偏微分方程的L2理论3下
- 格式:pdf
- 大小:1.20 MB
- 文档页数:12
第一章. 波动方程§1 方程的导出。
定解条件2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为 .0),(,0),0(==t l u t u(2)若l x =为自由端,则杆在l x =的张力x ux E t l T ∂∂=)(),(|lx =等于零,因此相应的边界条件为x u∂∂|lx ==0 同理,若0=x 为自由端,则相应的边界条件为xu∂∂∣00==x (3)若l x =端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支承的伸长为)(),(t v t l u -。
由虎克定律有x uE∂∂∣)](),([t v t l u k lx --== 其中k 为支承的刚度系数。
由此得边界条件)(u xuσ+∂∂∣)(t f l x == 其中E k =σ特别地,若支承固定于一定点上,则,0)(=t v 得边界条件)(u xuσ+∂∂∣0==l x 。
同理,若0=x 端固定在弹性支承上,则得边界条件x uE∂∂∣)](),0([0t v t u k x -== 即 )(u xuσ-∂∂∣).(0t f x -= 3. 试证:圆锥形枢轴的纵振动方程为 2222)1(])1[(t u h x x u h x x E ∂∂-=∂∂-∂∂ρ 其中h 为圆锥的高(如图1)证:如图,不妨设枢轴底面的半径为1,则x 点处截面的半径l 为:hx l -=1 所以截面积2)1()(hx x s -=π。
利用第1题,得])1([)1()(2222xuh x E x t u h x x ∂∂-∂∂=∂∂-ππρ 若E x E =)(为常量,则得2222)1(])1[(tuh x x u h x x E ∂∂-=∂∂-∂∂ρ §2 达朗贝尔公式、 波的传抪1. 证明方程()常数011122222 h t uh x a x u h x x ∂∂⎪⎭⎫ ⎝⎛-=⎥⎥⎦⎤⎢⎢⎣⎡∂∂⎪⎭⎫ ⎝⎛-∂∂ 的通解可以写成()()xh at x G at x F u -++-=其中F,G 为任意的单变量可微函数,并由此求解它的初值问题:()().,:0x tux u t ψ=∂∂==ϕ 解:令()v u x h =-则()()()⎪⎭⎫⎝⎛∂∂+-=∂∂-∂∂+=∂∂-x v u x h xu x h xv u xu x h 2,))(()()()()[(2222xv u x h x u x h x u x h x v u x u x h x ∂∂+-=∂∂-+∂∂-+∂∂+-=∂∂-∂∂又 ()2222tv t u x h ∂∂=∂∂-代入原方程,得()()222221tv x h a x v x h ∂∂-=∂∂-即 222221t v a x v ∂∂=∂∂ 由波动方程通解表达式得()()()at x G at x F t x v ++-=,所以 ()()()x h at x G at x F u -++-=为原方程的通解。
偏微分方程偏微分方程是一个非常广泛的课题,它包含分析的许多方面内容。
就我们现在的知识水平来说,我们只了解很少一点东西。
从十八世纪初开始,人们就开始结合物理、力学问题来研究偏微分方程,最早研究的几个方程是弦振动方程、热传导方程及调和方程,这部分理论已经被彻底地研究了,而且近乎完备,把它们称为偏微分方程的古典理论。
十八世纪后期在连续介质力学中研究流体的运动规律,在考虑流体的粘性时,描述运动规律的方程称为Navier-Stokes方程组,而在不计流体的粘性时,称为Euler方程组。
在此时期,描述弹性体运动规律的方程称为Saint Venant方程组。
到了十九、二十世纪,人们发现了描述电磁场运动规律的Maxwell方程组,描述微观粒子运动规律的Schrodinger方程及Dirac方程组,广义相对论中确定引力场的基本方程Einstein方程以及基本粒子规范场理论的基本方程Yang-Mills方程,在微分几何中研究极小曲面的极小曲面方程等等。
随着科学理论变得复杂,所提出的偏微分方程就愈多而且更加变化多端,可能出现的偏微分方程和方程组类型之多是出于想象的。
