小升初应用题行程之追及相遇问题
- 格式:doc
- 大小:44.50 KB
- 文档页数:4
追及、列车过桥问题一、追及问题追及问题中常见数量关系(两者同时出发):追者路程—被追者路程=运动前两者距离(即相对路程)相对速度=追着与被追者的速度差相对路程=相对速度 运动时间例1一人骑车在公路上以均匀的速度前进,有快、中、慢三辆车同时从同一地点出发,沿着公路追赶前面的骑车人,这三辆车分别用2分钟、3分钟、6分钟追上骑车人。
已知快车每小时行48千米,中车每小时行36千米,慢车每小时行多少千米?变式训练1 甲乙丙三人同时骑自行车一不同的速度去追赶已经出发的同志,追上的时间分别是6分钟、10分钟、12分钟,已知甲每小时行12千米,乙每小时行9千米,丙每小时行多少千米?例2 龟兔赛跑,全程跑5.2千米。
兔子每小时跑20千米,乌龟每小时跑3千米。
乌龟不停的跑,但兔子却边跑边玩,它先跑1分钟然后玩15分钟,又跑2分钟然后玩15分钟,再跑3分钟然后玩15分钟.......那么先到达终点的比后到达终点的早多少分钟?变式训练2乌龟和兔子进行10000米赛跑,兔子的速度是乌龟的5倍。
当他们从起点出发后,乌龟不停地跑,兔子跑到某一地点就开始睡觉,兔子醒来时,乌龟已经领先它5000米,兔子奋起直追,但乌龟到达终点时,兔子仍落后100米。
兔子睡觉期间,乌龟跑了多少米?例3学校操场400米的跑道中套着300米的小跑道,如图,大跑道与小跑道有200米的路程相重叠,甲以每秒6米的速度沿大跑道逆时针方向跑,两人同时从两跑道的一交接A点出发,他们第二次在跑道上相遇时,甲共跑了多少米?变式训练3下图是一个跑道示意图,沿ACBEA跑一圈是400米,沿ACBDA跑一圈是275米,其中AB为75米。
甲、乙两人同时从A出发,逆时针方向前进,甲沿ACBEA跑,每秒跑8米,乙沿ACBDA跑,每秒跑5米。
两人出发后多少秒在A处相遇?针对练习1、有甲、乙、丙三辆客车,甲、乙两车从东站出发,同时丙车从西站出发,相向而行,甲车每分钟行1000米,乙车每分钟行800米,丙车每分钟行700米,丙车遇到甲车后20分钟又遇到乙车。
名校小升初:行程问题之相遇与追及一、多次相遇/追及问题1、甲、乙两车同时从A、B两地相对开出,第一次相遇时离A站90千米,然后按原速继续行驶,分别到达对方的出发点之后立即沿原路返回,第二次相遇时离A站的距离占A、B两地全长的65%。
求A、B两地的路程。
2、甲、乙、丙三人的步行速度是每分钟70米、60米和50米,甲从B地,乙和丙从A地同时出发相向而行,途中甲遇到乙后2分钟又遇到丙,求A、B两地的距离。
3、甲从A地出发前往B地,乙、丙两人从B地出发前往A地,甲行了60千米后,乙和丙才同时从B地出发,结果甲和乙相遇在C地,甲和丙相遇在D地。
已知甲的速度是丙的4倍,是乙的两倍,CD两地之间的距离是30千米。
那么A、B两地相距多少千米?4、甲、乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米,如果他们同时从直路的两端出发,他们跑了10分钟,相遇了多少次?迎面相遇多少次?5、甲、乙、丙三人同时从A地出发,沿同一路线驱车前往B地,分别在12分钟,15分钟,20分钟时追上同一个正从A地到B地的骑车人,若所有人都是匀速前进,且甲的速度为35千米/小时,乙的速度的是30千米/小时,求丙的速度。
6、甲、乙两人同时从A 点同时出发,沿着长方形ABCD 的边按照箭头方向爬行。
在距离C 点32厘米的E 点它们第一次相遇,在离D 点16厘米的F 点第二次相遇,在离A 点18厘米的G 点第三次相遇。
长方形的边AB 长多少厘米?二、一半时间和一半路程1、张玲在450米长的环形跑道上跑一圈,已知她前一半时间内每秒跑5米,后一半时间内每秒跑4米,那么她后一半路程用了多少秒?2、小刚在560米的环形跑道上跑一圈,已知她前一半时间每秒跑8米,后一半时间每秒跑6米,则小刚跑完后半程用了多少秒?3、兄弟两人骑自行车同时从甲地到乙地,弟弟在前一半路程每小时行4千米,后一半路程每小时行6千米,哥哥按时间分段行驶,前31的时间每小时行4千米,中间31的时间每小时行5千米,最后31的时间每小时行6千米,结果哥哥比弟弟早到20分钟。
