计算机在生物学中的应用ppt课件
- 格式:ppt
- 大小:380.00 KB
- 文档页数:183
生物信息学和计算机技术在生物学研究中的应用随着科技发展,生物学研究不再依赖实验室中的手工操作和纸质记录,而是利用计算机技术进行高效、精确的数据处理和分析。
这就是生物信息学和计算机技术在生物学研究中的应用。
生物信息学是对生物学数据进行处理、存储和分析的学科。
生物信息学家使用计算机软件和数据库来分析生物学中的实验数据,从而获得新的科学发现。
生物信息学可以应用于基因序列、蛋白质结构、代谢通路、表观遗传学等方面的研究。
计算机技术是生物信息学的核心。
计算机技术能够大幅提高生物学实验的效率,例如,通过生物信息学分析可以得出某些特定的生物序列,这样就可以避免多次实验重复。
而且通过计算机处理的数据更加精确,数据的误差减少。
这进一步提高了实验结果的准确度。
生物信息学在基因的研究中起着重要的作用,因为基因是生物体遗传信息的载体。
通过生物信息学的方法,可以对基因进行序列分析,比如通过比对基因序列找出相关基因。
此外,基因比对可以丰富对基因背景的认识,同时也有利于研究不同世代的基因变化。
另外,生物信息学在蛋白质结构研究中也发挥了作用。
研究蛋白质结构的目的是了解这些分子如何进行生理作用,发现这些作用的机理后,我们就能够设计新的药物。
生物信息学可以通过多种方法分析蛋白质的结构,例如3D模拟和分子动力学模拟,进而寻找新的药物。
此外,生物信息学对代谢通路的研究也起着关键作用。
代谢通路是指细胞内各种化学反应的有序连续。
代谢通路有助于了解细胞并为药物研究提供基础。
利用生物信息学的方法可以确定代谢途径中关键酶,同时,可以快速预测代谢产物,这些预测结果能更好地回答“代谢产物的生成顺序如何”的问题。
最后,生物信息学的出现还可以更好地开展表观遗传学等方面的研究。
表观遗传学是指细胞基因的不同活性状态。
过去人们对表观遗传学的理解有限,但现在,生物信息学的方法被应用于表观遗传学中。
通过基因测序和生物信息学技术,我们现在可以更好地了解基因调节和染色质结构等方面的知识。
计算机技术在生物学科的应用1.序列比对序列比对其意义是从核酸、氨基酸的层次来比较两个或两个以上符号序列的相似性或不相似性,进而推测其结构功能及进化上的联系。
研究序列相似性的目的是通过相似的序列得到相似的结构或功能,也可以通过序列的相似性判别序列之间的同源性,推测序列之间的进化关系。
序列比对是生物信息学的基础,非常重要。
序列比对中最基础的是双序列比对,双序列比较又分为全局序列比较和局部序列比较,这两种比较均可用动态程序设计方法有效解决。
在实际应用中,某些在生物学上有重要意义的相似性不是仅仅分析单条序列,只能通过将多个序列对比排列起来才能识别。
比如当面对许多不同生物但蛋白质功能相似时,我们可能想知道序列的哪些部分是相似的,哪些部分是不同的,进而分析蛋白质的结构和功能。
为获得这些信息,我们需要对这些序列进行多序列比对。
多重序列比对算法有动态规划算法、星形比对算法、树形比对算法、遗传算法、模拟退火算法、隐马尔可夫模型等,这些算法都可以通过计算机得以解决。
2.数据库搜索随着人类基因组计划的实施,实验数据急剧增加,数据的标准化和检验成为信息处理的第一步工作,并在此基础上建立数据库,存储和管理基因组信息。
这就需要借助计算机存储大量的生物学实验数据,通过对这些数据按一定功能分类整理,形成了数以百计的生物信息数据库,并要求有高效的程序对这些数据库进行查询,以此来满足生物学工作者的需要。
数据库包括一级数据库和二级数据库,一级数据库直接来源于实验获得的原始数据,只经过简单的归类整理和注释;二级数据库是对基本数据进行分析、提炼加工后提取的有用信息。
分子生物学的三大核心数据库是GenBank核酸序列数据库,SWISS-PROT蛋白质序列数据库和PDB生物大分子结构数据库,这三大数据库为全世界分子生物学和医学研究人员了解生物分子信息的组织和结构,破译基因组信息提供了必要的支撑。
但是用传统的手工分析方法来处理数据显然已经无法跟上新时代的步伐,对于大量的实验结果必须利用计算机进行自动分析,以此来寻找数据之间存在的密切关系,并且用来解决实际中的问题。