我们的目的是介绍现代偏微分方程理论中用到的一些技巧和方法。
众所周知,一本偏微分方程的书只能包括已有的基本材料的一小部分,因此我们必须作出选择,如何选择不是立足于逻辑基础上的,这种选择的主观性是相当明显的。
偏微分方程的内容是研究偏微分方程解的各种性质。
通常考虑以下问题1.对单个方程或方程组,应配以怎样的初值条件与边值条件使之具有解,这是解的存在性问题。
在研究解的存在性时,要明确解赖以存在的函数类。
2.解的唯一性或究竟有几个解,要明确使解为唯一的函数类。
3.解的正则性或光滑性。
是否为古典解、强解还是弱解?解具有几阶可微性?4.解的连续依赖性,必须明确是什么空间、什么范数实现的。
通常考虑的是解关于初、边值或关于方程系数,或在方程为线性时关于自由项的连续依赖性。
5.定解区域与影响区域。
2024年考研数学偏微分方程题目详解与答案在2024年的考研数学试卷中,偏微分方程题目一直是考生们关注和备考的重点。
本文将详细解析2024年考研数学偏微分方程题目,并提供详细的解答和答案。
一、第一题题目描述:给定二阶常系数线性偏微分方程 $\frac{{\delta^2u}}{{\delta x^2}} + c\frac{{\delta u}}{{\delta t}} + ku = f(x, t)$,其中 $u = u(x, t)$ 为未知函数,$c, k$ 为常数,$f(x, t)$ 为已知连续函数。
要求求解此偏微分方程。
解析:根据题目所给的偏微分方程可知,我们需要求解二阶常系数线性偏微分方程。
此类方程的典型特点是对时间 $t$ 的导数项和对空间$x$ 的二阶导数项。
我们可以采用特征线法来求解此类方程。
首先,我们设方程的通解形式为 $u(x, t) = X(x)T(t)$,其中$X(x)$ 和 $T(t)$ 分别是 $x$ 和 $t$ 的函数。
将通解带入方程中得到:$\frac{{X''}}{{X}} + c\frac{{T'}}{{T}} + k = \frac{{f(x, t)}}{{XT}}$由于方程的左侧只与 $x$ 有关,右侧只与 $t$ 有关,故两侧等于某个常数 $-\lambda$。
得到两个常微分方程:$X'' + \lambda X = 0$ 和 $T' + \left(c -\lambda\right) T = 0$对于方程 $X'' + \lambda X = 0$,根据 $\lambda$ 的值分为三种情况讨论:1. 当 $\lambda > 0$ 时,方程的通解为 $X(x) = A\cos(\sqrt{\lambda}x) + B\sin(\sqrt{\lambda}x)$。
2. 当 $\lambda = 0$ 时,方程的通解为 $X(x) = Ax + B$。
1 Fourier变换定义:若,则称为的Fourier变换,记作或。
相反,如果,则称为的傅里叶逆变换,记为.对于维函数,定义为的Fourier变换;其逆变换公式为:.例1 求的Fourier变换。
解由Fourier的定义得例2:求解波动方程的初值问题解:方法一:用Fourier变换法来求解。
对方程以及初始条件关于变量x取Fourier变换得,解之得:取Fourier逆变换得到:方法二:运用叠加原理及行波法来求解。
根据线形片未分方程的叠加原理,方程可以分解成下面的两个问题的求解:那么原方程的解可以写成:对于方程(1),依据齐次化原理,方程的求解可以转化成下面问题的求解:并且根据行波法,可以求得上述方程的解为:则对于方程(2),直接根据行波法可以求得:那么原方程的解为:2分离变量法2.1分离变量法的物理背景以及基本思想分离变量法又称为Fourier方法,而在讨论波动方程时也称为驻波法。
此方法源于物理事件中的如下事实:机械振动或电磁振动总可以分解为具有某种频率和振幅的简谐振动的叠加。
而每一个简谐振动具有形式:,这正是物理上的驻波。
从数学的角度看,驻波就是知含变量和只含变量的函数的乘积,即具有分离变量的形式。
由此启发我们在求解线性定解问题的时候,可尝试先求出满足齐次方程和齐次边界条件的具有变量分离形式的解然后将它们叠加起来,记为:然后再利用初始条件确定各项中的任意常数,使其成为问题的解。
2.2使用分离变量法解题得五个步骤:(1分离变量:将分离变量的形式代入方程以及边界条件中。
