SPSS统计分析—差异分析(1)
- 格式:ppt
- 大小:2.35 MB
- 文档页数:77
《精品》SPSS统计分析—差异分析差异分析是一种用于比较两个或多个组之间差异的统计方法。
在实际研究中,我们常常需要比较不同组别或条件下的测量变量之间的差异,如不同性别间的身高差异、不同年龄组别间的成绩差异等。
利用SPSS进行差异分析可以快速准确地得出结论,并辅助我们做出决策。
SPSS统计软件是一款常用的数据分析工具,它提供了丰富的统计分析功能。
下面将介绍如何使用SPSS进行差异分析。
首先,打开SPSS软件,并导入要进行差异分析的数据。
选择“文件”菜单中的“打开”选项,找到数据文件,并点击“打开”。
在数据文件打开后,我们可以进行数据的预处理工作,如数据清洗和缺失值处理。
选择“数据”菜单中的“数据清理”选项,对数据进行相应的清洗操作。
接下来,选择“分析”菜单中的“描述性统计”选项。
在弹出的对话框中,选择需要进行差异分析的变量,并点击“确定”。
在得到了描述性统计结果后,我们可以对不同组别之间的差异进行进一步的分析。
选择“分析”菜单中的“方差分析”选项。
在弹出的对话框中,将需要进行差异分析的自变量和因变量添加进去,并点击“确定”。
SPSS会自动计算出方差分析的结果,并给出显著性水平。
如果显著性水平小于设定的阈值(通常为0.05),则可以认为不同组别之间存在显著差异。
除了方差分析,SPSS还提供了其他多种差异分析方法,如t检验、卡方检验等。
根据实际情况选择合适的方法进行分析。
最后,我们可以将结果导出为文档、图片或报告,以便于展示和分享。
选择“文件”菜单中的“导出”选项,选择需要导出的格式,填写相应的内容,并点击“确定”。
综上所述,差异分析是一种重要的统计方法,在研究中具有广泛的应用价值。
通过SPSS统计软件进行差异分析,可以快速准确地得出结论,并帮助我们做出科学决策。
希望以上介绍能够对您有所帮助。
v1.0可编辑可修改利用SPSS寸五点式量表进行差异性分析(两个变项)町* E 粧山』'L 峠:氐間护P) JJ 各日g.tL 居和出:'田口 TM 習第」•:」雋即I 删程式 1:U 1 鯉 biK+4J5r.*'^> »| 中卑擞世0ftl *沾-岷疋址事玛JU *116 317 *11 «19 ui24曲:g渤3laR 丁任疋山1J 12 i 51flsnxaj戍为搏*:極生0.J id 4巧、J■1 J •1 414 2 2o ] 】L 21d护陨评件(2)■1& 55(3色2?2J 4 $ J IO 1 5 L 1d» »■1 325 $ 22\ x:3iJ2 2S J J4 njt ] II 1 11 ■ 2121L*>XA qd 4』 g22*5 如 J 11 1r 1Brtfipt 列 G» 44 4斗<it \、: aA 4 d i d 36 do & ] 山 1 j 2t443 221 5%ua444 4 2i10? 1144<.1Ad71 2 51齿咽址廿034 4 4- 415 i £ ]L« ] 11] 2 JI 23233543 5 i 5i 卜卜检苹+ 勺魏沖45» 曲 1 1.2 :J2 53 J343 & 5&1 i4&110jL 2£5 5土i J£11(* 1 11 175力中\/化匕/k 临缶 11 111 1 11 1 rJ j13 22 3i J< JJ J%-j4i11 L :] 11 . i1 1 32 5444J2 1 L:厂a茁J44B iu ] 1 1 j 1 11 35LL 4扌4 4ii Q 4a aAJ 4 4 4<14 叮& ] B 1i 11L 2242443334 扌44d4 』 i 151151 1J232 112 342 43& i ii 圍 43J 4 <百4 41611*1 |l)13: 912 74 j 443 41i片44a4444 4i171171 112 j2j 132 ■1 4 4 4; 32 2 t !4打 3 nJ4 百 4 百 5~~1? l]t ] II41 J424 3 J # 4224 14 3 黄4 4 4 4 4卡1» 1191 11 1 1 1 1 L2 j2 54 i S&4£ S4r■1 ■1iS 4J201 9 a J斗 1JJ iJ 2 4 3J 、JJ J 讥4 4贯2 JJ3 :-*21 血 2 & iLa J2 L2二4 J1 12I Q :电 J i2125 4 i22 w? 27 1J 11. 13 3L1 4 55 3 2 ii35 j 1 ■1 4 3 5 522 12L12 1333 2 J53 14J5 5©4J.145J4 ■A丄.| 菊逗册晦.-£离 ww SEPUMimi ITffh* 11』曲M 竺;'0召・』£ 15下平网「-r Grt* 1瀰訂丁丁甘児 lg: I. Q 二 H >■ -5I «1d粘團目| • | | 口和处4 |亡|口工||\|锚划]2dnlH曲皿心砧羿個泗泌*.•F咸**■Jr--r-rf£•■*.畑1 ]»]do& jwF「]Lt320鈔琥I鼻.12如吳飙M曲邀商辽•・m\ iji20212245&71112D£_!_ J__i 1 1/选择公私立学校‘为分组变数米用T检疋只能考验两个变项2>25C3212J1213325534J5\50 可43■1 | 45---1 L J 67」亘工站応的I邪44冲0召■連上HifiCB-lll 顧二宜I・1. Levene 检定用于考验两组变异数是否同质,F= P=>,未达显著差异,故两 组变异数可视为相等,因此须看「假设变异数相等」这一列;否则即须看「不 假设变异数相等」这一列。