【小升初专题讲义】第十七讲行程问题专题精讲(解析版)一、基本公式:1.路程=速度×时间2.速度=路程÷时间3.时间=路程÷速度二、问题类型1.相遇问题:①相遇时间=总路程÷速度和②速度和=总路程÷相遇时间③总路程=速度和×相遇时间2.追及问题:①追及时间=路程差÷速度差②速度差=路程差÷追及时间③路程差=速度差×追及时间3.流水行船问题:①顺水速度=船速+水速②逆水速度=船速-水速③船速=(顺水速度+逆水速度)÷2④水速=(顺水速度-逆水速度)÷24.列车过桥问题:(1) 火车过桥(隧道):火车过桥(隧道)时间=(桥长+车长)÷火车速度(2) 火车过树(电线杆、路标):火车过树(电线杆、路标)时间=车长÷火车速度(3) 火车过人:①火车经过迎面行走的人:迎面错过的时间=车长÷(火车速度+人的速度)②火车经过同向行走的人:追及的时间=车长÷(火车速度-人的速度)(4) 火车过火车:①错车问题:错车时间=(快车车长+慢车车长)÷(快车速度+慢车速度)②超出问题:错车时间=(快车车长+慢车车长)÷(快车速度-慢车速度)考点1 一般行程问题【例1】小王骑公共自行车从家去上班,每分钟行350米,用了20分钟,下午下班沿原路回家,每分钟比去时多骑50米,多少分钟到家?【精析】先根据路程=速度×时间,求出家到单位的距离,再求出下班的速度,最后根据时间=路程÷速度即可解答。
【答案】350×20=7000(米)350+50=400 (米/分)7000÷400=17.5(分钟)答:17.5分钟到家。
【归纳总结】本题考查知识点:依据速度,时间以及路程之间的数量关系解决冋题。
考点2 相遇问题【例2】甲乙两车分别从相距480千米的A 、B 两城同时出发,相向而行,已知甲车从A 城到B 城需6小时,乙车从B 城到A 城需12小时。
17.行程问题知识要点梳理一、基本公式:1.路程=速度×时间2.速度=路程÷时间3.时间=路程÷速度二、问题类型1.相遇问题:①相遇时间=总路程÷速度和②速度和=总路程÷相遇时间③总路程=速度和×相遇时间2.追及问题:①追及时间=路程差÷速度差②速度差=路程差÷追及时间③路程差=速度差×追及时间3.流水行船问题:①顺水速度=船速+水速②逆水速度=船速-水速③船速=(顺水速度+逆水速度)÷2④水速=(顺水速度-逆水速度)÷24.列车过桥问题:(1) 火车过桥(隧道):火车过桥(隧道)时间=(桥长+车长)÷火车速度(2) 火车过树(电线杆、路标):火车过树(电线杆、路标)时间=车长÷火车速度(3) 火车过人:①火车经过迎面行走的人:迎面错过的时间=车长÷(火车速度+人的速度)②火车经过同向行走的人:追及的时间=车长÷(火车速度-人的速度)(4) 火车过火车:①错车问题:错车时间=(快车车长+慢车车长)÷(快车速度+慢车速度)②超出问题:错车时间=(快车车长+慢车车长)÷(快车速度-慢车速度)考点精讲分析典例精讲考点1 一般行程问题【例1】小王骑公共自行车从家去上班,每分钟行350米,用了20分钟,下午下班沿原路回家,每分钟比去时多骑50米,多少分钟到家?【精析】先根据路程=速度×时间,求出家到单位的距离,再求出下班的速度,最后根据时间=路程÷速度即可解答。
【答案】350×20=7000(米)350+50=400 (米/分)7000÷400=17.5(分钟)答:17.5分钟到家。
【归纳总结】本题考查知识点:依据速度,时间以及路程之间的数量关系解决冋题。
考点2 相遇问题【例2】甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A 城到B城需6小时,乙车从B城到A城需12小时。
小升初数学行程类问题相遇问题:速度和×相遇时间=相遇路程相遇路程÷速度和=相遇时间;速度比=路程比相遇路程÷相遇时间=速度和追及问题:速度差×追及时间=路程差路程差÷速度差=追及时间路程差÷速度差=追及时间火车过桥问题:火车过桥时间=(车长+桥长)÷车速车长=车速×火车过桥时间-桥长桥长=车速×火车过桥时间-车长流水问题:关键是抓住水速对追及和相遇的时间不产生影响,船速就是通常据说的静水中的速度。
顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2(也就是顺水速度、逆水速度、船速、水速4个量中只要有2个就可求另外2个)1、慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?2、快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇时已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程。
3、甲、乙两人同时从A、B两地相对出发,甲与乙的速度差是每小时2千米,甲在过了中点4千米处与乙相遇,求甲、乙两人行了多少时间?4、一列客车和一列货车同时从两个车站相对开出,货车每小时行35千米,客车每小时行45千米,2.5小时相遇,两车站相距多少千米?5、两个县城相距52.5千米,甲、乙二人分别从两城同时相对而行,甲每小时行5千米,乙每小时比甲快0.5千米,几小时后相遇?6、甲、乙二人分别从相距110千米的两地相对而行。
5小时后相遇,甲每小时行12千米,问乙每小时行多少千米?7、甲、乙两站相距486千米,两列火车同时从两站相对开出,5小时相遇。
第一列火车比第二列火车每小时快1.7千米,两列火车每小时的速度各是多少?8、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
1、一列快车和一列慢车,同时从甲、乙两站出发,相向而行,经过6小时相遇,相遇后快车继续行驶3小时后到达乙站.已知慢车每小时行45千米,甲、乙两站相距多少千米?.解:45×6÷3=90(千米),90×(6+3)=810(千米);答:甲、乙两站相距810千米.2、甲、乙二人分别以每小时3千米和5千米的速度从A、B 两地相向而行.相遇后二人继续往前走,如果甲从相遇点到达B地共行4小时,那么A、B两地相距多少千米?解:4×3÷5=2.4(小时)2.4×(3+5)=19.2(千米)3、一列快车从甲城开往乙城,每小时行65千米,一列客车同时从乙城开往甲城,每小时行60千米,两列火车在距中点20千米处相遇,相遇时两车各行了多少千米?解:(20×2)÷(65-60)=8(小时)65×8=520(千米)60×8=480(千米)答:相遇时快车行驶了520千米,慢车行驶了480千米.4、兄弟两人同时从家里出发到学校,路程是1400米。
哥哥骑自行车每分钟行200米,弟弟步行每分钟行80米,在行进中弟弟与刚到学校就立即返回来的哥哥相遇。
从出发到相遇,弟弟走了多少分钟?1400×2÷(200+80)=2800÷280=10(分钟)答:弟弟走了10分钟。
5、A、B两地相距38千米,甲、乙两人分别从两地同时出发,相向而行,甲每小时行8千米,乙每小时行11千米,甲到达B地后立即返回A地,乙到达A地后立即返回B地,几小时后两人在途中相遇?相遇时距A地多远?解:38×3÷(8+11)=6(小时)11×6-38=28(千米)答:6小时后两人在途中相遇?相遇时距A地28千米.6、甲、乙两人从A地到B地,丙从B地到A地.他们同时出发,甲骑车每小时行8千米,丙骑车每小时行10千米,甲丙两人经过5小时相遇,再过1小时,乙、丙两人相遇.求乙的速度.解:(8+10)×5÷(5+1)-10=18×5÷6-10=15-10=5(千米)答:乙每小时行5千米.7、甲、乙、丙三人行走的速度依次分别为每分钟30米、40米、50米.甲、乙在A地,丙在B地,同时相向而行,丙遇乙后10分钟和甲相遇.求A、B两地相距多少米?解:(30+50)×[(50×10+40×10)÷(40-30)]=7200(米)答:A、B两地相距7200米.8、甲、乙两车分别从A、B两地同时相对开出,经过5小时相遇,相遇后各自继续前进,又经过3小时,甲车到达B地,这时乙车距A地还有120千米.甲、乙两车的速度各是多少?解:[120-120÷(5+3)×3]÷(5-3)×(5+3)=[120-120÷8×3]÷2×8=75÷2×8=300(千米)300÷(5+3)=37.5(千米)(300-120)÷(5+3)=180÷8=22.5(千米)答:甲、乙两车的速度分别是37.5千米、22.5千米.9、甲、乙两人从相距1100米的两地相向而行,甲每分钟走65米,乙每分钟走75米,甲出发4分钟后,乙才开始出发.乙带了一只狗和乙同时出发,狗以每分钟150米的速度向甲奔去,遇到甲后立即回头向乙奔去,遇到乙后又回头向甲奔去,直到甲、乙两人相遇时狗才停止.这只狗共奔跑了多少路程?解:(1100-65×4)÷(65+75)×150,=6×150=900(米)答:这只狗共奔跑了900米.。