(2解常微分方程(3决定解的结构(4利用叠加原理得到级数形式的解(5利用初始条件和尚未利用的边界条件来确定叠加系数。
例1:试用分离变量法来求解下面定解问题解:①分离变量法:令代入上述方程中,方程变为令则加上边值条件有,原方程即化成下面的形式:②解方程,对参数进行分类讨论如下:(1当时,方程(2的解为:其中,由条件(4确定,又因为则有:得到故:即:显然零解是没有意义的,故舍去的情形。
第四章 抛物型微分方程有限差分法1设已知初边值问题22, 01, 0<(,0)sin , 01(0,)(1,)0, 0 u ux t t x u x x x u t u t t T π⎧∂∂=<<⎪∂∂⎪⎪=≤≤⎨⎪==≤≤⎪⎪⎩T ≤, 试用最简显格式求上述问题的数值解。
取h=0.1,r=0.1.0 1/10 2/10 … 1 T 2τ τt解: 1.矩形网格剖分区域. 取空间步长1, 时间2510h =0.00τ=以及0.01τ=的矩形网格剖分区域, 用节点)表示坐标点(,j k (,)(,)j k x t jh k τ=, 0,1,...1/; 0,1,...,/j h k T τ==, 如图所示.显然, 我们需要求解这(1/1)(/1)h T τ+×+个点对应的函数值. 事实上由已知初边界条件蓝标附近的点可直接得到, 所以只要确定微分方程的解在其它点上的取值即可. 沿用记号[]k(,)j j k u x t =。
u 2. 建立差分格式, 对于11,...1; 0,1,...,1Tj k hτ=−=−, 用向前差商代替关于时间的一阶偏导数, 用二阶中心差商代替关于空间的二阶偏导数, 则可定义最简显格式:1122k k k k k1jj j j u u u u u h ++−+=. 变形j τ−−有:1112(12) (k k k kj j j j u ru r u ru r h τ+−+=+−+=(4.1)用向后差商代替关于时间的一阶偏导数, 用二阶中心差商代替关于空间的二阶偏导数, 则可定义最简显格式最简隐格式:111122k k k k k j jj j j u u u u u h τ++++−−+=11+−1kj +,变形有:1111(12) k k k j j j ru r u ru u ++−−−++−= (4.2)(4.1)*0.5+(4.2)*0.5得CN 格式为:111112222k k k k k k k k j jj j j j j j u u u u u u u u h τ+++−+−−++−+=111++−1kj +x x变形有:111111(22)(22) k k k k k j j j j j ru r u ru ru r u ru ++−−+−−++−=+−+ (4.3)3 初边界点差分格式处理.对于初始条件u x (,0)sin , 01=π≤≤h 离散为(4.4)0sin 0,1,...1/j u jh j π==对于边界条件离散为(0,)(1,)0, 0 u t u t t T ==≤≤00 0,1,.../k k N u u k T τ===(4.5)总结: 联立方程(4.1)(4.4)(4.5)得到已知问题的最简显格式差分方程组:11100(12)1 1,...1; 0,1,...,1sin 0,1,...1/0 0,1,.../k k k k j j j j jk k N u ru r u ru T j k h u jh j h u u k T τπτ+−+⎧=+−+⎪⎪=−=−⎪⎨⎪==⎪⎪===⎩ 联立方程(4.2)( 4.4)( 4.5)得到已知问题的最简隐格式差分方程组:1111100(12) 1 1,...1; 0,1,...,1sin 0,1,...1/0 0,1,.../k k k k j j j j jk k N ru r u ru u T j k h u jh j h u u k T τπτ++−−+⎧−++−=⎪⎪=−=−⎪⎨⎪==⎪⎪===⎩ 联立方程(4.3)( 4.4)( 4.5)得到已知问题的CN 格式差分方程组:11111100(22)(22) 1 1,...1; 0,1,...,1sin 0,1,...1/0 0,1,.../k k k k k j j j j j jk k N ru r u ru ru r u ru T j k h u jh j