课程设计是学完《过程控制系统》课程后的一个应用性实践环节。
通过本课程设计的训练,对过程控制工程设计的概念有完整地了解,同时培养综合应用基础课、专业课所学知识与工程实际知识的能力。
通过对过程控制系统的分析与设计,获得面向工业生产过程系统分析与设计的实践知识,初步掌握过程控制系统开发和应用的技能。
基于组态软件的流量比值过程控制系统通过某种组态软件,结合实验室已有设备,按照定值系统的控制要求,根据较快较稳的性能要求,采用单闭环控制结构和PID控制规律,通过流量传感器将检测到的流量与设定值送入计算机,计算机运用PID算法得到相应的控制信号,并将其输出给执行器,然后执行器调节调节阀,以达到调节流量的控制目的。
设计一个具有较美观组态画面和较完善组态控制程序的流量比值单回路过程控制系统。
流量比值控制系统在实际生产中应用十分广泛,它能使系统稳定,精确地输出,更能实现自动化控制,是过程控制系统的一个典型。
本设计针对生产中两种液体的流量的控制,对其设计了单闭环流量比值控制系统,将液体A作为主流量,液体B为副流量进行设计,设计中用到了多个硬件设备,并基于计算机实现过程的自动控制。
1.2任务要求
根据要求自己设计系统结构,分析系统的特点和系统特性,在实验室连接系统部件、构造硬件系统。
可以自己跳线、连线,并连好对象、控制器、计算机,但是打开电源之前必须经过指导教师检查。
在过程监控计算机上编制相应监控组态程序。
通过对控制器、监控计算机和实验对象的联机调试、执行、观察结果,达到预期应用功能和控制目的,比较不同方案的应用效果。
⑵了解流量比值控制系统的物理结构,闭环调节系统的数学结果和PID控
制算法。
⑵逐一明确各路检测信号到PLC的输入通道,包括传感器的原理,连接方法,信号种类,信号调理电路,引入PLC的接线以及PLC中的编址。
⑶逐一明确从PLC到各执行机构的输出通道,包括各执行机构的种类和工作原理,驱动电路的构成,PLC输出信号的种类和地址。
⑷绘制出流量控制系统的电路原理图,编制I/O地址分配表。
⑸编制PLC的程序结合过程控制实验室的现有设备进行调试,要求能在实验设备上演示控制过程。
2、设计方案
2.1设计原理
比值控制有开环比值控制、单闭环比值控制、双闭环比值控制、串级比值控制系统和变比值控制系统。
开环比值控制是最简单的控制方案。
单闭环比值控制和双闭环比值控制是实现两种物料流量间的定比值控制在系统运行过程中其比值系数是不变的。
串级比值控制系统实现两种物料的比值随第三个参数的需求而变化。
变比值控制系统最终目的是生产过程的结果,物料按比值输出不是关键。
根据设计要求,本系统必须采用单闭环比值控制或双闭环比值控制,本系统采取单闭环控制方案。
2.2系统原理图
图1 单闭环流量比值控制系统原理图
2.3 MATLAB 仿真调试
本系统的主要的实现是PID 算法的实现,根据流量比值单回路控制系统的原理,运用组态王所提供的类似于C 语言的程序编写语言实现PID 控制算法。
取采样周期Ts=1s 。
本系统采用PID 位置控制算式,其控制算式如下:
0120122()(1)(1
)()(1)(1)(2)(1)()(1)(2)(1)2(1)D
D D P P P I D
P I D
P D
P
T T T T u k u k K e k K e k K e k T T T T
u k a e k a e k a e k T T a K T T T a K T
T a K T
=-++
+-+-+-=-+--+-=++=+=
算式中,Kp 为比例系数,Ti 为积分时间,Td 为微分时间,以u(k)作为计算机的当前输出值,以Kc*PV 作为给定值,PV2作为反馈值即AD 设备的转换值,e(k)作为偏差。
图5 PID 控制器
图6 仿真结果
3、硬件设计
3.1使用仪器
3.1.1流量计(涡轮流量计、电磁流量计)
1)、涡轮流量计:
输出信号:频率,测量范围:0~0.6m3/h
接线如图所示:
图2 涡轮流量计
接线说明:传感器的供电电源由24VDC开关电源提供,负载为流
量积算变送仪。
注:使用涡轮流量计时,必须将24VDC开关电源打开。
2)、电磁流量计:
输出信号:4~20mA,测量范围:0~0.4 m3/h
图3 电磁流量计
接线说明:转换器为交流220V供电,X、Y和A、B、C为传感
器和转换器之间的连线,输出信号线直接接控制台上的电磁流
量计信号输出端。
3.1.2 电动调节阀
QSVP20-15N智能电动单座调节阀
主要技术参数:
执行机构型式:智能型直行程执行机构
输入信号:0~10mA/4~20mADC/0~5VDC/1~5VDC
输入阻抗:250Ω/500Ω
输出信号:4~20mADC
输出最大负载:<500Ω
信号断电时的阀位:可任意设置为保持/全开/全关/0~100%间
的任意值
电源:220V±10%/50Hz
3.1.3 变频器面板
如图所示,变频器型号为三菱FR-S520S-0.4K型变频调速器,具体数设置如下表:
表1 三菱变频器参数设置表
名称表示设定范围设定值
上限频率P1 0-120Hz 60Hz
下限频率P2 0-120Hz 20Hz
扩张功能显示选择P30 0,1 1
频率设定电流增益P39 1-120Hz 60Hz
RH端子功能选择P62 4
操作模式选择P79 0-8 0
C5 C5 输出频率大小25Hz
C6 C6 偏置20%
A 面板接线端子功能说明:
为了保护变频器各接线端子不因实验时经常装拆线而损坏或丢失,
故将其常用的端子引到面板上。
(1)控制信号输入:可输入外部0~5V电压或4~20mA电流控制信
号。
图4 变频器面板(2)STF、STR:电机的正、反转控制端,SD与STF相连为正转,
SD与STR相连时为反转。
B 变频器使用说明:
本装置中使用变频器时,主要有两种输出方式:
一种是直接调面板旋钮输出频率,另一种是用外部
输入控制信号改变变频器输出频率。
两种输出方式
具体接线方法如下:
(1)变频器面板旋钮输出接线方法:
SD与STF(或STR)短接,当需要改变输出频率时,旋动面板上的旋钮,顺时针旋可增大输出频率,逆时针旋可减小输出频率。
待旋至所需要的频率时,按变频器上白色的SET键,即可选定所需的输出频率。
(2)变频器外部控制信号控制输出接线方法:
SD与STF(或STR)、RH两端都短接,在控制信号输入端接入控制信号(正极、负极应对应,不能接错),打开变频器的电源开关即可输出。
通过改变控制信号的大小来改变输出频率。
模拟量输入有涡流流量传感器和电磁流量传感器组成,PLC选S7—200系列中的226,上位机和下位机的电缆采用RS—458通讯电缆。
第一路由异步电动机和水泵构成动力系统,第二路由变频器、电动机和水泵构成动力系统。
表2 端口分配表
1 AIW0 第一路供水系统涡流流量传感器
输入
16
位
2 AIW2 第二路供水系统电磁流量传感器
输入
16
位
1 AQW0 输出控制电动调节阀16位
2 AQW4 输出控制变频器16位
4、软件设计4.1 PLC程序。