行程问题:相遇问题应用题(小升初专项练习)六班级数学小考总复习(含答案)一、相遇问题常见公式。
1、两者相遇路程=两者速度和×相遇时间2、相遇时间=两者相遇路程÷两者速度和3、两者速度和=两者相遇路程÷相遇时间4、两者速度和=甲的速度+乙的速度5、两者相遇路程=甲走的路程+乙走的路程6、甲的速度=两者相遇路程÷相遇时间-乙的速度7、甲行走的路程=两者相遇路程-乙行走的路程二、解决实际问题的技巧。
1、解答相遇此类问题,首先要弄清题目的题意,依据题意画出路程、时间或速度的相关线段图;然后分析各数量之间的关系;最终选择最适合的解答方法。
2、相遇问题除了要弄清路程、速度与两者相遇时间之外,须留意一些其他重要的细节:(1)两者是否是同一起点、同时动身。
假如有谁先动身了,先行走了路程,要考虑先动身者所走的路程值对题目的影响,该加还是该减掉。
(2)两者所行走的方向是否全都:梳理清楚两者是相向、同向,还是背向的。
方向不一样,处理问题就会不一样。
(3)所行走的路线是环形的,还是直线型的。
假如是环形的,要考虑再次相遇的可能。
【典型例题】1、小恬骑车从家动身去距离3.5千米远的图书馆,同一时间小琳从图书馆出来朝小恬家的方向骑来,14分钟后两人刚好相遇。
小恬每分钟骑车130米,那么小琳每分钟骑车多少米?【例题分析】这道题目是典型的路程相遇问题,已知相遇路程和相遇时间,只需要运用公式:甲的速度=相遇路程÷相遇时间-乙的速度代入相关的数量,求出答案即可。
【解答】3.5千米=3500米3500÷14-130=250-130=120(米)答:小琳每分钟骑车120米。
【培优练习】1、小客车从长泾镇到杨梅镇要行驶3小时,大货车从杨梅镇到长泾镇要行驶6小时。
两车分别从长泾镇和杨梅镇同时动身,多久后两车会相遇?个小时后,两列高铁在途中相遇。
已知甲车2、两列高铁同时从两地相对开出,经过32每小时行驶240千米,乙车每小时行驶256千米,那么两地原来相距多少千米?3、吴玲和杨嘉两人同时从相距18.6千米的两地骑车相向而行。
小升初典型奥数之行程问题在小升初的奥数学习中,行程问题一直是重点和难点。
行程问题形式多样,涵盖了相遇、追及、流水行船等多种类型,不仅考察了孩子们的数学运算能力,更考验了他们的逻辑思维和空间想象能力。
相遇问题是行程问题中的常见类型之一。
例如,甲、乙两人分别从A、B 两地同时出发相向而行,甲的速度是每小时 5 千米,乙的速度是每小时3 千米,经过4 小时两人相遇。
那么A、B 两地的距离是多少?解决这类问题,我们要知道相遇时两人走过的路程之和就是两地的距离,所以可以用速度和乘以相遇时间来计算。
即(5 + 3)× 4 = 32(千米)。
追及问题则是另一种常见的形式。
比如,甲、乙两人同时同向而行,甲在乙前面,甲的速度是每小时 8 千米,乙的速度是每小时 10 千米,经过 2 小时乙追上甲。
那么一开始甲、乙两人相距多远?对于追及问题,我们要清楚乙比甲多走的路程就是两人最初的距离,用速度差乘以追及时间就能得出。
即(10 8)× 2 = 4(千米)。
流水行船问题相对来说会更复杂一些。
一艘船在静水中的速度是每小时 15 千米,水流速度是每小时 3 千米。
那么船顺流而下的速度就是船在静水中的速度加上水流速度,即 15 + 3 = 18 千米/小时;逆流而上的速度则是船在静水中的速度减去水流速度,即 15 3 = 12 千米/小时。
在解决行程问题时,画线段图是一个非常有效的方法。
通过线段图,我们可以更直观地看到题目中的数量关系,帮助我们理清思路。
比如上面提到的相遇问题,画出甲、乙两人的运动轨迹和时间节点,就能清楚地看出他们走过的路程。
还有一些行程问题会涉及到多个物体或者多次运动。
比如,甲、乙、丙三人在环形跑道上跑步,甲跑一圈需要 5 分钟,乙跑一圈需要 8 分钟,丙跑一圈需要10 分钟。
如果三人同时从同一地点出发,同向而行,多少分钟后三人再次在起点相遇?这就需要求出 5、8、10 的最小公倍数,即 40 分钟。