h u u k T τπτ++−−+−⎧−++−=+−+⎪⎪=−=−⎪⎨⎪==⎪⎪===⎩1k j + 4 求解并显示结果利用软件计算(Matlab)如上最简显格式差分方程组.h=1/10;tau=0.0025;T=0.5; r=tau/h^2;M=1/h+1;N=T/tau+1; u=zeros(M,N);for m=1:Mu(m,1)=sin((m-1)*h*pi); endu(1,1:N)=0;u(M,1:N)=0;for n=1:N-1for m=2:M-1u(m,n+1)=r*(u(m+1,n)+u(m-1,n))+(1-2*r)*u(m,n); end end u=u’ 这样我们就计算出不同时刻不同位置k t j x 对应的函数值(,)j k u x t 取tau=0.0025, 即r=0.25绘图, 取tau=0.01, r=1再绘图,如图()图4.2 习题1数值解图示(左r=0.25, 右r=1)2.试构造初边值问题 ()()()()(), 0.51, 0,,0, 0.51,0.5,0, 1,0.51,, 0u u x x x T t x x u x x x u ⎪∂u t t u t t T x ϕ⎧∂∂∂⎛⎞=<<<≤⎜⎟⎪∂∂∂⎝⎠⎪⎪=≤≤⎨⎪==−≤≤⎪∂⎩的显格式,并给出其按最大范数稳定的充分条件。
偏微分方程一.预备知识1.平面凸集定义:若E 是一个平面凸集,则对于E 中任意两点x ,y ,连接这两点的线段也在E 内。
即λ x + (1-λ) y ∈E ( 任意x , y ∈E ,任意0≤λ ≤ 1)2.空间凸集定义:设X 是线性空间,E 是X 中一个空间凸集,如果λ x + (1-λ) y ∈E ( 任意x , y ∈E ,任意0≤λ ≤ 1)3.设D 是E 的一个子集,为凸集,泛函 f : D → R ,称为在D 上是凸的 是指任意x ,y ∈D ,t ∈ [0,1]均有f (tx + (1-t ) y )≤t f ( x )+ (1-t ) f ( y ) 若只在x = y 时取等号,则称f 是严格凸的.4.Cauchy 不等式: 2222a b ab ≤+.(,)a b R ∈证明:由于()22202a b a b ab ≤-=+-,可得2222a b ab ≤+.5.带ε的Cauchy 不等式: 2222a b ab εε≤+.(0)ε>证明:在公式2222a b ab ≤+中,令a ,b ,则有2222a b ab εε=≤+6.Young 不等式:设0,0,1,1,a b p q >>>>且111.p q+=则有.p q a b ab p q ≤+证明: 泛函 f : x → x e ,是凸的,因此有(1)(1)tx t yx y e te t e +-≤+-从而有11ln ln ln ln ln ln 11.p q p q p qa b a ba b p qa b ab eee e p q p q++==≤+=+ 7. 带ε的Young 不等式: 设0,0,0,1,1,a b p q ε>>>>>且111.p q+=则有.qpqpqpq pab ab a b pqεεεε--≤+≤+证明:在不等式p qa b ab p q≤+中用1p a ε和1p b ε-代替,a b ,可得11.ppqpqpqpq pab ab a b a b pqεεεεεε---=⋅≤+≤+8.Holder 不等式:设1,1,p q >>且111.p q+=若(),(),p q u L v L ∈Ω∈Ω则1(),u v L ⋅∈Ω且()().p q L L uvdx uvΩΩΩ≤⋅⎰证明:设1()t x 与1()s x 是Ω中这样的可测函数11()1,()1,p qt x dx s x dx ΩΩ==⎰⎰(★)根据Young 不等式有 111111.