SPSS——单因素方差分析来源:李大伟的日志单因素方差分析单因素方差分析也称作一维方差分析。
它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。
还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。
One-Way ANOVA过程要求因变量属于正态分布总体。
如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。
如果几个因变量之间彼此不独立,应该用Repeated Measure 过程。
[例子]调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表1-1所示。
表1-1 不同水稻品种百丛中稻纵卷叶螟幼虫数数据保存在“data1.sav”文件中,变量格式如图1-1。
图1-1分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。
1)准备分析数据在数据编辑窗口中输入数据。
建立因变量“幼虫”和因素水平变量“品种”,然后输入对应的数值,如图1-1所示。
或者打开已存在的数据文件“data1.sav”。
2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统打开单因素方差分析设置窗口如图1-2。
图1-2 单因素方差分析窗口3)设置分析变量因变量:选择一个或多个因子变量进入“Dependent List”框中。
本例选择“幼虫”。
因素变量:选择一个因素变量进入“Factor”框中。
本例选择“品种”。
4)设置多项式比较单击“Contrasts”按钮,将打开如图1-3所示的对话框。
该对话框用于设置均值的多项式比较。
图1-3 “Contrasts”对话框定义多项式的步骤为:均值的多项式比较是包括两个或更多个均值的比较。
例如图1-3中显示的是要求计算“1.1×mean1-1×mean2”的值,检验的假设H0:第一组均值的1.1倍与第二组的均值相等。
《统计分析与SPSS的应用(第五版)》课后练习答案第6章SPSS的方差分析1、入户推销有五种方法。
某大公司想比较这五种方法有无显著的效果差异,设计了一项实验。
从应聘人员中尚无推销经验的人员中随机挑选一部分人,并随机地将他们分为五个组,第一组20.0 16.8 17.9 21.2 23.9 26.8 22.4第二组24.9 21.3 22.6 30.2 29.9 22.5 20.7第三组16.0 20.1 17.3 20.9 22.0 26.8 20.8第四组17.5 18.2 20.2 17.7 19.1 18.4 16.5第五组25.2 26.2 26.9 29.3 30.4 29.7 28.21)请利用单因素方差分析方法分析这五种推销方式是否存在显著差异。
2)绘制各组的均值对比图,并利用LSD方法进行多重比较检验。
(1)分析→比较均值→单因素ANOV A→因变量:销售额;因子:组别→确定。
ANOVA销售额平方和df 均方 F 显著性组之间405.534 4 101.384 11.276 .000组内269.737 30 8.991总计675.271 34概率P-值接近于0,应拒绝原假设,认为5种推销方法有显著差异。
(2)均值图:在上面步骤基础上,点选项→均值图;事后多重比较→LSD多重比较因变量: 销售额LSD(L)(I) 组别(J) 组别平均差(I-J) 标准错误显著性95% 置信区间下限值上限第一组第二组-3.30000* 1.60279 .048 -6.5733 -.0267 第三组.72857 1.60279 .653 -2.5448 4.0019第四组 3.05714 1.60279 .066 -.2162 6.3305第五组-6.70000* 1.60279 .000 -9.9733 -3.4267 第二组第一组 3.30000* 1.60279 .048 .0267 6.5733 第三组 4.02857* 1.60279 .018 .7552 7.3019第四组 6.35714* 1.60279 .000 3.0838 9.6305第五组-3.40000* 1.60279 .042 -6.6733 -.1267 第三组第一组-.72857 1.60279 .653 -4.0019 2.5448 第二组-4.02857* 1.60279 .018 -7.3019 -.7552第四组 2.32857 1.60279 .157 -.9448 5.6019第五组-7.42857* 1.60279 .000 -10.7019 -4.1552 第四组第一组-3.05714 1.60279 .066 -6.3305 .2162第二组-6.35714* 1.60279 .000 -9.6305 -3.0838第三组-2.32857 1.60279 .157 -5.6019 .9448第五组-9.75714* 1.60279 .000 -13.0305 -6.4838第五组第一组 6.70000* 1.60279 .000 3.4267 9.9733 第二组 3.40000* 1.60279 .042 .1267 6.6733第三组7.42857* 1.60279 .000 4.1552 10.7019第四组9.75714* 1.60279 .000 6.4838 13.0305*. 均值差的显著性水平为 0.05。
方差分析(多因素,协方差)一、方法名称单因素二、定义(方法及结果)三、用途四、实现过程1、格式数据整理2、提交显示3、分析变量处理:自变量、因变量ANOVA检验:显示表,是否齐次1 方差分析法方差分析是一种是一种假设检验,它把观测总变异的平方和自由度分解为对应不同变异来源的平方和自由度,将某种控制性因素所导致的系统性误差和其他随机性误差进行对比,从而判断各组样本之间是否存在显著性差异,以分析该因素是否对总体存在显著性影响。
2 样本数据要求方差分析法采用离差平法和对变差进行度量,从总离差平方分解出可追溯到指定来源的部分离差平方和。
方差分析要求样本满足以下条件:2.1 可比性样本数据各组均数本身必须具有可比性,这是方差分析的前提。
2.2 正态性方差分析要求样本来源于正态分布总体,偏态分布资料不适用方差分析。
对偏态分布的资源要考虑先进行对数变换、平方根变换、倒数变换、平方根反正弦变换等变量变换方法变换为正态或接近正态后再进行方差分析。
2.3 方差齐性。
方差分析要求各组间具有相同的方差,满足方差齐性。
3 单因素分析法实验操作单因素分析用于分析单一控制变量影响下的多组样本的均值是否存在显著性差异。
单因素分析法的原理,单因素方差分析也称为一维方差分析,用于分析单个控制因素取不同水平时因变量的均值是否存在显著差异。
单因素方差分析基于各观测量来自于相互独立的正态样本和控制变量不同水平的分组之间的方差相等的假设。
单因素方差分析将所有的方差划分为可以由该因素解释的系统性偏差部分和无法由该因素解释的随机性偏差,如果系统性偏差明显超过随机性偏差,则认为该控制因素取不同水平时因变量的均值存在显著差异。
3.1 实验数据描述某农业大学对使用不同肥料的实验数据对比。
产量(千克/亩产)施肥类型864 普通钾肥875 普通钾肥891 普通钾肥873 普通钾肥883 普通钾肥859 普通钾肥921 控释肥944 控释肥986 控释肥929 控释肥973 控释肥963 控释肥962 复合肥941 复合肥985 复合肥974 复合肥977 复合肥在SPSS的变量视图中建立变量“产量”和“施肥类型”,分别表示实验田产量和实验田的施肥类型。
北京地区经济差异的SPSS分析作者:黄昳昕来源:《中国集体经济》2021年第12期摘要:区域经济发展直接影响整体国民经济,地区内部经济差异影响地区的整体发展水平,缩小经济差距,加快区域协调发展,是新时代我国经济发展的重要内容。
北京作为我国的首都,是政治中心、文化中心、国际交往中心、交通中心,北京的经济不断增长,但同时北京各地区的经济差异越来越明显,制约北京经济的发展。
文章采用SPSS软件,以期对北京各地区的经济状况进行分析,以期为北京地区经济发展方向提供参考。
关键词:北京;地区经济;差异;SPSS;因子分析地理环境、科学技术、人才等,是区域经济发展的主要影响因素,由于这些因素的限制,导致不同区域经济发展态势存在差异,区域内部同样如此。
我国区域经济发展不平衡是显著的问题,并且城乡二元经济结构明显,影响经济强国的构建,也难以实现共赢共享。
北京是全国政治中心的理想所在,是四个直辖市之一,具有优越的地理位置,地处华北大平原的北部。
在中国城市综合评价排名中,北京居于第一位,北京的高质量发展水平也全国第一,经济保持高质量发展平稳、持续增长。
但北京各地区之间经济发展也存在较大的差距,需要更好地协调内部发展,推动整体经济的发展。
一、北京地区概况(一)北京概况北京是中国的首都,整体地势东南低缓,西北高耸,东南是向渤海倾斜的平原,东北部、北部、西部是连绵群山。
东部与天津市毗邻。
北京全市16411平方公里,其中山区面积占61.4%,平原面积占38.6%。
共分为16个区。
据相关统计数据显示,2019年北京市常住人口总数比2018年末减少0.6万人,为2153.6万人,有745.6万人为常住外来人口,占常住人口的比重为34.6%。
北京市常住人口密度达每平方公里1313人,主要集中在城市发展新区、城市功能拓展区。
根据历年分布,北京市常住外来人口主要集中在大兴、丰台、海淀、朝阳等地区。
近年来,常住外来人口逐渐疏散向远郊区,人口分布从单中心到多中心阶段性分布,主要与人口疏解政策有关。