行程问题(一)相遇问题追及问题【基本公式】1、路程=速度X时间2、相遇问题:相遇路程=速度和X相遇时间3、追及问题:相差路程=速度差X追及时间行程问题(一)相遇问题1、甲、乙两辆车同时从相距675千米的两地对开,经过5小时相遇。
甲车每小时行70千米,求乙车每小时行多少千米?2、快、慢两车同时从两城相向出发,4小时后在离中点18千米处相遇。
已知快车每小时行70千米,问慢车每小时行多千米?3、甲、乙两车同时从相距1313千米的两地相向开出,3小时后还相距707千米,再经过几小时两车相遇?4、两城相距564千米,两列火车同时从两城相对开出,6小时相遇,已知第一列火车的速度比第二列火车的速度每小时快2千米,两列火车的速度各是多少?5、小斌骑自行车每小时行15千米,小明步行每小时行5千米。
两人同时在某地沿同一条线路到30千米外的学校去上课。
小斌到校后发现忘了带钥匙,就沿原路回家去拿,在途中与小明相遇。
问相遇时小明共行了多少千米?6、A、B两地相距380千米。
甲、乙两辆汽车同时从两地相向开出,原计划甲每小时行36千米,乙每小时行40千米,但开车时,甲改变了速度,也以每小时40千米的速度行驶。
这样相遇时乙车比原计划少走了多少千米?7、东、西两地相距90千米,甲、乙两人分别从两地同时出发,相向而行。
甲每小时行的路程是乙的2倍。
5小时后两人相遇,两人的速度各是多少?8、甲、乙两车从相距360千米的两地相向而行,甲车时速70千米,乙车时速50千米,几小时后两车相距120千米?9、甲、乙两车同时从A、B两地出发,相向而行,4小时相遇,相遇后甲车继续行驶3小时到达B地,乙车每小时行54千米,问A、B两地相距多少千米?10、甲从A地、乙从B地同时以均匀的速度相向而行,第一次相遇A地6千米,继续前进,到达对方起点后立即返回,在离B地3千米处第二次相遇,问A、B两地相距多少千米?11、A大学的小李和B大学的小孙分别从自已的学校同时出发,不断往返于A、B两校之间。
17.行程问题知识要点梳理一、基本公式:1.路程=速度×时间2.速度=路程÷时间3.时间=路程÷速度二、问题类型1.相遇问题:①相遇时间=总路程÷速度和②速度和=总路程÷相遇时间③总路程=速度和×相遇时间2.追及问题:①追及时间=路程差÷速度差②速度差=路程差÷追及时间③路程差=速度差×追及时间3.流水行船问题:①顺水速度=船速+水速②逆水速度=船速-水速③船速=(顺水速度+逆水速度)÷2④水速=(顺水速度-逆水速度)÷24.列车过桥问题:(1) 火车过桥(隧道):火车过桥(隧道)时间=(桥长+车长)÷火车速度(2) 火车过树(电线杆、路标):火车过树(电线杆、路标)时间=车长÷火车速度(3) 火车过人:①火车经过迎面行走的人:迎面错过的时间=车长÷(火车速度+人的速度)②火车经过同向行走的人:追及的时间=车长÷(火车速度-人的速度)(4) 火车过火车:①错车问题:错车时间=(快车车长+慢车车长)÷(快车速度+慢车速度)②超出问题:错车时间=(快车车长+慢车车长)÷(快车速度-慢车速度)考点精讲分析典例精讲考点1 一般行程问题【例1】小王骑公共自行车从家去上班,每分钟行350米,用了20分钟,下午下班沿原路回家,每分钟比去时多骑50米,多少分钟到家?【精析】先根据路程=速度×时间,求出家到单位的距离,再求出下班的速度,最后根据时间=路程÷速度即可解答。
【答案】350×20=7000(米)350+50=400 (米/分)7000÷400=17.5(分钟)答:17.5分钟到家。
【归纳总结】本题考查知识点:依据速度,时间以及路程之间的数量关系解决冋题。
考点2 相遇问题【例2】甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A 城到B城需6小时,乙车从B城到A城需12小时。
六年级数学导学案
概念理解:
基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间
关键问题:确定行程过程中的位置
相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)
追击问题:追击时间=路程差÷速度差(写出其他公式)
例题讲解:(简单的相遇追及问题)
【例1】一列快车和一列慢车同时从甲乙两地相向而行,慢车每小时行50千米,快车比慢车快20%,经过2.5小时,两车相遇,请问甲乙两地相距多少千米?