(0,0)p q t s t s t s p q ≤+>>,111.p q+=对上述不等式两边在Ω上积分得1111p q t s t s dx dx dx p q ΩΩΩ≤+⎰⎰⎰111p q=+= 其次,若(),()p q u L v L ∈Ω∈Ω,则函数1111()()(),()(())(())pqpqu x v x t x s x u x dx v x dx ΩΩ==⎰⎰满足(★)式的条件,故有1111()()()()1(())(())pqpqu x v x t x s x dx dx u x dx v x dx ΩΩΩΩ=⋅≤⎰⎰⎰⎰即 11()()(())(())pqpqu x v x dx u x dx v x dx ΩΩΩ≤⎰⎰⎰也就是()()()()()().p q L L u x v x dx u x v x ΩΩΩ≤⎰推论:(1)若11(),()0,1,u x v x pq≥+=则有11()()(())(()).p q pqu x v x dx u x dx v x dx ΩΩΩ≤⎰⎰⎰(2)若121,,,,m p p p ≤≤∞且121111,mp p p +++= 设(),(1,2,,),kp k u L k m ∈Ω=则有211212()()().p p p m m mL L L u u u dx u u u ΩΩΩΩ≤⋅⋅⋅⎰9.Minkowski ’s 不等式:设1p ≤≤∞,且,().p u v L U ∈则有 ()()().pp p L U L U L U u v uv+≤+证明:()1()p L U ppp UUu vu v dx u vu v dx -+=+≤++⎰⎰而111()p p p UU Uu v u v dx u vu dx u vvdx ---++=+++⎰⎰⎰()()111111, 1.qpqp p pUU Uu vu dx u vdx u dxq p --⎛⎫+≤++= ⎪⎝⎭⎰⎰⎰ ()()111111, 1.qpqp p pUU Uu vvdx u vdx v dxq p--⎛⎫+≤++= ⎪⎝⎭⎰⎰⎰从而有,1pq p =-因此有 ()()11111p p pp p p pp UU Uu vu dx u vdx u dx ----⎛⎫+≤+ ⎪ ⎪⎝⎭⎰⎰⎰()()11111p p ppp p pp UU Uu vv dx u vdx v dx----⎛⎫+≤+ ⎪ ⎪⎝⎭⎰⎰⎰上面两式相加得()()()()111111p p pp pp p ppp UU UUu v u v dx u vdx u dx v dx----⎛⎫⎛⎫ ⎪++≤++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰()1111(()())p ppppppUUUu v dxu dx v dx -⎛⎫=++ ⎪ ⎪⎝⎭⎰⎰⎰=1()()()()pp p p L U L U L U u v uv -++即是: 1()()()()()pp p p p p L U L U L U L U u v u vuv-+≤++,因此()()()()().p p p p L U L U L U L U u vu v u v +≤++10.-norms p L 内插不等式:设1,s r t ≤≤≤≤∞且有()11,rstθθ-=+若()().s t u L U L U ∈则有(),r u L U ∈且有()()1().rs t L U L U L U uuuθθ-≤证明:我们计算(1)rrrU U u dx uudx θθ-=⎰⎰,因为()11,r s tθθ-=+即是()11,r rstθθ-+=利用赫尔德不等式有()()(1)(1)(1)(1)rr s t s tr rrr rrrUUU Uu dx uudx udx u dx θθθθθθθθ----⎛⎫⎛⎫=≤ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰两边同时1r次方得到:()()1().rs t L U L U L U uuuθθ-≤11.柯西-施瓦茨不等式:,(,).n x y x y x y R ≤∈证明:让0,ε>并注意到222202.x y x x y y εεε≤±=±+从而有下列结果221.22x y x y εε±≤+设,0xy yε=≠时取右边的最小值得到,(,).n x y x y x y R ≤∈ 12.Gronwall ’s 不等式(differential form).(i)Let ()η be a nonnegative, Absolutely continuous function on[0,],T which satisfies for a.e t theDifferential inequality(15) ()()()(),t t t t ηφηψ'≤+Where ()x φ and ()x ψ are nonnegative, summable functions on[0,].T Then(16) 0()0()(0)()tt s ds t es ds φηηψ⎰⎡⎤≤+⎢⎥⎣⎦⎰ For all 0.t T ≤≤(ii)In particular, if on[0,T]and (0)=0,ηφηη'≤then 0on[0,T].η≡ Proof. From (15) we see()000()()()()()()()()sssr dr r dr r dr d s e e s s s e s ds φφφηηφηψ---⎛⎫⎰⎰⎰'=-≤ ⎪⎝⎭For a.e 0.s T ≤≤因此对每一个0,t T ≤≤we have00()()()0()(0)()(0)().(1)ts st t r drr dr r drt e e s ds s ds e φφφηηψηψ---⎰⎰⎰≤+≤+≤⎰⎰This implies inequality(16).13.Gronwall ’s inequality ( integral form ).(i)Let ()t ζ be a nonnegative, summable function on [0,T] which satisfies for a.e. t the integral inequality (17) 120()()tt C s ds C ζζ≤+⎰ For constants 12,0.C C ≥ Then(18) 121()(1)C t t C C te ζ≤+for a.e. 0.t T ≤≤ (ii) In particular, if10()()tt C s ds ζζ≤⎰for a.e 0.t T ≤≤ then ()0..t a e ζ=Proof. Let 120():();()..[0,].tt s ds then t C C a e in T ηζηζη'==≤+⎰According to the differential form of Gronwall ’s inequality above1122()((0))C t C t t e C t C te ηη≤+=Then (17) implies11221()()(1).C t t C t C C C te ζη≤+≤+14.Poincare 不等式(也叫Friedrichs 不等式)符号说明:()(){()}122,,1,2,,n iuR H u L L i nx ∂Ω⊆Ω=∈Ω∈Ω=∂这个集合是线性的。
§3 二阶偏微分方程一、 二阶偏微分方程的分类、标准形式与特征方程考虑二阶偏微分方程()0),,,,,,(111,2=∂∂∂∂+∂∂∂∑=n nnj i j i ij x u x u u x x F y x u x a (1) 式中a ij (x )=a ij (x 1,x 2,…,x n )为x 1,x 2,…,x n 的已知函数.[特征方程·特征方向·特征曲面·特征平面·特征锥面]代数方程()01,=∑=nj i jiijaa x a称为二阶方程(1)的特征方程;这里a 1,a 2,…,a n 是某些参数,且有012≠∑=ni ia.如果点x ︒=(x 1︒,x 2︒,…,x n ︒)满足特征方程,即()01,o =∑=nj i jiijaa x a则过x ︒的平面()01o=-∑=nk kk k x x a 的法线方向l :(a 1,a 2,…,a n )称为二阶方程的特征方向;如果一个(n 1-)维曲面,其每点的法线方向都是特征方向,则称此曲面为特征曲面;过一点的(n 1-)维平面,如其法线方向为特征方向,则称这个平面为特征平面,在一点由特征平面的包络组成的锥面称为特征锥面.[n 个自变量方程的分类与标准形式] 在点P (x 1︒,x 2︒,…,x n ︒),根据二次型()∑=nj i jinijaa x x x a 1,o o 2o 1,,, (a i 为参量)的特征根的符号,可将方程分为四类:(i) 特征根同号,都不为零,称方程在点P 为椭圆型.(ii) 特征根都不为零,有n 1-个具有同一种符号 ,余下一个符号相反,称方程在点P 为双曲型.