解:
快车的速度=50×(1+20%)=60千米/时
相遇的距离=(50+60)×2.5=275(千米)
【练习1】甲、乙二人分别从A、B两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又已知乙每分钟行50米,求A、B两地的距离。
【例2】一辆汽车从甲地到乙地每小时行驶30千米,然后按原路返回,若想往返的平均速度为40千米,则返回时每小时应行驶()千米。
解:
【练习2】现在龟兔进行赛跑,它们同时从起点出发,乌龟跑前一半路程的速度是4m/s,跑后一半路程的速度是6m/s,兔子前一半时间的速度是4m/s,后一半时间的速度是6m/s,问谁先到终点?
【练习3】1000米赛跑,已知甲到终点时,乙离终点50米;乙到达终点时,丙离终点100米。
那么甲到终点时,丙离终点()米。
多次往返问题(追及相遇综合问题)
【例3】、小强和大强位于AB两地同时出发往返于AB两地之间,小强的速度是20米/分钟,大强的速度是30米/分钟,AB间的距离是100米,问第四次相遇点距离B点的距离?
解:
1、通过相遇求全程:
第四次相遇总共走了全程:1+2×3
路程:(1+2×3)×100=700(米)
2、通过速度分全程:
小强和大强的速度比:2:3
小强走了总路程的:(700÷5)×2=280(米)
3、通过追踪求相遇:
相遇时小强走了两个全程又80米
第四次相遇点距B点为20米
:
环形跑道上的相遇与追及问题:
例1:绕湖一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王速度为4千米/小时;小张速度为6千米/小时.问:两人出发多少时间第一次相遇?
练习1:绕湖一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王以4千米/小时速度每走1小时后休息5分钟;小张以6千米/小时速度每走50分钟后休息10 分钟.问:两人出发多少时间第一次相遇?
例2:绕湖一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王速度为4千米/小时;小张速度为6千米/小时.问:两人出发多少时间第一次相遇?
课后巩固训练题:(每题10分,共100分)
1.A.B两地相距960千米,甲车和乙车同时从A地出发驶向B地,甲车每小时行80千米,乙车每小时行60千米,甲车到达B地后修车用了半小时,以原速返回A地,两车对面相遇时距B地多远?
2.甲以5千米/时的速度先走16分钟,乙以13千米/时的速度追甲,则乙追上甲需要的时间为多少小时?
3.A.B.C是一条路上的三个车站,B站到A、C两站的距离相等,甲和乙同时分别从A、C两站出发相向而行,甲经过B站200米时与乙相遇,然后两人继续前进,甲走到C站立即返回,经过B站600米时又追上乙,A、B两站距离是多少米?
4.甲乙二人同时从A地出发到B地,甲到B地返回,在离B地20千米处与乙相遇,已知甲每小时行18千米,乙每小时行10千米,求A、B两地距离。
5.甲骑车,乙步行,分别从A、B两地同时相向行驶;相遇后甲又经15分钟到达B地,若甲速是乙速的3
倍,乙过相遇地点后又经多少分钟到达A地?
6.A、B两车相向而行,A车行全程需10小时,B车行全程需15小时,两车在途中相遇后,A车又行了90
千米,正好行了全程的80%,求甲乙两地的距离。
7.甲、乙两人骑自行车同时从东西两地相向而行,经过8小时可以相遇,如果甲每小时少行1千米,乙每
小时多行3千米,这样经过7小时就能相遇,问东西两地相距多少千米?
8.甲乙两车同时从相距80千米的两地相向而行,到达后立即返回,经过2小时在途中第二次相遇,相遇
时甲车比乙车多行20千米,求两车的速度。
9.两地相距28公里,小明以15公里/小时的速度。
小亮以30公里/小时的速度,分别骑自行车和开汽车
从同一地前往另一地,小明先出发1小时,小亮几小时后才能追上小明?
10.甲、乙两人在400米环形跑道上跑步,两人朝相反的方向跑,两人第一次和第二次相遇间隔40秒,已知甲每秒跑6米,问:乙每秒跑多少米?。