(iii) 特征根都不为零,有m n -个具有同一种符号(n >m >1),其余m 个具有另一种符号,称方程在点P 为超双曲型.(iv) 特征根至少有一个是零,称方程在点P 为抛物型.若在区域D 内每一点方程为椭圆型,双曲型或抛物型,则分别称方程在区域D 内是椭圆型、双曲型或抛物型.在点P 作自变量的线性变换可将方程化为标准形式:椭圆型:∑==+∂∂ni ix u1220Φ双曲型:∑==+∂∂-∂∂n i ix ux u 22120Φ超双曲型:()10112222>>=+∂∂-∂∂∑∑=+=m n x ux u mi nm i ii Φ抛物型:()00122>=+∂∂∑-=m x umn i iΦ式中Φ为不包含二阶导数的项.[两个自变量方程的分类与标准形式] 方程的一般形式为0,,,,222222122211=⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂+∂∂∂+∂∂y u x u u y x F y u a y x u a x u a (2) a 11,a 12,a 22为x ,y 的二次连续可微函数,不同时为零. 方程a 11d y 22-a 12d x d y +a 22d x 2=0称为方程(2)的特征方程.特征方程的积分曲线称为二阶方程(2)的特征曲线. 在某点P (x 0,y 0)的邻域D 内,根据Δ=a 122-a 11a 12的符号将方程分类: 当Δ>0时,方程为双曲型; 当Δ=0时,方程为抛物型; 当Δ<0时,方程为椭圆型.在点P 的邻域D 内作变量替换,可将方程化为标准形式:(i ) 双曲型:因Δ>0,存在两族实特征曲线11),(c y x =ϕ,22),(c y x =ϕ,作变换),(1y x ϕξ=,),(2y x ϕη=和,,ηηξ-=+=s t s 方程化为标准形式),,,,(2222t us u u t s t u s u ∂∂∂∂=∂∂-∂∂Φ 或),,,,(12ηξηξΦηξ∂∂∂∂=∂∂∂uu u u (ii ) 抛物型: 因Δ=0,只存在一族实的特征曲线c y x =),(ϕ,取二次连续可微函数),(y x ψ,使0),(),(≠∂∂y x ψϕ,作变换),(y x ϕξ=,),(y x ψη=,方程化为标准形式),,,,(222ηξηξΦη∂∂∂∂=∂∂uu u u (iii ) 椭圆型:因Δ<0,不存在实特征曲线,设c y x i y x y x =+=),(),(),(21ϕϕϕ为11221121212d d a a a a a x y -+=的积分,y x ϕϕ,不同时为零,作变量替换),(1y x ϕξ=,),(2y x ϕη=,方程化为标准形式),,,,(32222ηξηξΦηξ∂∂∂∂=∂∂+∂∂uu u u u二、 极值原理·能量积分·定解问题的惟一性定理椭圆型方程、抛物型方程的极值原理及双曲型方程的能量守恒原理是相应方程的解所具有的最基本性质之一,在定解问题的研究中起着重要的作用. [椭圆型方程的极值原理与解的惟一性定理]1︒ 极值原理 设D 为n 维欧氏空间E n 的有界区域,S 是D 的边界,在D 内考虑椭圆型方程()()()()x x x x f u c x ub x x u a Lu ni i i n j i j i ij =+∂∂+∂∂∂≡∑∑==11,2式中a ij (x ),b i (x ),c (x ),f (x )在D 上连续,c (x )≤0且二次型()∑=nj i j i ij a a a 1,x 正定,即存在常数μ>0,i ()∑∑==≥ni i n j i j i ij a a a a 121,μx定理1 设u (x )为D 内椭圆型方程的解,它在D 内二次连续可微,在D 上连续,且不是常数,如f (x )≤0(或f (x )≥0),则u (x )不能在D 的内点取非正最小值(或非负最大值).如果过边界S 上的任一点P 都可作一球,使它在P 点与S 相切且完全包含在区域D 内,则有 定理2 设u (x )为椭圆型方程在D 内二次连续可微,在D 上连续可微的解,且不是常数,并设f (x )≤0(或f (x )≥0).若u (x )在边界S 上某点M 处取非正最小值(或非负最大值),只要外法向导数错误!未定义书签。